"
+ ],
+ "text/plain": [
+ " split manifest_id year topics values\n",
+ "0 train wrz17890107 1789 0 0.005998\n",
+ "1 train wrz17890114 1789 0 0.006012\n",
+ "2 train wrz17890117 1789 0 0.006010\n",
+ "3 train wrz17890128 1789 0 0.006015\n",
+ "4 train wrz17890207 1789 0 0.006018\n",
+ "... ... ... ... ... ...\n",
+ "65195 train wrz17991127 1799 99 0.006906\n",
+ "65196 train wrz17991204 1799 99 0.006908\n",
+ "65197 train wrz17991207 1799 99 0.006896\n",
+ "65198 train wrz17991211 1799 99 0.006914\n",
+ "65199 train wrz17991214 1799 99 0.006903\n",
+ "\n",
+ "[65200 rows x 5 columns]"
+ ]
+ },
+ "execution_count": 282,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_melted"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 283,
+ "id": "6b203d91-1c6f-43b4-b550-323c01b29446",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:436: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " scout, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:514: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " line, = ax.plot([], [], **kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\seaborn\\relational.py:337: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead.\n",
+ " artist = func([], [], label=label, **use_kws)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 283,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAXtCAYAAABQ6HsnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eaBlRXUv/Fu197lDN90NPdANTU9iI4MMAoqJOATjgEiIRgQ1T4E8DYlEgxnU5KlBY54xMQSNgRA1PhIDKuRTiERUokSiKEKcmGSGZh66oenbfc/Zu9b3R02r9t7n3HPPPbdvD/XrPndXrVo17KnWWrWrVhEzIyEhISEhIWE4UHPdgISEhISEhF0JSbAmJCQkJCQMEUmwJiQkJCQkDBFJsCYkJCQkJAwRSbAmJCQkJCQMEUmwJiQkJCQkDBH5bBZORK8GcB6ADMBnmPljlXSy6a8BMAHgNGa+kYhWAbgIwAoAGsCFzHyezfNXAE4E0AZwJ4DTmXkTEa0FcAuA22zx1zHzmb3at3TpUl67du0wTjUhISFht8ENN9zwODMvm2EZe+d5/hkAz8XOZ+RpAD8viuJ/H3XUUY9WE2dNsBJRBuDTAF4BYAOA64nocma+WbAdD2C9/R0D4Hx7LAD8gRWyCwDcQETftHm/CeD9zFwQ0V8CeD+A99ry7mTmI/pt49q1a/GjH/1oRueZkJCQsLuBiO6daRl5nn9mxYoVBy1btmyjUmqncqigtabHHnvs4IcffvgzAH6tmj6bWsILANzBzHcxcxvAJQBOqvCcBOAiNrgOwJ5EtA8zP8TMNwIAM2+GsURX2vg3mLmw+a8DsN8snkNCQkJCwuzgucuWLXt6ZxOqAKCU4mXLlj0FY23X02ex7pUA7hfxDZY2LR47xPs8AD9oqOMMAP8h4uuI6H+I6BoienFTo4joHUT0IyL60WOPPdbXiSQkJCQkDB1qZxSqDrbtjTJ0NgUrNdCqF7EnDxHtAeAyAL/PzE9HGYn+FGbI+AuW9BCA1cz8PADvAfCvRLSwVjjzhcx8NDMfvWzZjD4RJCQkJCQk1DCbgnUDgFUivh+AB/vlIaIWjFD9AjP/m8xERG8D8FoAb2Hr7JiZJ5n5CRu+AWZi0wFDO5uEhISEhF0Kl1566cK1a9c+d/Xq1c/9kz/5kxXDKnc2Bev1ANYT0ToiGgFwKoDLKzyXA3grGbwQwFPM/JCdLfxZALcw89/IDHam8XsB/BozTwj6MjthCkT0LJgJUXfN1sklJCQkJOy8KIoCZ5999uorr7zyF7/4xS9uuuyyyxbfcMMNY8Moe9ZmBdtZu2cBuApmuc3nmPkmIjrTpl8A4EqYpTZ3wCy3Od1mfxGA/wXgZ0T0Y0v7E2a+EsDfARgF8E0jf/2ympcA+DARFQBKAGcy85OzdX4JCQkJCcNB55L/WKUfemzeMMtU+yybaJ16/P3d0r/zne/MX7NmzeTBBx/cBoDXv/71T1566aV7HnXUUQ/PtO5ZXcdqBeGVFdoFIswA3tmQ71o0f38FMz+7C/0ymKHjhISEnQzMDIaGMoNOCQmzjvvvv39k5cqVbRffb7/92j/4wQ/2GEbZsypYExIS+gMzo9CT2NrejG2dzdja2Yyi7IC5hGYNZo2SCzBrGy+h/U9Dc+l5NWtoHXg1FyJPlbe08ZDP1efyubylFvlQVuqQ5ZQNbYjTJR+zBkMDAAgKeTaCTLWQqxHkWQu5GkWejSBXI2hlo8hUC61sFHk2amkjyOwxV6PIshG01EjtaPhbleMI8mwEihQ0s28Lu3Yxm/aCK3ET9vdDxF0Z8tzqvNorEwCZf0QgUjZsvtKFOIGgACL4fzKNlCmHKMqvSNl85tqGcoB5I4uweH51ocbcoJdlOVto2ouciIYySzkJ1oSEIaFTThqhKISjDG9r26Olb+2E+LbOMyh1Z9bbaDpXZTpc+1MNNEKFx9JqeSkDgZCrkShNReVkQWj4+gwtlGXK0Vyg1AXKsoOSOyh1B4UuUGoTdtepdDQOaaUuUOgO6osPEppw0D4vxdtedO5cN2POsHr16vYDDzww4uIbNmwY2XfffYfyEibBmrDbQnOJTjmJTjmJotyGdrHNhifRLrehY3+RcOxsxkT76VhIdp7Bts7mKQWjohyj+TyM5vMwYo97ji/H6IJ1Ph6O89HKWlZI5VAqg6IcGWUgypCrHKQyKMosLUdm44oyKJVDkUKmMmTUMrzIoJS1bEDB+iECQFD2GFtMVOF3cPkQ0j3/8GGsO2dRmiPA3oKUVnWpO2iXW8V9nUS7nECn2IaOnkSn2GYFdtsK4za0Ls0wNJnrQEKRcFaeshai4ckAawEqKJAyCoNLI1L2vigfN/clixQZ2OvLXAaLFxoMeKsWrKHBgQfWarYWL4MBZpS6tNckXBv/j02ZYA1mgMFYtmD1rNyrnQUvfelLt9xzzz1jt95668jatWs7//Zv/7b4C1/4wlAmvCbBOgAe23wP/v0nn4DWYkgIGpoZgBgOcg++T5c0MRTEqNHCsJQcnjLhTOVoZWP+N5KPYSQbR8seR3KZNu55DC2kuzyObyQbQ56Nmhd+lhA6wCIMZWo3pFmg1OaodYmSQ7jQbS/onDDsFC68TQhDJxi3Rh1pyGd5dHvaFqKiHCP5eCQAF47vjaUL1lqBOW7p8218D8wbXYQFY4sxb2QvjLXm2yHOFpQyAtIIwp3NTer2hxviRLpWCUNCq9XCJz7xifte/epXH1CWJd785jc/fvTRR28bRtlJsA4ArUts3vY4irIjXvhY+3dartFMXboCVfmiPPJ7iulEZNzxadYorHAoyjY6pfk2V+hJFGU7ortvV9OB+5YlBXMrG0OejYRvY7r0w3bhW18pBGJpv9fFaYO0px84gZXZb2a5/UaX2e908/K97He1OC2TtGwELfE9L8/GMNqaj/kje2KPscUYzefb73m5FYrOGknCMSFhZ8Qpp5zy1CmnnPLUsMtNgnUALF+0P37v5f+KQpsJZX6AjORAmUTTMFk0qNaQPjWarF85NKa5RKfYhsliCyY7E5gsJrCt2IJOsQWThbPonJXnBPKktQ7bkaAuyzYmiy32m5gVKnYCiBQuzgKLBI+SQkgJviweJhP5SAxxKlLIshZaahQjrfkYzcat5ThuLe1xZFnLt8MNwTUrLGra1zlhejDDlzD7f2jAjkyGsDbprAOPi1MGUAtATqAcoBxAPntDzAkJs4EkWAcEEaGVjc55GwiZ6Y26YYZNrM6KBFD53hYsaZeWOsH+wB2G3grwVobeyuBtgJ4IYS65UTiZOAOaDb20YXv0dM0mjU1ZnhaVYcNs4izi5kiR4AOTbYc9sjyaH2H495+VBpQGMgYyDcoYyAFlha/KCdQKP7QUaESB3DEnI6BbAFmhjdyGWzCPL4efO3/7QTJcf8kjaVooFE08ulI22/tk51kRkWkDwbxbPmwvgIhTF3rQ76kLPablyxRGD0zLm2YDSbAm9AQRIaP0mFTBhRCK2xi81QhF3mboeoLBEwX0MwX0lhLlFo1yK6OcBDCpQJ0cpKfXqWloaLLf4InDDxos4iWZyS4hXaY1hzUxSsenGJo0NMHmrdbH3ePVNDKD/2WtDNhwoDOAjAktnaGllTjaMCvkWmFEZz4t1xlakxlaWxVGKmktG851hpzNby7g7g8jnCeDPQ2wCikT3AciAFBsYxyUWDVEpeXhZXfhyHMOHVp5CQGpxxwAXDJ4ErDzjqxGymGWv9P4RTxoqvLHXeiC5j5Jeg2YQRmBRmC08xHYn9W807CZsRxKgDsAt9kcO8ZC5LYJw4cDTbcZPFkCkyX0ZIlyW4lim0Y5oY0V2VbApILqtKD6EIpbszYm8ja25G1syTvYkrcxMd7BloVtTGQdbMk7mLC/Z1odbM0LTOQdbMkKTOQFChULrFkwBIcK9g+8iQ0WbjbHhmEFEyMI5JLQYiOMW1pBMfnr7IxvLQShUwY44mFjuEe87ONs8w79vjGMgGVxdThcJSmgiRF+lfQFahsuRRKss4EkWAfAQ/9zP/C5JXPdjEYwNMqshM5KcK6hcw3kGsjZDIONAGpEQY0SsrEM2ViOfLyFfCxHPqYqApt8HhoxQ2lgGKHlv48xuIT4fmbDdhjTpcnva46mS45/RQkuNXShoUsNFIbOmqHbJfQkW0HIVjgSUBCoUKBSQZUZVKmQlRloQDfYJWm0VYFJVWIyK9DOCisAjVB8ZkHbC0NDN8JwIjPhLXkHW1oFtuYFdI+15gw5RijCVB07NNxmiN3EfKfpRvyoGjcdp/J5zNUgt5QEgCKCIsdDNu6WmhAyUMSjiJA5HgAZ2dEMwNDF0eSJfwQgI7btAhQDihgZAII7Gl+kHSh0QOgwowChYGCSGW1mFAy0mdHRJTqa0eESRanR0RoFaxSaUTJDM6NkbUfJTZwBTCpgsnEcNdyZprs1nTiBzR2ieunRfaSQxkyxYmKXxHRTQzQHKneV3L0kOmGP+bXNvxKGhCRYB8DPOhvwgwPusp+WOHxiYg5arNVYAXgN11kdXuMVxzBEFMrUlSOL4bLRMsOIVhgtM4zqDCM6x2hphr5Gy9zTR8scIzrDaCfH6KSNl8CozjFaKoyWCi0GJlF0OdvtCYJxK52hIG2HDzVKYnQU0FYl2lmJSXtsqwLtvER7tLSCsDQ8qkQ7K9BRRki2lbb8hmdSaUwqbfIqWV6JcsrtIZ23HCkUtTEJhJDMCBhRhFamMKoyjGUZxrMc8/MM85XCHlmGcTDmkcY4a4xzgXmssQeXGNdtjJdbkbFGxhrKTlCD/7GPM1sth8uYrkubHqc5ftalXxYGX5a2ayW1yKtjvh0EpHKQakFlLX9U2YihZyOeBpWDchMnlYPVCEqVo1AZCmqhUBnalKFgQgaGggaxUwgY5H7MJs4MIm2O7PgZihnEGkRsr7X/8Ar/sdXSzLdY+QFWfDz1KwIAr5IQxDKjwMNuPgORHfwyHpUYBCayfYY/A8MHmw6FvZatql7WhCEhCdYBoFYtwRUP/WeX1H40XtiOeMC8pgDzY6l1KxGWQ2i9x6IUE0a8IM4wUuYmXCiM6gxjXngrlO7bHMyxVBolGUvPpZVWuXA0rThKd8JSe34Z1+aUpgWn20/xo+5piozFNUqETBnrLFcKOSmMZRnm5xn2yBTmEzBOCvNIY4yBecwY1wXmcwfzuYNxPYmxzlaoYgK6swW8bQJlZwvK9haUnQlwX2tnFdr5CMxmTfESLnj3dBSn+c5YTCoDQkeN8EQ4WDvTTmphuAsfW1iAm2Hj6TLuZt8wh7hPdwLEpYtvHJaPKnEoBSYFqMweFdgJD0VBaNhz9QqqBqALMDpgTECzRonKWnCvOJRgHcItAK2Gu+CEkLuGZdO1pvg+OEs1hGPrOEqL6qrYplyls73McTzQAj146mMRD/fJldp++nDgkNc3nPnug5NPPnnt1VdfvWjJkiXF7bffftOwyk2CdQA8b+FCvGflPGxqPwPXJwm90Gq6sBotvBZrxF5IM3qje80YBG2G5jhoykZLluUzNDK0VY5JZGiTwiRlmKQMHQLaUGiD0AHQBmOSgbbW2MbApDbDaZN26KzDGh1dotSMQjM2g/GUdkNL3X5A87ex+gvflFYfwrRDlCDkBIwAdvmN6XqUHXJskUKuCCNKoUWEUUUYJWCECKMKaDGjRcAIGC0wWlyihRIt1mixxggXGGWNERRo6QKjukDObbTKNrKyDegOUE5Clx1w2QaXbeiyDV1sg+5MGEtvChApIBtFW7Ws5yOznGgEBKXmg0bmQTFAugSVBagsQUUHVHagio5JY4CgQRjKOvWpWmwsIedrVinAuhiE/1EUJ5Dgc4JeAUryEcjyuDqi8n29CqzM26LJCNBMl1C6AOsCKM3Rh20cunt4upBPaFWfI58y1SjGzonxxUPZIW2nxhlnnPH4u9/97kdPP/30dcMsNwnWAdDa8ghW/M8nMbRdcWsIH2GoIczMGOMZDN2SgspGoLJRM3yWj0Jlo6BsBMhGoNUIOtkYOtkI2tkI2tRCmzJ0VAZijYzZDJuxRgYGcYmcNRRrKEtXXCLjEkqXUFyCuIQyH1bNzw9X2qFH6+A9DFNWhizLNrTuzHg4kuy6Wuf1yHTo1n2dtTBsyMbHofIxKK0rArENVZZh2NAKRGCr/QmoHKo1BmqNg/IxqNYeoNEx6NY42q1xbM3GsCUfxbZ8HFuzFraqFraqHAUpO7CsoImgyahaJQXLTYPs7F1DK4FAB6y6xj6u7XBgyWFQW7OdzctAycbrV2ktHQ3zzZLZfru0XsFMPu2/Z7oySrumukrXttwQZ+uQvgJlvv+2KENLZciVwojK7TGzdIWWskdydBPOyVifuVWwcma0oJFrjZw1ci7R4hIZa7R0iRwlWtoM44ahU2U/55A/up8mZyWHYVVNTi0G2CoImsN9YGu1aoS8PsxGwQRLBdsq3uQGttinwSrZCvCjAF7lFco6wF6xd4qBEmUoAPvutS/2ndHbNDx0LvnqKv3Qo0PeNm7vidapJ/V07n/88cc/c9ttt4304hkESbAOgFapsc9mE24atazRuE8+SC1ZHuuQHF2XFipjEUBlYJXZsOmkwQQuyVgEnRJMW2C/AIGZkcEIyhHhh9VYbc4ycUNi1ukCIIS/HKIMZ6XF0BixsUTliHgYarQdAABiYxURj4EwakrR2nzP0kYgm7iz7NH1aOooYabIdIHK7Hc6+30uGzFCMTeCUeVjKFpj2JqPY1s+iq3ZGCbyEWxTTiC2sFVlmFAtbCWFCRAmdIktZYEtZQdbig4mija2FG1sLTvhJnYAdFzbpm+tRh8CKP4o4EZN4o8FlREUiJEWyA6bw7dGb00bmgKQsxb8jk/Xw2xEuxmN0fU0O/ONKYOmFkrKoCmHphwlZSaODCUpbEOGLaRQQqEE2Z+yd5ZQMqGAUR6mHmfYfXEMtfCCuW7ELookWAdAuXA/PPWid6GzdaMfKGJSQeNlq436cGUigRVsXhuWkwrIzA4MWq0RXs76YJhJFi0uMaJLjOgCI2yOLV1iRHfQ0gXGdIFW2UHLDnNy2bHDaW1w2QHrjhlCs3GUhselQXfrkhjT6q5IDC/6IcSsPmRImQ/7dBWGJSnLAdUCZbkQfCauKUeRtdDOcnQoQ0fl6KgMbcrRVsrSWuiQQpsUOio3R2RoE6EDMsPnBExqjUldom2Pk2WBLWUbW4qOEYZFGx3WQhhqGEEYC0MFYISAUWKMQmMEJUZQYB53sIjbGNGTyMttaJVbMa9g7NHJMK9oYX6RY15nDPM685HrlnGczwrECkpnUJyBJI0tzf6MEuLiNgwF4hwEBcW5oTs+CF5IfiVoyis4ipWtgwQ9hAnm2Sb3g7Kft+0IgHcigXoY8OtxWZmJa1ppMGloVZofFeLYgSb7Ux2U1IamNkqahFZtsGqjVG2U1EaRdVCoDgrV9r9O1kGHOijyEiXYfoaBcZKv3SiEvc72nJW9Jkqcr7tWmbtecOeegbThUf5aUnRNCbbfsBPg3NpWBgNkHeyD7Qxzt5xHrIG1PHJdrAmHtbMmvwYIUfr4xI7jhnMqy3JnQxKsA+Du9jac9eiDc92MHiDAT8mYh1aeYXQkx2hmfyrHaJbZo4mPZTlGlJnBOqoyjAAYJfPtchQaI1oj58IKe2spkBH8pVUCSjL2oHZxmDmyZngRKOGOZqiwFEOJJRilZsvDKNyQpDaTUDq6xGRZYlIXaJcF2rpA2wq+Umsh6zWAdtNF6YoMQE6ww4hmmDsHI4dGDo0R7mAxd7Cc2xgt2pjfZsxva8wvMszvtDDeaWF+Zw/MK+ZjvDMfo8V8jBTz0SrnIy/dcR7yctT+WsjKHHmpkJXK2/WzDQ3YzlWMatiqe8X96IgLV9PIzoUW83RYxXwQ5VrZW6OB4CdYkxY/G1elcbzUYvjv0UqLsKTPxgXcxfDE8g7w5rluxa6JJFgHwMKnNuLsuzpQXjN3Wq3TTp12b9MczYeDtqtYfNGrWABKhhHCmkp0VBudbBKdbBKTWRvtbBJt1cGkXULSzoFtGdDOgcmMMJkz2jlhawZsyxhtRdhKGQq71KAD5dcMFgA6YWLiwJBDj3JtI4mwG1KUQ5OKYJYvkFvGwBhlYJ4G9ioIoyUwWgIjJWOkJIwW5tgqGa0SGNEZRkqFlm5hpBzBiB5BqxxBS7eQlyPItQlnegSZPSp35BzKHjPdgtI58rKFvMyRlRky7r/LLpT5leLYzoFtLUDnAGcEbgGcA9yCMXFbANy64