diff --git a/7_ifc/py/742_jupyter/stp10.ipynb b/7_ifc/py/742_jupyter/stp10.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..87447e6b8e5b4d05aebdbf60c533936b96df31ed
--- /dev/null
+++ b/7_ifc/py/742_jupyter/stp10.ipynb
@@ -0,0 +1,471 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 1.0\n",
+ "1 3.0\n",
+ "2 5.0\n",
+ "3 NaN\n",
+ "4 6.0\n",
+ "5 8.0\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "s = pd.Series([1, 3, 5, np.nan, 6, 8])\n",
+ "s"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n",
+ " '2013-01-05', '2013-01-06'],\n",
+ " dtype='datetime64[ns]', freq='D')"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dates = pd.date_range('20130101', periods=6)\n",
+ "dates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " -1.480798 | \n",
+ " 1.254959 | \n",
+ " -0.383303 | \n",
+ " 0.170942 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " -0.079949 | \n",
+ " 2.083594 | \n",
+ " 0.359603 | \n",
+ " -0.987005 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.304971 | \n",
+ " -1.527081 | \n",
+ " -0.804382 | \n",
+ " -0.044026 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 1.176118 | \n",
+ " -1.795567 | \n",
+ " 0.610545 | \n",
+ " 1.622611 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " -0.127968 | \n",
+ " -0.256433 | \n",
+ " 0.810486 | \n",
+ " -0.879474 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " -0.492543 | \n",
+ " -0.421961 | \n",
+ " 0.783574 | \n",
+ " 1.088608 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-01 -1.480798 1.254959 -0.383303 0.170942\n",
+ "2013-01-02 -0.079949 2.083594 0.359603 -0.987005\n",
+ "2013-01-03 0.304971 -1.527081 -0.804382 -0.044026\n",
+ "2013-01-04 1.176118 -1.795567 0.610545 1.622611\n",
+ "2013-01-05 -0.127968 -0.256433 0.810486 -0.879474\n",
+ "2013-01-06 -0.492543 -0.421961 0.783574 1.088608"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))\n",
+ "df\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ " E | \n",
+ " F | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1.0 | \n",
+ " 2013-01-02 | \n",
+ " 1.0 | \n",
+ " 3 | \n",
+ " test | \n",
+ " foo | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1.0 | \n",
+ " 2013-01-02 | \n",
+ " 1.0 | \n",
+ " 3 | \n",
+ " train | \n",
+ " foo | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1.0 | \n",
+ " 2013-01-02 | \n",
+ " 1.0 | \n",
+ " 3 | \n",
+ " test | \n",
+ " foo | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1.0 | \n",
+ " 2013-01-02 | \n",
+ " 1.0 | \n",
+ " 3 | \n",
+ " train | \n",
+ " foo | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D E F\n",
+ "0 1.0 2013-01-02 1.0 3 test foo\n",
+ "1 1.0 2013-01-02 1.0 3 train foo\n",
+ "2 1.0 2013-01-02 1.0 3 test foo\n",
+ "3 1.0 2013-01-02 1.0 3 train foo"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df2 = pd.DataFrame({'A': 1.,\n",
+ " 'B': pd.Timestamp('20130102'),\n",
+ " 'C': pd.Series(1, index=list(range(4)), dtype='float32'),\n",
+ " 'D': np.array([3] * 4, dtype='int32'),\n",
+ " 'E': pd.Categorical([\"test\", \"train\", \"test\", \"train\"]),\n",
+ " 'F': 'foo'})\n",
+ "df2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " -1.480798 | \n",
+ " 1.254959 | \n",
+ " -0.383303 | \n",
+ " 0.170942 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " -0.079949 | \n",
+ " 2.083594 | \n",
+ " 0.359603 | \n",
+ " -0.987005 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-01 -1.480798 1.254959 -0.383303 0.170942\n",
+ "2013-01-02 -0.079949 2.083594 0.359603 -0.987005"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(2)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 1.176118 | \n",
+ " -1.795567 | \n",
+ " 0.610545 | \n",
+ " 1.622611 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " -0.127968 | \n",
+ " -0.256433 | \n",
+ " 0.810486 | \n",
+ " -0.879474 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " -0.492543 | \n",
+ " -0.421961 | \n",
+ " 0.783574 | \n",
+ " 1.088608 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-04 1.176118 -1.795567 0.610545 1.622611\n",
+ "2013-01-05 -0.127968 -0.256433 0.810486 -0.879474\n",
+ "2013-01-06 -0.492543 -0.421961 0.783574 1.088608"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.tail(3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n",
+ " '2013-01-05', '2013-01-06'],\n",
+ " dtype='datetime64[ns]', freq='D')"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.index\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['A', 'B', 'C', 'D'], dtype='object')"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}