ZYZLmc3D8j+iADOTJpbAEpmlZJYNGrCykz8hcoIZG+CUuQGDPwRbpCAyNeVmYEE8+TZsJurZOcr2brDDGSQPbiwexBssn82hBCWPACiScLupwsGaw1dAmXHzFPS9lgUjLIEyjab9DagOwzdYTuqALP+uQhHFDDHEkDBRjOw14Ntm1icD4cd3tzEbMOnAs092IRwn3yae2z8fC4Kad7doZ0DbIfByL2DVXeKQHC5iJhecyjj6eKFtmlj+zTNhU4YBmZVsBLRqwGcB/Oaf4aZP1ZJJ5v+GgATAE5j5huJaBWAiwCsgHlULmTm82yexQC+CGAtgHsAvJGZN9q09wP4LZjX5V3MfNVsnNf4g6tx0v+cPRtFT4mm2YuDlcPQSqOk0g+zlaoDTYU5qg5KVaBQbZR+GK2AYrLDj2EoMhyd0pCJoa+GnxwK87SgcMCGzZCiGZobJjQ1/GyHKmkdMgJQj1pBmAM6D8KQRgBuETBKUCMAxglqHFDzCGo+kI8rjIwBrXkK88eBfAxQuYJqAVlWFW7bx2rdeeGkUELC8HDiiSeuu+666xZs3LgxX758+WHve9/7Hjz77LMfn2m5syZYySzC+zSAVwDYAOB6IrqcmW8WbMcDWG9/xwA43x4LAH9ghewCADcQ0Tdt3vcBuJqZP0ZE77Px9xLRwQBOBXAIgH0BfIuIDuB+1klMEwsOXogNv95G5ymjYZKynWJ9GSlIDHs5DVZqv07jZZHuNGQgWA+AsQwAWE9EDEzCu+Nzbvrgwk4LL2y4BKg0Q2rQNlxmIJ2ZYTY7pOaOWQnkHWCcY3rN5zrQPERIlQlVqs5fLQOyHHGt4PIrY6Gxs8yM2x8TzuHHdCmDsfZGKOyW4jxItQiqRVA5QeVA1gLyljsqjIwA9nMuVG4EIWVAllNk4ZGzOhKGArehd1jGk5Aw+7jiiivuno1yZ9NifQGAO5j5LgAgoksAnARACtaTAFzEZoXzdUS0JxHtw8wPAXgIAJh5MxHdAmClzXsSgJfZ/P8PwHcAvNfSL2HmSQB3E9Edtg3fH/aJzVuS4YDfGB92sbMCt+OGG2Kqrsd3/ZkuNcoCKCbZHNuMsgN07LHsmOE1csNdbi4SwWzvRTaeuTlKRqgpIkGz+TI7fGiHMJUVUm44MRomFMOI7ieVFPJ8O1dnzKxRFttQdCZQdraiKCaicNmZgNZFzfsRa7fTkHFyYJYrcc1jUnCGINKqeaGto4QG3goNrKFZA9os3mHrzUnrEgDXPDn5sKsDuiGdffvDOCWBVG7WAdtJasquCyZlw5ndKN6H7ZFys4zM58uhlPDM5MoU+cjzKNsu670KHIS9DVfpbF+kZnqPdLtkzNENhEJRnV0fOZ+gKN2EAaelS4cUZDXBkC7KAGH+wv2wdN/nz84DvptjNgXrSgByptcGGGt0Kp6VsEIVAIhoLYDnAfiBJS23ghfM/BAR7S3Kuq6hrAhE9A4A7wCA1atXT+uEdkZE37p6Im0f1Q1ad1B2tsXCrzOBsphA4cP22JlA4cNbUXS2ROlFZyvKYgJlMWwHEHIZlAphPyvbhiHCfp9a6RjCxMkOpUQ0++FQWQfSkkYyP6p10pRlu7gR+gW0Lq1ziBKaC6NkeJqNF5Mm7PMUNn9p+Qu/JnoWBq5mACEcifyHUJaa73bA3quOTYJ1ljCbgrWpL68+MT15iGgPAJcB+H1mfnoI9YGZLwRwIQAcffTRAz3BW7c8ivtv+4q1AusaaE2jdRqscyfm/L1aeggz3GblbnaCC0s6WQcPWTZiHT3IXwtZNmq0+NweK7xZNgKlRqx/1dGQx/lb9X5JhweprTurKHR6XWhag7mw4QK67EDrNnRZ2GPH0jrGS5Kuxotmein4PU2Uqc2SI112UJbtPt0QGpDKkWVjyPJRZPkolA3nrfkYHV/i41k2iqw1JuJjyFtjyLJxtEYXIGvNM/fLL0PKjJXmHFxAeUcXhmatkYo577wckTDvG3mizt6fDVwOE6hYQ3OE6P3y75sMC6sdxsrWXIT7Lu5rUWwz97vsGKGvMnu9srAWWylzD5xSAhc311ZJr1RewYC9N1LZybyiW7u2sILVhgDzyQcwjjTg+gogWP3RuSOylk0+eV2053N9yej44lm8S7s3ZlOwbgAgvTzvB6C6RqUrDxG1YITqF5j53wTPI264mIj2AfDoNOobCrZteRS33fgPghJroLKjMufiXi4g+HpVcTrcEGi3dPgXnVl7jTwIgmJoWrkbHnOC1ghhM8QWhv3C0F93ARmcwDvlY3siDPNl4piDyA0JhmNrZBSkFvm4TMvyMSMIrQDM8jFk+Tiy1jhaI3ugNbIQ+cg85CN7IM/HQl7KrfCj0MkmzBhkvyHsXIP/CbsTZlOwXg9gPRGtA/AAzMSi6qqpywGcZb+/HgPgKSswCcBnAdzCzH/TkOdtAD5mj18V9H8lor+Bmby0HsAPh39awJ7LDsFrTvtvtCefjr5pmL/iw6DQ/r2wBYLArFgHsWXgM4r8AQw237uEMNO6g7KYtL9t0OUkynIbymISumyjKLaBy0mUVnNn3UFpHUJoXXgBra3AZksL9LIyjKislu+0+fiHacSdY4h4yNLSlPLC0XwnG4HKjUtGI/BGQNmICVs3je67WSgzE/XULTQS6yN2tu+1CQkJOxZmTbAyc0FEZwG4CuYD3ueY+SYiOtOmXwDgSpilNnfALLc53WZ/EYD/BeBnRPRjS/sTZr4SRqB+iYh+C8B9AE625d1ERF+CmeBUAHjnbMwIBozGnOVjGM93HyfW1QkmAJIASkhISGjArK5jtYLwygrtAhFmAO9syHctusy3YeYnALy8S9pHAXx0Bk1O6AKSVnRCQkLCLoA77rij9Za3vGXdY4891lJK4W1ve9tjH/jABx6dOmdvJM9LCQk7CLQu0Sm3otPZik651S+3qe8pqv0ElJjWjccum4niuoHm4vJnaNovk+mHx7RFyw3WIZbm9OBRZIb8M7HkJqNc0OrH7jx537xmRrLd78dOJnRt8u0TdDOxEP5aAAhzCkSYgS787MsDwqciEp8lJA1yuY37MORna3dZpuM4LT3eM5aQZ2MYH100+w/2DoxWq4VPfOITG4499tiJjRs3quc973kHv+Y1r3n6qKOOmtG0/SRYExKmCSkA28UEOsVWdPxR0gLd0LahU0yg3Zmo0A1vqafn43juETr2sOF3mDkrO34/m1bsjBRoYb2lZg1tl9iwLlGyW3JjaXMwCW5XxbP3exlOenF1CsvcoHPJpav0ww8Pd9u4FSsmWqe+oadz/zVr1nTWrFnTAYC99tpL77///lvvu+++kSRY5wBbJ5/C/Y/+KNJsAfcdUi6rCbtL+HBjmt2XUi4mB+qarc1LlCHPRpAps3QmUyMmno0gV2YST26X0GSqhTwbjXgU5Tvt91GtS5S6jVKbJROlbqMoO4bmjya9EGHH63iKiD/kK8rJKF9RTgohOYgAJOTZCPJsDHk2an9jyLMRjI/uhQXzV4g0Q29lZhayEpO5wlIOJ5SUEFphopeyM2aVnazl8od4ZvIoS7NrTpUtwy0dcZu0G8cdma/DlwNl02JLyp5yje4tLDGJr+bMAIRg0UprWntLsrQT7krdqTwHBUq7XKoo2yjZ0m2aZrO2VXPHPkMdMFuBbQV3VQmozvQ315KAaJvEMIs/KBeWDsEvrUZRroIS/YCxaAEEBcL7D7Y8hhjobslNlzTzP8yP0F4xYSxeuG4az/Guj9tuu23k5ptvnvfSl770mZmWlQTrANj0zP244to/mutmzACms1eq5QW0FNS5FMjZCHI1agV4yw9laR2W1+jKkVmbRfviyFxC63p6M2+cj1n7jnOYFouieLgwDBM6uqGNj+6FBfNWIM9G0bICMHPCMne0cbTyMYy09sDYyAKMtOZjNN8Drdb8aFiSvNBzM5V3TgUnIWGYmMqynG089dRT6vWvf/3+H/vYx+5fvHjxjDuZJFgHwNJF++PNr/xnbNn6GJxT/PCtQ7gSc5qstTYAMi7+/HpGMhZCbQgNIJhtRZTXbi0fjHeaomyjKLeiU7ZRlNtQFNusdbUNJbeFVj8JrQuUdtlM6cPVo+Mv0CkmsE2klX7ZTeEXwstlM8ovvYnpVFuCY9pvBNhIAw91yWctKCvsmgRh5tzdqRZylVulYLSrtWis+QxyOU64F7G1pUQ7EhISdi1MTk7SCSecsP/JJ5/85Nve9rZNwygzCdYB0MrHsc+SQ+a6GUNH1R9qGOZma0UaRU4O68XCRq4Blety5TpcOQyYlu0kJCTMHbTWOPXUU9cccMAB2/7sz/7skWGVmwRrgoez3BISEhJ2B3zzm9/c4ytf+cqS9evXbz3wwAMPBoBzzjnngVNOOeWpmZSbBGtCQkJCwm6JV73qVc8w8w3DLjd9NEpISEhISBgikmBNSEhISEgYIpJgTUhISEhIGCLSN9aEhIQZIcwm19aPQXCnGO1LLPYLlXsTy/2JiVTY0o+y6OiWZCUk7OhIgjUhYUhg5rB1X7kNZWHWF5el2cYvHC29CNv6FZYu+aQ/Xr8EqrbJdUWIVf3WRv5vJZ8UbFWPYQ1C0ZUR0cLm29sLRG5PXSt07VpkRzNCOey7G8JZJLDj/XiNByp3ju76RV6N/PWAv0aSN75Ogqdahtic3HlZsmcmvDz5k0XslarJbzDicGU/6Gi7SeHxCSAs3ftwHHBIdSfPhGEgCdYBUHS24ulNdwVXYb6TAYwDMeG6EIjcGMpjCCOUIV2S+TI4vMReq2+Fzci9w4SWcVnYQFdZa5dzcKB16feLbdpDVpcdaA6bwTuemBb2otVldf9Z5xbPCkQvKK0ALCZRlEJAlu0BBQ2Z++ZcTiq7wTxlcedac0IiXOORAlQedZxVRxfSvV7VXV89T5OzjGAxSp+/Vdd+zWVW61WN9cN73SrB2h5tWHMJ9t67BM156NIyn/P2VaIoO2DrZzjK48s3Skj1ekWCqYvA8u9U4zmja3nu+sJ4cUR4z90zUe8/TFBu34jYfWHVhSEj5HN/Bb9SqfufLaQrOwCe2nQnrv73t851M6YNIrFZeE3wug49rwht19kbDR9iJxTUdjkxWrzZsaSe5jo7bz1p7Y+o7bwidlOxHWks/ApEHcxwr5S1hKx7w2wEKmshU0H4Zfk4RkYX2es0iixz19C4hFSZpdtN2fNsBCobR96ah7w1jlZujlk+z27Q7qywzPpydhvIU9Qucx/rtDp990azEgtEirAXRMH6BGCFI1B1ciIDVUuwwoT4VjSlV+9h/Vlmbnq+p6bF2biW4ESrUmnN+sTEBB1zzDEHttttKsuSTjzxxI3nnnvugzMtNwnWAbBg4Rr80ss+jolnHgYTW1d9ALzG6jR3S3OvISkYzR3i6Jx2u7xC85eWidCYGRpl0QHrSRRlG2zdDhorq3o0AonZhFkXfucQZ6mx302kgC4LFJ1tlj+UZXwDF8KScZaJ3J0kpsO7OJQWi3AerzIoaoEyRw/WUrUc/73ND+vJeLchQScYHY9VEuwGBUFYhrhSI1bhyMI5WWFXP5/0zW9HRXiW5rol/aLe0J2n7TsvxsbG+Nprr71t0aJFenJykp7//Oc/5+qrr37q5S9/+ZaZlJsE6wAYGV2AVet+da6bMVR0Haau7NkJIB7ycsNZkXZfdV8YwnWrK7k1TEjY3dH54hdW6YcfHPK2cftOtE55S0/n/kopLFq0SANAu92moihoGH1REqwJAHZGDX/Xg9aMogSKAihKu42Y+Fzm4hzF3be38KvGZd5QFjfzQ/BV84IjvmaeprK4SxvqZZECFAHKHklRiHua2ZxC0lyYHJ1685MPG7objJXnYM84arP8DBrRm/JW87Aoz8Y9GkaWg9IaBr+iAeSqHhvl7VZmqK+VE8bH0gtfFAWe+9znHnzfffeNvu1tb3v0uOOOm5G1CsyyYCWiVwM4D0AG4DPM/LFKOtn01wCYAHAaM99o0z4H4LUAHmXm54o8XwTwHBvdE8AmZj6CiNYCuAXAbTbtOmY+c5ZOLWEXgJnFC5Qa0O5nae5XaqAs2Qo7oCiM8CtFuCiBUoSLklFa4SgFZVmE9KIQdJuv8ZPabgLX8e/O12B744B1GV5//NhcNwMAMJVlOZvI8xy33nrrzY8//nh2wgkn7H/99dePPf/5z98xNzon48390wBeAWADgOuJ6HJmvlmwHQ9gvf0dA+B8ewSAzwP4OwAXyXKZ+RRRxycAPCWS72TmI4Z6Ig149HGNr1y1LWjdgNc+g6aLLlpuYOiq6VbyVmlktfFMAUoFTTxTdbqjmTBBZVOkN5WRBU0/slQY0A2WkZnAVLGaXLquW1w1vgYLTWsh8Gy8NPObhGBkkQ4hNAPd8UsLa5jIMvtTQJaRPcbxkZa7DyTSTHru7k9mrjdgrLCqdUIUWyFRvOGoLFPEa+kmHupwFp0PI/A6q8nMq7LlKdEGEYd9TmV+O70ACrINsTmlNUOX9t4xoEtzNPebI0XIPQOajQLkaUJB8s+pDs+r1lx7fpusvSZLL76+4Zp6lqa84tr6csRzw5VA9Gg29BXoO86hPI75lixO1qrE0qVLy2OPPXbzFVdcsWiHFawAXgDgDma+CwCI6BIAJwGQgvUkABexufvXEdGeRLQPMz/EzP9lrdBGWGv3jQCOm7Uz6IJWC1i6WKHdsU+qeEmiF6xhKEeGo5d1irB8WZlREzJOmLAQLEUJtDssaJIvhKt5ZxOuU/fXwHXGorOXnbTjUURhmNAP74lhPgLynBrTnCLihIgZMrSKg6BFecWQoheWGaGVw/xaRgi2WoTc0oyQVF6QyXbIc0zfkxMSdgw8+OCD+cjICC9durR85pln6Dvf+c7CP/zDP3x4puXOpmBdCUCa9xsQrNFePCsBPNRH+S8G8Agz3y5o64jofwA8DeD/MPN3q5mI6B0A3gEAq1ev7qOaOvZapHaYIZRukN/eqscmizDQGWXJdgjU/HQJlAzokq3wI2HpBIElLRQvUISlo6y0lEsVemn31fQmYVzn23WElrfmEawuuDAAOIurEubKN82mcFSWDWsO3/+0OHIl7EcmPE3U11RvVxrXaE5xyqRiIxSqzH1zJTGyYp+tmC98Q82E4iTLm8mzErXdXn95XSKauD/VNIeeynSVXok73qryXovvQu/GsHD//fe3TjvttHVlWYKZ6aSTTnryTW9601MzLXc2BWvTXazaQ/3wdMObAFws4g8BWM3MTxDRUQC+QkSHMPPTUeHMFwK4EACOPvroWbbP5g5hIf+0cw69LTsL2A5hl9oqEhootPkO2ilhfyHcjd4pGYUW9AI2XuEv7FEjCrtvtbvsw7mDwCl9TjGsTTpCs6DcFUAAjlqb4azjdmwDYbZxzDHHbL3llltunppzephNwboBwCoR3w9AdeFtPzw1EFEO4PUAjnI0Zp4EMGnDNxDRnQAOAPCjQRrfCw9s1PjctZPNGqtfdI6axlrVaJu+rU75csO8FJmq/Mh+r6NAyxVV+ChKz6rp1ECzfLm1QN33Ve3aaC2WOG7StY6tFW0t4jheSa9aXjbuBJ4XfFoIQRt3wtDT2M60jfK5cOCXZQ8PbK0mhiI2R6UB0iD7A2lAlQBKcKsEjxQgKpChAKGAc2LAZC4MgwGyrvLIXh+yPKwjPibh6QvOIYJxvad9GDYWytBgW3YZpYcjhzjbdNcmUbarCQC08yMM+PaKt0XEzdPt1nArVlCUQyFDhsy4IkQW4shApGw4h4ICQRkeMm4KFWdQpEBs0ygDsQKQwaxSzkydTLZt8O2iqH2OatP89YW5J/69N/cI9vmFu54uXZw/sx0BMgX68zftcWGXRK5pYrmbq55CuuU1NM/hr6ykPZ2PADik6eFNmCFmU7BeD2A9Ea0D8ACAUwFUHVNeDuAs+/31GABPMXM/w8C/CuBWZt7gCES0DMCTzFwS0bNgJkTdNYTzqOHpzgSe7DyDUssOAZUw/AsG8Xqa94jtsy6ODWUwMci/jDKNULBxNgFWoMJ66GkrMBTABDCBmcBs0ozwImjt6IAWxx0BZK+H/B7p6CYuj/ZnOzIi16GxFVquU7P+WpUGlAaT6+Q1FGkQzC+DhkYJJg1GacIo7b8OSu6gQBsdtFFyBx1MosPmV1IBRgFNJdiGGXpaxn9OGVoq/ilSrpuFc0JCRFC+w7VhghUSIawcfyWv/0eVNJsHlTxKLMNyDkCay+1WVw96hQZzp1Baj1slMzRrlKzNbG3WlubChQlDe17N7PlL1ihkPsh0V6atD+yvC0S74Z5FcX3Fim1/DgDZiUkhTo28zllMSIvEuVTQHV3MSJLKu8vDjXyiBK7EbXjveWuQBOvsYNYEKzMXRHQWgKtgltt8jplvIqIzbfoFAK6EWWpzB8xym9NdfiK6GMDLACwlog0APsTMn7XJpyIeBgaAlwD4MBEVAEoAZzLzk7NxbmVrI76bXWDOasiQuqUfznU0+zK6jkK+KjMCuzozr9lDhAkZMuTIoLwloqWlE1kgQcDV0qmB16cN51R6gUDGsicFRQqZ/SlLy0ghU8bu8WEijKgcY5QhjwTfKFpqPloqE0IxR0tlGFGBd8TSRrMcY9moOaqWOeYjGM9aGFE5MpVFbTETslTolH2nH1se8rsZVc61iWd3ADurXcQBMVri0tja4RwLMilQZdyEXYDi+BT5qujnnjS7NBTplfdfssditJkpU7uW7/AdCbO6jpWZr4QRnpJ2gQgzgHd2yfumHuWe1kC7DMBlg7Z1Ojhw0b646lXvwxOTm+00fbIav+Mw4shN9IktAu+s0FoXpvNUKn5FQ6j5WykzUHKJji7Q1iUKXdpjgY7W6OgSBZf+2C4LFLpEwdofS380VkFptffopzVKLr0V4LVusucRxe1RWEOqcpQWivJ53QCg8nkVqchSUETISUEphZyUF2K5UsgoQ0sp5E74UYbMCrZcKU/LlVUUnIVXaYeZQSytrHAPlDjPhB0b0gI2hLlry4yws7Y7IXleGgS5yrBkbAGWjC2Y66YkJCQkJOxgSII1IWEGYDN0YKbx2im9XPjpxOCOhp8iXGiTZsMRb1N6dS0KnHs9QTfkiAdVnjAmGucHh3U7Dby1cqu8QLSGhGvt6qfcSh1yqq5fZEwguVbG8WQ23R+V4XM0UQ5JH4dNPzctuHpdw0fPEEaFpzq7sOHauLxuCLrrVxw3wQB+HlJIiAa1KPBXaU30Bj61ei/kx67r0pCEmSAJ1gHAm7ai+MG99RcJaH7Rqi+nTKvSZAfqs1fyEMyWYn6KL/kpvCRpgod8XNJU6IDE1GCqlOnSyQ5XRx2onNoL1Bc7VjpSn7e2QLKZ39G4ZDG1l+30X0PjeLpvhS54bZx1A93xazZCzaYHISkEoV8TY+nDAMFN5Q73yHuUcDzis4DsWLsueOwRbsrrXSYJ/kqZ1FRmJAga8k3VLnmsThmPporb+yqfF0cvjUJSS7Ppukd5/lmTkqzpWsl44/Xudc6hEGoqy517PYhIoNvotOhNhTLAWztJsML4Cj700EMPXrFiRfvb3/72HcMoMwnWAcCbtqK4YppLn7q+mKi/YNWXskrTHP8S+kNkxdStl65WTa6A0RyUKVAulRAjCL0yk0taCLsfjeTASGbKaGXhN5JB5VmjpQYgtlqiuCNPQW9C9ZHbib8de2UtEOyxEm6y5oHmd6ib9VdNa+JpfJ8rkakud1Ww9ojW81YU/W7I0+QlAPjzP//z5c9+9rO3PvPMM0ObjpoE6wCg1Xth9BO/BmyehH9y5Qw7Eh1VrxdO8DdGpnz5rPZeGIuNC7be4a0GX+hgzZUaKBhclJWFnlXrjoWfQw6WnbMUKEzKqls8FNMjDb7hKPMpE6mV7a6BFHqZAnICuYW7ubWmcxULvYyAPAM5K1xV6lbV9vawquQ9TdihEFnRhjJXTUkYEJ0vfXaVfnjDkLeN22+i9cbf6unc/84772xdddVVi97//vc/dO655y4fVt1JsA4AUgQazYHRub98qQtJSEhIGAzvfOc7V3384x/f8NRTTw118eTcS4aEhISEhN0aU1mWs4GLL7540dKlS4sXv/jFE//+7/8+1CUeSbAmJCQkJOx2uPbaa/f45je/uefKlSsXTU5Oqi1btqiTTjpp3Ve/+tW7Z1p2+nqdkJCQkLDb4dOf/vQDjzzyyE8feOCBn33+85+/64UvfOHmYQhVIAnWhISEhISEoSIJ1oSEhISE3Rqvfe1rNw9rDSuQBGtCQkJCQsJQkSYvJSTMIZgZhWZ0NKOjzUYIHa1R2P1m/Y6gwgeC2b1F+jiwPBEfBz8IIl/Mx5HfBJur4l8h1AWRZ3o8lbY0tN/V7zazUCSOTTQXBjXT7SYRNVpjmWH7Nnn+1fML90xcu8p5Nt0rX47gjc86nHsUrzp98vT6Iruqr5mpyyKMZAoLRpIImA2kqzoAtnQK3PLk5tgroQjE2yNX3ZM1v3TTKce4QrVboClCbsPKxl1a7sPomqZ83h3HAYLryLTrdBl25x23R6fbqFz8tEw3wqqJv3B7cHbJXy270IxCm309OzrEO45uhWLBGp0yHB1N8ss8hWhjQsJc4KUrl+BjL0r7sc4GkmAdAPdu3orfu+Znc92MocMJYSewndCVcbOHpbBSONbquZZmBKPx3x7zxD7dhdWzA6KmrDiFRig2UZoijFDmeWR64FPWcZTyZWSiDLMtX2x9RM6sqr5nIR1LUew4SlgyVWdgcvNtIHwfMmXFW/tRxEOxsy3PH+oP6SLuq3Jb9cXXOmxAbhUdZmvZ2y3qtd2sHMaBGIOtozCnkLlnzh4F3bgGDqMB8th07SDbLBrqz6FiITZamcKXcs2ylD6S0axkR++F9CccX7YeijxHDC75WQuH6ugoQSAJ1gGwZsE4/vYlz8WjE5MomeH2VpUvjkPthat0lKqSQUmH5rVSTILpLLTxAc8ahdbWG6HrkCA6Jo7SXEclO67GfHYoUiMux3e6tc6SBL3SCYvOqtpJyc448jYorikAb10rkuE47ixv5eMhnCsp2JQ5dhGULeV4YOKkvGLhhg3lsKKMu/PckUYAEhISti+SYB0A81s5jlmxeK6bkZCw3RBGFNh/F3V/42+s8psi+1GLejmxJeXCbjP5jOLN5933UrLfR5PSkrAjIwnWAbCtLPDAlqcANA2zVL+L1gc35UQRwyPTYv7qd1gA1iJSwnJTwmpzYSWsuO7pOxPYW9laWNwaJdhb3YXWJj2ytLWwyuvhxjKjdG2/s+o4bI+FOJZcCWuNgkuU9purp+kyyhvKKu23XS0mAcnhv3iYXV6baBgxijPqQq8aF6VVJufsqFAVwSuFrvKC2bwryo6gKCmwEUYhJLhy7eS7La9x9b6YvJU+oClvH9/V5YiOp4Vx565p8anEZVSHsl+0fB3++PBfmbItuzpWrlx56Pz580ulFPI855///Oe3zLTMWRWsRPRqAOcByAB8hpk/Vkknm/4aABMATmPmG23a5wC8FsCjzPxckefPALwdwGOW9CfMfKVNez+A3wJQAngXM181G+d126aH8b+/e+lsFL3doYiQIQhoJ3yDUI4Fs5zFqX3HHCwT15lIodAkDOrfZEPnLzt+hvtWtuN29G4Y2wz/svg2ynZ4m22YQWTOzsS1DWuAzJkCGmAN8whHolPUx7azFFeE4i/UTBz37BDj+By6fvIc1S/cVtxKaUtxuhEQDXmitsl2yBRupNmBdH8EUQh7S9WG7VF8lPB5PI2V/aTheGHzubOXv+q5oEtc3gtpbdcV4+Z8Uz/JzPWPSr3j8ScmrtC4loNw19ObACTBCgDXXHPNL/bZZ59iWOXNmmAlogzApwG8AsAGANcT0eXMLDcyPR7Aevs7BsD59ggAnwfwdwAuaij+XGb+60p9BwM4FcAhAPYF8C0iOoCZy6GdlEVHP45xdY2gdHtRer1AvV7AZl7ysUqHwObIsnMR6VU6QQGkbAdTObJCyQoaCgUIIOXzEsi+oDWbO7SfZefBEVfceTsB48qzXMTBkvLCwnTqzBogbY5WKIVyXFjXabIcL8w4yt+7HC1ouh5vMPwVFBRlVknJkCGDohZy5MjVCHIeQYYcOY0gQws5WlD26MJhGpCfKuQFCAEAq4ploywd9v5aTnbWjJWsTDE/rDXDcmoTRfU5ShBilsJyWNbEZZuFLQVit5G6pYj6gjXGMOMNDDZTlczP3n8mbdPlz/BqKo0CRmWU7v4FWqcSN/njc7PXieQ1kGfu7km449X7Bc8rckX3ovrgWPXSP/8VuohVwf6ZRIUvflcJRlEFGGt2gN25HDpf+tQq/fC9Q942bs1E642/t92d+wOza7G+AMAdzHwXABDRJQBOAiAF60kALmKj+l5HRHsS0T7M/BAz/xcRrZ1GfScBuISZJwHcTUR32DZ8fxgnI7GS1uAsfBhbiwlBlR0SxDMuh18qLxJTxENeaa7qlmQ7yyBaTWejxZF9HFRajtJ2VGXEr6kEfHdT+o5IozQdDpUhj6eX0FSarsd1iOQ6UtcFKzvhKLYiakeXR3TmEQ+JDtt3vgrKKgNECooVrK0NsB3q8zRjqZi4ODq642XbuTFZPqt8sLLnqEwaZ54GNunQJs3/NBkrgwmsCaxN/8jWAK1bIAkJc4v9nj3UndJ2arz85S9fT0Q4/fTTH/vDP/zDx2da3mwK1pUApLawAcEa7cWzEsBDU5R9FhG9FcCPAPwBM2+0+a5rKCsCEb0DwDsAYPXq1VOfRQNGyoXQ9zwLo12MzJ6fLqvfRxp4e6U5sFNsOYRlfLcGWfuC/KhgY9jHYZeNWEOjiY+U/T6Xhbg8KoLZp1emuXw+TrV8tfxuP3Zh9NSeJ6o8GtSDt2t+ofCpKCkOiLqEYQogXiYjZ713ayNRc/mVUwjPMeAVFADQ2qabNTJmuZa2653Z2mRN7wMQDagwV+pxhl0wzuuvXlPbqyw9rn1jn1A3WHuin/d6Sh6RvmDxjqPszZVlCQD//d//fevatWs7DzzwQH7ccccdcMghh2w7/vjjn5lJmbMpWJvuWvW298NTxfkAPmL5PgLgEwDO6LcsZr4QwIUAcPTRRw8kgpYsz/DGs+ahva07z7TmBXV7UXtkqXYWnm4T2Hnu8RaT6YC4tIOY/nMeQ+sKzfEyhOVl+FwH6doXOtJ6R9vUyXrhJU+QQlwJmj84gWXzO+EDAlRm6CoLAlFRKLCp85f1yXZ0FQ6NAmTH6ZQSEhIGx9q1azsAsHLlyuKEE07Y9P3vf3/+jixYNwBYJeL7AXhwAJ4IzPyICxPRPwL490HLmgmUIoztsOurU6efkJCQMBWefvppVZYl9tprL/3000+rb3/72wv/9E//dMZyYzad8F8PYD0RrSOiEZiJRZdXeC4H8FYyeCGAp5i55zAwEe0joq8D8HNR1qlENEpE62AmRP1wGCeSkJCQkLDrYcOGDfkLX/jCA5/znOccfOSRRx70yle+ctMb3vCGp2da7qxZrMxcENFZAK6CWW7zOWa+iYjOtOkXALgSZqnNHTDLbU53+YnoYgAvA7CUiDYA+BAzfxbAx4noCJjRy3sA/LYt7yYi+hLM5KgCwDtnY0ZwQkJCQsKugYMPPrh922233Tw15/Qwq/Ot7frSKyu0C0SYAbyzS943daH/rx71fRTARwdqbEJCQkJCwhCQ9mNNSEhISEgYInacFcIJCbsY2K3tsMtD7I4HgSbC3ECzhTQUjOY0rgXq8+L9WpMu9MZiKnl6tanGO402OVBl2rZcp+Omg3uWKk+VF/F0b7ekpjoF3OVpWifQ9TqLSO18G9J6lSkx1YzzprVA3dJ68NJYDlo43ruuhIGQBOsA0I88jc6lNwpKrxevIT5N/sYNkb3fPLFAUFGlo7HLTfxCScT8nl5Po255mjrXaO2PbDiHdYRT5ZEdcLUMUVYkqPyCRRM2wkmU0cjLdkkR1/LXeHXg9wJQV9Mq4aowTUjYQaEOW4nRt794rpuxSyIJ1gHApQZvmQQXehq5qGd0OvmDY3AhCIBYSFTjUbiSt3bsVS7FbZer5hsXwVdX3E8jf7QIFXWloNHy6GLBNKQzqnyqnmaPLBbmujBDHk0ZHMWVuWxE0GzKDA4RlY0Dxmmi4yFocpdc3nP3B6ENXfQzc9uoRncRltdVyP/AF8pmcjzNDyxX+JvqZJve6Hyq4n0MYIAYxACBwxrjUJPxvewfReuGkgjEHG6343dlkcjPbFwKs29dzWL1l7DS6CjKsmWV863RHKgSj9ErZ3O646GGlnQp2wZaS+ZhXc8cCYMiCdYBcNdEC/dNHjvXzWiGG+qyYNs5hb6WQ9jysXOuXu3jiOu0UHBz2BTYk5dqadTIG/l8tydBgq/mIrIbuKGNOzCc91qO5BXXLznFVG7gdLeiqZzYF23TLeUpy2gqp9oew1NvZ62tcI+lKdAIwYr3Yq7wsPTkC+Gr2NK5Up4to8ojh2N8ixrOu9r+2jn5PNyc3uXcXXua0Ospj30bT51H0h/NtyTBOkuYlmAl4zl6D2ae8TqfnRnluMYP9n0YpW56XUxHI0dNHZpo7i13OmdcDjfn8QwQJoXwUew6DpcmLAoSeZwPYnKNBqLOSHZsLl7tvLt10iGNax1zNW9swXbpnGOJWjd04E4zVgYio6PCS1W6u4DOsb27N5bXu/4LG6gYS0mxcVdIABQbz0+Ry0LrOSoLG6B7D1KKoFRwaaiysDl77DXKtSk6BX8kbyX7ZlX44vxxunjyyJ9ipU4pnMK1dW0LAxMkrMZQF4nGyTJMXSG/GXnXdjSd/WCJC2u34xGbYXn3uJduVyR/dFZ/KMOHLV3b91fbfI1btYkLFT0m8nxlHqrkbyjHoTpztG75xrHal5Ru/D345JZ16/bcYT3cbFc8/vjj2W/+5m+uue2228aJCBdeeOE9v/qrv7plJmVOKViJ6F8BnAmzj9UNABYR0d8w81/NpOKdGQeuXID3n7EHJnXvoeDuWmNvS6vb3AVH9gLKdRyCKDsQ1MKWLdqyLdactbau920npm16yRqllp02RXNDIlf6lU7XdTZRZy2uQffzjXlkZw0Slkq1k/PtCRfOKwdC+Pj2Va5vt451NuC2zNNc2j1hNTSX9r7FKooJcZS3scyePN3KqvNw5SgZa8qRT+Mp8tXrbpq8pKzm458qT1PhWSOxeQP1oNmwe0LIlSGeRRdu2mM1PsWGc3Pn2zQBrOFeTLUBYlP/UH8OG3imzBNzKUqLQgDgHe94x6pXvvKVT3/961+/a9u2bfTMM8/M+ML0Y7EezMxPE9FbYNakvhdGwO62gvWRLRvw5dsujImVzqF5a6feL5QpZupyXEeg7E4vIUwgUiEMZS0fFcI2LewUUwnLcnxZoSOSnX0Q8JImOg8p3H1E8gCyo455ZC1uP1ZtLRdthZHd3YfZCyUfh9leLoRNPh+OytIiv6XZTc4ZGqUXeubITgBCCsNKOhr4ff06am9CwlzgBfschz98wV9Pzbgd0PnyR1fxw3cO1YSmFftPtE7+057O/Z988kn1gx/8YMGll156DwCMjY3x2NjYjB0L9SNYW0TUAvDrAP6OmTtENLWE2IWxtZjAzY//CKWu7Itb0RD7+QbYyFMrJ4axNJ0Q4CAMhAAK9CnifQj7HQlGwAdBX4/HCoSkd4srn79arrN37JZ15I5ZHBdKiaP7cj2PiEeKT8yv7P6t0opyZy6vQeO16WJdV/n7y18dFqUufFNZWI0l9GwvC8u3auWZ5xz2GYZXTPzONu6ZlgqczYNKGkd19T7XxnOUtIZh5KZrOMgISK9Rh2lRKuWsWrj/tNuyq+HWW28dXbx4cXHyySevvfnmm+cddthhW/7xH//x/oULF85I4+1HsP4DjOvAnwD4LyJaA2C3/sa6dtEB+PQrvobJcmsf3NN7kfrljgasfCcSLMGmzgmOwoFXc7DcnAXG0NDaWmNgE7ZWnfIfF+VwqxhWE8NL8XBbyEEkh2nDBtF+uA9+0A5u+Ja8dR7STBbRCjEMGOJxvbKzC8ODcUffTajV6QkJCcPAVJblbKEoCrrlllvmnXfeefcdd9xxW04//fRVH/jAB1acd955M3LEP6VgZeZPAvikIN1LRL8yk0p3BRARxvL08T8hISFhZ8XatWvby5cvbx933HFbAOCUU07Z+LGPfWzFTMud8iMtES0nos8S0X/Y+MEA3jbTihMSEhISEuYSq1evLlasWNH+yU9+MgoA3/jGNxY+5znP6bHTdn/oZyj48wD+CcCf2vgvAHwRwGdnWnlCQkJCQsJc4lOf+tR9b3nLW57Vbrdp9erVkxdffPE9My2zH8G6lJm/RETvBwC7HVzaji0hISEhYafHL//yL2/9+c9/fsswy+xnvc4WIloCO9vFbUg+zEYkJCQkJCTsKujHYn0PgMsB7E9E/w1gGYA3zGqrdnDc+dQEPvk/D3VnmGIFyzCWuBgfDbFDBiVm4CqRpsQsXFXJQz5O3q9/zEP+6BxCOMcS0dkIJxTV8+y2oQpgnFAEfpE38h4jvOd4zztx3KxXRY3Pe9kJS2SNy0BGlA5fpvTUUy0n9gZUT7OtFfkdTdYfyhYrf6P2dL9ejRer/6S+0PX5bCAPUlc/eRpdG1A1vbKcpeL8o5rW5ACkWm7Uzj5Prhcbd40MgIbzmwkOXTqKv37J+iGVliDRz6zgG4nopQCeA3NPb2Pmzqy3bAfGnY8+hh8+8uQct4IaXtRur9zUXlumxzcdzKQ3mSrv1Ov7arSuS7CnW9ZU/M280vVj/3XNBnau9csARJP7eS77fXan4tsJr1Of2PBYB0ASrLOBflwavrVCOtJ64Lloltq0w+OgJx/GH933WA8OQu+dJgi9X9j+OgVvEdYcnLOhOeuHAjeDASIZq+STvJbPbiUivSlR1UwAQ/oblq1sWl5P8hq4Mhty15wKuLwswuYiVCwVucoWDW2rpMvSWLZY1iLyMInS4rW3Po+XokrkreZr+DnnxDVMrUw1PVnhDjWXWX1W63yDCLKZCL8mpSM+knh2KTy9IY0kr0x1/renGheoXsmm57L+pPdKl7VPDfmk9qdgNnH1ugvzW3f10Y6EQdDPUPDzRXgMwMsB3AhgSsFKRK8GcB6ADMBnmPljlXSy6a8BMAHgNGa+0aZ9DsBrATzKzM8Vef4KwIkA2gDuBHA6M28iorUAbgFwm2W9jpnP7OP8po3R+cswXu7f/1hRI4YzLsS1jtmkcY22q/sFdY5SgkoQrnFIi+gkeUNe2Xmby6frfFStg0FUzVspj6phmc/Vr2060P8zIvgGGi5sqGeKAvpV/aafyQmeWImQIjJoi1XRCtS2eatWWtuRQfkim8TgtFEbEZlDi7dxn76A0b2Wb6eG7H7oZyj492SciBYB+Oep8hFRBuDTAF4BYAOA64nocma+WbAdDzMWsR7AMQDOt0fALPP5O9QF+DcBvN/OTv5LAO+H8V8MAHcy8xFTtW2m0M9ajtuOvw1lZzCvV9z8Fof0aRRUtwUlzVUUdrLxpWsET0U6NMhZdyQ6Nx/WiORz9VtcbfcN18lTQ1o1f7X/69LZM8F4jqobjD4gHdT5urtc73h0Me6sXVkyP9sT5eicqn6vEO2o4kr1YwTu0nLIE2+UwH3pbL2uf+38ulD6y9N8P/r/BjlY3urmCk1pMp0a06tjHs15+0W/8yNmpHN3wXScfvVzXocvWYqjZ9CehO4YZD/WCfQ3MP8CAHcw810AQESXADgJgBSsJwG4iI2PveuIaE8i2oeZH2Lm/7JWaARm/oaIXoc5mEi1cXISX7n7rr5fsiZM+eD38xJFwqp7F9q0C0rTYJvsDZo716mbFaVP4fN4yrIadp7pXi9VCV2jDd10pd7m1OB6Ucr1IMAp5hJ84jyons/l6pWvG+qd7VRn18DRUE2zb9z+0CwAplde05PYSwng+GWo5BTpDQredNG3fGsQ7oOj4aS6FN2vUJ/fSttx/+QnPxk95ZRTvNPkDRs2jP7xH//xAx/84AcfnUm5/XxjvQLhdioABwP4Uh9lrwQg/T9uQLBGe/GsBNBjym2EM2CcVTisI6L/gfFl/H+Y+bvVDET0DgDvAIDVq1f3WU2Mg/ZajP886Tewud2G7vJ6TlcTrufvH93eo26Cv9eL1z2pW0ofnf+UHP1p4/1e075HHKdZV01AUXNqs+VUL7NL9q7nOTPB1oN/KB3/FHUMWMWglt8gz/5sYhgupofd9kzN/n3f0XH44YdP3nrrrTcDQFEUWLFixeGnnnrqppmW24/KIvcVKgDcy8wb+sjXdNf60Lf6UySJ6E9te75gSQ8BWM3MTxDRUQC+QkSHVDdlZ+YLAVwIAEcfffTAj6oiwqLR0UGzJyQk9IPU9+8W2Pr/nbOqfGS428Zly/efGH/dh/p27n/55ZcvXL169eQBBxzQnmnd/XxjvWbAsjcAWCXi+wGo7hjQD08NRPQ2mIlNL7fDyGDmSQCTNnwDEd0J4AAAPxqw/QkJCQkJuwkuvvjixW94wxueGEZZXQUrEW1Gs/VIAJiZF05R9vUA1hPROgAPADgVwJsrPJcDOMt+fz0GwFPM3HMY2M40fi+AlzLzhKAvA/AkM5dE9CyY78BpPnlCQkLCDo7pWJazgW3bttG3vvWtRX/zN3/Tz2jslOgqWJl5wUwKtrN2zwJwFcxym88x801EdKZNvwDAlTBLbe6AmRR1ustPRBcDeBmApUS0AcCHmPmzMDOFRwF8005ucctqXgLgw0RUACgBnMnMc+3FISEhISFhB8ell1666OCDD55YtWpVMYzy+p4WRkR7w6xjBQAw831T5WHmK2GEp6RdIMIM4J1d8r6pC/3ZXeiXAbhsqjYlJCQkJCRIXHLJJYvf+MY3Ds0Q62c/1l8jotsB3A3gGgD3APiPYTUgISEhISFhrrB582Z17bXXLvzN3/zNTcMqsx93PB8B8EIAv2DmdTCel/57WA1ISEhISEiYKyxYsEBv2rTpx0uWLBnadqj9CNYOMz8BQBGRYuZvAzhiWA1ISEhISEjYldDPN9ZNRLQHgO8C+AIRPQqzfjQhISEhISGhgn4E638B2BPAuwH8JoBFAD48i23a4cGbtqH47wd6M810YfvArlrqPmdqHluoTmt0IefzS5++03brMz16n278Il/nbr9Z5sgNYrW0yKPsMNzY1DcIbeDpEuniY5G68fRbbo+y62X0SGxK6vfeD8tF1FT3qFdy9wd858QsuIyiZfOQHbx06OUm9CdYCWbJzJMALgHwRTs0vNvirvsew75fu3OumzHroMpxRwZXjgkJCb1xy+oWjjz4V+a6Gbsk+vG8dA6Ac4joMACnALiGiDYw86/Oeut2UCzco4VHVzyFUg+2u41Bb3HVS0B08+3ddQ/vbrV2cTDZs5whS1m5C07YWKZ7JT2NlL5j/ZZhCExhA4KovZ6f4rxUL6dx0wOC2NbM1NCrDFdT13PpYsVyhcqykGq4ubCu6MdHKVyd1Yz9eOGvjk40oNG4lnsczZG2NcWubZYJ/V3qaZxDv69ose9e/ReaMC1MZ3uDRwE8DOAJAHvPTnN2DizZYxwLFy8Ctwf91DyDIa6pMEDn2FhMn1lntiVt3/uOzSG4QUr22mttCv5efJK/URJXIt13X+gW8dUGce62GeSoaVNddDf0XpXJjbn61mq4+4PXMELOffA2EYfhEH8qRF9PhlXotAqamlmpkYGbktAb/exu8zswluoyAJcCeHtlT9XdDmrvRRg965Vz3YyEHQBNW/I1mr0902uFdqH32ahByp7rsgbFoFJy2NJ1e12LYbY77W6Dc845Z+9//ud/XkZEOPDAAye++MUv3jNv3rwZ38x+LNY1AH6fmX8808oSEnY1VCdLGeKUhISEhDnG3Xff3brwwguX33bbbT/fY489+DWvec2zPvOZzyx+17veNeM5RP18Y33fTCvZ1VB2tmLrpnvmpnK/3zFbLdn82A3feZrjCXS2vPHQJFfKclYY+/SmmcZVdBcd3YbrpjddOAgwsrOAKZRBBEDSyP4nzw+QZadKGYh5KrRQBmwZBJCyLZH1USONRPt8/qY2k0yXPDs2+t7LdTrnIp5Pjp7DGqNNapi61jiSIN6LKn9PdHkmp/1s71gglSNrjc91MwAAT19+zqri0eFuG5fvvf/Ewl/r7dy/LEvasmWLGh0dLbdu3ar222+/zlDqHkYhuxsmnrwLP7nsrXPdjISEhISBsWTdr+Cg4/96asZdFOvWreu8853vfHjdunWHjY6O6he/+MVPv/71r3966pxTIwnWATC+aBWe88qPYXLLo3P6nSmy2mpWU+CqWnAkrDrD0mw9OQaSllsj6tegl43b+F2yZ3nByma2M7HdEQzWzhLRYuIN2/+x5e3C3noXVn1k4Ud8TfljWpOV30yXow3h3Oq0KS7RDoEhN7Lr5CWKDo3PoXz2u6Q15p3pWtp6hiGV0y9o6nPognmLnzXktgyOqSzL2cBjjz2Wfe1rX9vzjjvu+NmSJUvKE0444Vl///d/v/h3f/d3Z+yMPwnWAZCPLcSyZ79irpuRkJCQkDAgrrjiioWrV6+e3HfffQsA+PVf//VN3/ve9/YYhmDtx1dwQkJCQkLCLoW1a9e2b7zxxj02b96stNb4z//8zwUHHXTQtmGUnSzWAfDE1jauuu+xGr2fiRzVUZvmga+Y2mukJ14iGQ83cRe+WhmCczqe4KKRZE/rNvmoIV8fawub6hgEfU+y6Zaf/PSjMGfK091Qu6NR1G43kD4Ij6unqT3yvKqjpPHgJ1Xy9C6rxtNw72r8XXia6ulZF/x0PBNueB4dzfP4P+F5ZT+hr4+8U6Dr+fTxrPdTThN6LXHunqc5sVuWxaMtPHvP+dNo1a6F4447bsuJJ5648bDDDjsoz3MccsghE+95z3vqHfsASIJ1ADyydRKf+sm9c92MhISEhIHx4n33wsePPWiumzGnOPfccx8899xzHxx2uUmwDoADRsbxjecciqfbnaAh97L0qIFKzZpkP37Ha8WJ+THxFCMO7uBYVMqOh6N8sjxZR5Qm21JRwVk0zlUXN1TQa/NzqJaPmetu4UgeKYrHdYawpkpeYRZ2y+PbYM0PzQyQnfJEBCZTLrO5QBrwrg9NmYZXO5pri6exr7u0F5mJjNMlEm32E54qIxAAdHTzpDUmz4dt+xt4qNlyM/fRNyCqswmNjqUa8joLr7v/C0a/oxhUuT5kT0g+/+65JQDK3WwyvH6kgePbX62oes1rsaZ3QPLWL2OtzOZRqy4JXDn/5pyNeapYtXCsWyEJM8SsClYiejWA8wBkAD7DzB+rpJNNfw2ACQCnMfONNu1zAF4L4FFmfq7IsxjAFwGsBXAPgDcy80ab9n4AvwWgBPAuZr5qVs7rgTayTz6MvWaj8ISEHRm9xjMHThOJ3aR0dwmXMCCyIzXwzj3nuhm7JGZNsBJRBuDTAF4BYAOA64no8oo7xOMBrLe/YwCcb48A8HkAfwfgokrR7wNwNTN/jIjeZ+PvJaKDAZwK4BAA+wL4FhEdwMxD2xXegTUBujXsYhN2GAyx566ZUJVwr7Ru8aY6uqZNkbkxucf5D1TeAHxdzeNq3JqfNXoD33Tqmc4H0W75u5bdo/BhLcupFtNQpd48nKoS6phNi/UFAO5g5rsAgIguAXASAClYTwJwEZvFftcR0Z5EtA8zP8TM/0VEaxvKPQnAy2z4/wH4DoD3WvolzDwJ4G4iusO24fvDPjEiBcwbM3ZxlNDA3O+L0n2GRKW8hnDTcK8jNI0h9jr21cg5MBniMe7m+HR5q+NtqomH67y1sUaqsXA0/ibqqG7VQnEP3LXLnckl7zH0OmU+qsSHWH9zRd0GRxvaMrCMD/eRm8ppukXd0uXtowaGWlpDWQMJ8ZlKfoDGknEwW5hNwboSgFz0uwHBGu3FsxLAQz3KXc7MDwEAMz9ERG6nnZUArmsoKwIRvQPAOwBg9erVU59FA2hJjuzQcfC22ofC/jCMXV3kh5aqVWR/wXcEdeWpxatlVnma2jW0OHfnkwpA088qEdIfQ5zuwtwjrYFX0LlWL9uPq/UfVfJCy/zcmMfwNChDTddsKvpspe1o6Gb5O/2ya7pUdnqU3+sV7z1Fd7A0iUFk5zTyKJWm2MwWZvPKdvn0Pm2eYdYHZr4QwIUAcPTRRw9Ul1qWYfTMRYNkTdhFwE0zhZpGB2ojA5V8jTyVY9+Nmip9cInpm139BtqPAtBE0z3SzWyjEJZHBbNUqXHGT2VEoVpmU7hKm4WRgb7T+8GghmpTvpGZW70JzZhNwboBwCoR3w9AdVpzPzxVPOKGi4loH5h9YgctKyFhIFCvTrx3zmE3Zbtg52x1QkJvfOQjH9n7oosuWsbMeOtb3/rYBz/4wUenzjU1ZtPz0vUA1hPROiIagZlYdHmF53IAbyWDFwJ4yg3z9sDlAN5mw28D8FVBP5WIRoloHcyEqB8O40QSEhISEnYtXH/99WMXXXTRshtvvPGWW2655aavf/3re/7sZz8bHUbZs2axMnNBRGcBuApmuc3nmPkmIjrTpl8A4EqYpTZ3wCy3Od3lJ6KLYSYpLSWiDQA+xMyfBfAxAF8iot8CcB+Ak215NxHRl2AmRxUA3jkbM4IBgCcL8MPPNCdSl0ivoatu6V3L48pQohxe5HjYkUPQp3Xj65G/NozY6Eqp6XyoPpzXq4xG/srQn/wW7PkoLp+qccEzRV3xt2XzsZpcnQSzQbT/bi2OqoFGwrpNSEhoxJP/fs6qzmPD3TautWz/icWv7e7c/2c/+9n4kUce+cyCBQs0ALzoRS/a/MUvfnHPQw899JGZ1j2rX6+Z+UoY4SlpF4gwA3hnl7xv6kJ/AsDLu6R9FMBHB21vv+CHn8Hkx6+d7WoSdhU0CNueRyegG2ch22A3pcTX10Cr8k9VRi96r7L6oXerp1HBg/zIW/kG3Y9S2J1v6p2WplCMuinS1WitiG5lNrSnr4ls3AdPDHXI3hg59dCpGXdRHHHEEVs//OEPr3z44Yez+fPn8ze/+c1Fhx9++JZhlJ2mhQ2AR8fG8V/HHg60y8oDHCJyVYU3sLo87ASuzdTv9h4SG/808WRScpNKzZEBJrJHGweFdIS4DDOA0pXFMb+rw0G5Nrv2SkOPuW70ccjHlXOWvMoW6LzjyHSXR9mfqZNNWNAUA0QMZSry6ZLXtcnwcTBGK/WFsk1YsaM1xNldFxP2+Tm024fdNeoSp8rm3dXnCfY6ezQ+N/UJVqGcXnkb8kXFxg9ydQVRxMcNz7ITbqIeKVedUhHCMFdSPCgsFI/gnSvkYReXaSRPKaSZPKGVNIWwrb6rMtIkLptFaLc6ph7dkNelW96uZyB1qbyFZVPWtn3Qy7KcLRx55JHb3v3udz983HHHHTBv3jx98MEHT+T5cERiEqwDYAtpfD1biNJ5BHNPsXtRp9AWK93S9CYTchAowdCxnTM5gWY694gP7Dt9qvB5uqMRg5hteTqUZ1siRSJHTWuix2F3Phx1AoFuekXRIVolAV7QU+UHMFNQDpi8EsCwLgIFn47oIax9OWJk3NODcpKQsKvghYszfGCuGzHHOPvssx8/++yzHweAs846a+V+++3XHka5SbAOgP2Ku3DOHW+d62YkbGcYQayg3U+1wNSCpgxMGTTl0FnLHP0vg/Y8OVjlKCmDRguaFNjylTZdUw4mZfgrHiuqllVlrMOEK0OtzDG/seZ606pjCTwU3no7WZpeZPISB8UOYGvBh3EWxZHaBGIdeElbfm1HTaxi6MtyYW1HRjSIg7oWzkeadVS/Xp5bKIQU52PBG6xuF6Yob32UoT6sW1e/B+GJz2Tp5CoAp2B3xgMPPJCvXLmyuP3220e+9rWv7fnDH/7w1mGUmwTrAMj32g+Lf+3DKJ4WM7NrZmof30oabdWpvpW4MVIFN7EGRKAoroJHGUdjAivDQ5IPgscOt5GjK5HuhuIQugTfCbEO/YUbVnTXw7ubc12N4a+fnzkv9sOHLArkkI8ZDG2GHzWDRWcJ1mDWns+Yu2zpcdyVY+KBBtZgz+foNr8vu1IPm3ZAV9O5Ei8BLurlaVGe1qE8d3Gahm89aYpnqCk9orH4W02vd8zdy+rG20f50fnJZxohLugQdJLCSvIBPk7VdFmWT2s6jT6vt/+eO/37w8wN33D7GBnpa0JcA4/IN4KhGGc7NX7t135t/02bNuV5nvPf/u3f3rds2bKhTHhNgnUAPP3MBnznh02DKLGmW6c2pTemdkkPIs0JCfM+a0+NhNbuBlK1ztj0my4cOlKSPL5Ddjlkp00gUsaNJRRIKZA4mvTM8CgFkIIiczR0ke7pLkwVHqPAhPrcefndWivtDOfmWSPthwJNPE/hmkQ5xHVzeQQ9vtC26qolJx97q1CJ9lGX8qr7moa9WJ31Zn5+ZjtYOOjw+wTZnBxolt+V4xUmwCouIX/t3WMRbgA1vJ+Dvf/yxLsr53X9uq4cNebr8V1qr6UHYXHX1N0DN9xww22zUW4SrANgbN4yrD/0NLQnn0Jd644j3DO9y4vTzQpAVcMVQqFJQEQCxXVuwqUNwQgHk9AgbOp1RG33p1YZvhJbnUF0ZvH1iDuG+DpVO4bmTtQrFg2daFA0Qn7mprzaZue4HJHXWY8sLE12dG9dmjTHw9wBuB3yQNfyg0MeVMpjhI4/svqq162xg5WbfMvrJ65/U9kN96b5fsm65gpC+QH6UJ5sHlTfgepW8VO9k7UUm9ztejS867W+QIjemrztIrirXNOxei1ve/JprH3O67rzJQyMJFgHwPj8vfHc579rrpuRsBOgLsyDAA8WVMXCEvS4rChWramhzi68dfOnEqsrSb34dVUR1FrE3PnGQj8W2EERMl2+s9qdYHRhc6xZgNLKjugxX93KrFrSlbPsqjv0Uiq6p/WztKcJU6+DHmxYOMtGBmpPwtRIgjUhYRYRdebUXxeYkJCwc2M2XRomJCQkJCTsdkiCNSEhISEhYYhIgjUhISEhIWGISII1ISEhIWG3xMknn7x28eLFh69fv/4QR3vkkUeyX/7lX16/Zs2a5/7yL//y+sceeyybbrlJsCYkJCQk7JY444wzHr/88stvl7QPfehD+7zsZS/bfO+99/78ZS972eYPfvCDK6ZbbpoVnJCQkJAwp3j0P85Z1R7ytnEjy/af2Pv43s79jz/++Gduu+22aN3R17/+9T2vueaa2wDgt3/7t5946Utf+hwAD0yn7mSxJiQkJCQkWDzxxBP5mjVrOgCwZs2azpNPPjltAzRZrAkJCQkJc4qpLMudDUmwDoA7f/59/MP/fMPH/aJ/61ilaf/oyDGZdTFDAMz+aBycxbDz5Rr80DQ5FWCYrcw0cWWf1eajpnjPVgagCWAQSjZHTWEjuRJk9nR1m8qJXT7IegmSW8mFnTU47ClqaWZYRHuniGHnEfbXKzhNZH85pBdcZctW9tLIfVKdY0aC3YsV8b6qqnY0bhpl3ISN6zsXzqzLvIwUciIoG85IIVMZMiK0VI6MCErlyFVm6FmOXOXIsgy5ypHnuaErBWWPmcqg7DFTGVSmkKnclJ1nUJRBqeBZyDvvc2F/YZRIc96HCMZrn41ZF34EAMpt2GCvj3d1KV1XukPs2Sh+sLvRmvK7xvWR329+UPk5701auHpk646SNVhru71fCdZmgwWtTR7t0xlauJ3UzJ4uUfVpLK9RfKzyievcxOfTmz0+yWbUPVNV00OmipPLWmEchQPvyPw9sGDFfkiIsWTJkuLee+9trVmzpnPvvfe2Fi9eXEy3jCRYB8CPH9qI79P/ricQ0GPX54HoDV5JIV5NRKKbRRjVcAONK/S5cgfb5Ne20l1EdOLu/FRNj/m4Vr6lN+YReZkBcr5+2Wg1TlWh4JbPqS7edSHFdP+jIuaL0iRv44XqEY7jXE2j3mXIDdaru+16HskveKiRR8S5OU91uzPtto6noJqZkuTOwY5OYOn71z/LXdwc1t4DeaxiuO/y1PTZcV3YLf05k/fh//3m7/RR5u6FV73qVZv+4R/+Yclf/MVfPPwP//APS1796ldvmm4ZsypYiejVAM4DkAH4DDN/rJJONv01ACYAnMbMN/bKS0RfBPAcW8SeADYx8xFEtBbALQDcbgXXMfOZs3FeR606GC+/+24Uzieql0vxQy27D5fe3K1RpZxAb+qmTLejoYTlVwvbrdyU26icre3Jjsdst+b2pTR53MbmbnNzs1+l2R/TdfZuE/KwNXo4NxLtNl0ai+vi+DUACAtY2rdMcViW6S1qUq51Rj+Asmmuo5U0k1+LfK5s7TvvsAG6s+wdTZNCaXlLMvuwliBocvuyujCFfVp9+xTc/q1M056xv0uhlxrQD6Q4TBgOdLlorpsw5zjxxBPXXXfddQs2btyYL1++/LD3ve99D55zzjkPve51r9t/zZo1S/fdd9/2V77ylTunW+6sCVYiygB8GsArAGwAcD0RXc7MNwu24wGst79jAJwP4JheeZn5FFHHJwA8Jcq7k5mPmK1zchjPHsCq8eSEf1eAGXonf4QN+w3omKBY+XTFNr12bOJRvmzFBOYMxBkYGYAMzDmYM4Ayc3Q0ysBshDJMi4RS5hQPqZTEPCEcW2TBXhQKkdurt6YI2aFbRlQvZLqFtCDr9fgrbeJiS7a4HfYsrOIHocyFM5ObnBuFz22ZqCjswUvO4me7abpRkUJez6s9b9jovDqf010fEZdHN57L4dpQdE0Qp1e262N7t8J1EzVxuPImb6ySdFPTJa06GsAi3+K9VgI4tiHf7oMrrrji7ib697///V/MpNzZtFhfAOAOZr4LAIjoEgAnAZCC9SQAF7H5CHAdEe1JRPsAWDtVXmvtvhHAcbN4Do1YsN9zcNQR78TWrU8KanWoEV12s3C9SvU1qqdF6XIHEbIdtrK7gNjdP/yeoRTi5nuaiNu8iOLK7yfqwkplIMptOOxH6tpgmuO2OxNDrSy3MmPP6zYVd/tgRnns1m1+aNSF5TZxbL6bNW3d5rdbE+nMpS3DxqHBXIZt2jjkDVvA6UBjBgQ/c2m/37lySv9tT3OJUktaGfhZBzpraJSiXkcTm5onJGwn5AuPnOsm7LKYTcG6EoCc6bUBxiqdimdln3lfDOARZpaLe9cR0f8AeBrA/2Hm71YbRUTvAPAOAFi9enXfJyMxb3wpjjj0twbKu7PBCTcnlABA7mHpJryQD+9+8BtpR1ujsVAmXLrumqZ1Ac2lOeoOtC49f1DCYkUjUuZ0qFtDKDZSYXFUv62b5KvsdeuUJ3Z8sfLUdL5Ac5wZNf5I4fI0WL1RgeA2h0esMFqFElB2cpcSCiRBqQwAQbmt5mRZoDDZyyuSdqN5UEWJq1y36vUW1zG6lhVl2t9DkVa7j9Gm6LGVbwz5mOZDVLWufUKX8ixNmXxjIwub8yfMGLMpWJt62X6+1nOfed8E4GIRfwjAamZ+goiOAvAVIjqEmZ+OCmG+EMCFAHD00UcPZCY8svkeXPrjv/Tx6jQJE216uOVL0fDAN6bXy2Gwt4Y0G4vJHdmGZRrXeESaFZra0qr5Q8fXP/yQqhvecxYyusRJ0iiUUBHaRBmUtbKV7UyVykLYp5ujItNpNtOVDVfooEq6maGbqdzO1M2QUR7TKINSOTIys3+rNMObVcrKm2n5KDI1Dy3bBnk93WMlnyeqDC06Jnm1w36l6JLPlb3zKUZB8YtHMFxYV0cyxIb0WoT9ALaf2RxfT8A/iV7YKcTXS86qblI043vR9NW4PuolhXG386+nc5RWy2PTddZqTE+YOWZTsG4AsErE9wPwYJ88I73yElEO4PUAjnI0Zp4EMGnDNxDRnQAOAPCjmZ5IFcwak50t6JSTFS2/GkLvId9o2Lie3vQyMbMVRE7AhCFfJ3SIFDLK7csvBJEYClYiLAUVkShX5gX5jt5txB1p9YzoWtRfeBuqWEaSz1tC7hrIOpjNkKlbPgEh/KOO1MRLXaBER6R342WfBtbQonPWIp9UUHYHxMqRo1SFdBDKUlEy0bpwkkpTzCO+V/r7EQvBuvDkgZS+hIBD9/0V/O9f+sRcN2OXxGwK1usBrCeidTDuoE4F8OYKz+UAzrLfUI8B8BQzP0REj02R91cB3MrMGxyBiJYBeJKZSyJ6FsyEqLtm48RWLHwW3nPcRdPqZLtpj92+rfU0pa1wrVoe5m/zkKz5Zgi7+JXt51ERtnSu8ti1gJ7f1SUVbhI0F/frFHvRQh6iOB6V6X7KduzKhpVJ73q+aBb2Usg7Yc0Rj7OC7FClt4rYf08tuUCpO9C6g5ILFNrFXVrhj5oLk0d3bLwUP+3D8QhE6RWWSNFieQZCaYsUOHnO/opUrkcY0q3mY19nXH6UF9ylTjFULLkb7kesjJmwH51w8wa8QkciLumo8MpRDtXAXy/HCf2m4dymc5DnQRFft/tEiIeVY97q8G9UMLqMeIkc9RGJEKO4oCh9xYJnIWF2MGuClZkLIjoLwFUwS2Y+x8w3EdGZNv0CAFfCLLW5A2a5zem98oriT0U8DAwALwHwYSIqAJQAzmTmJzEL0Bu2YPLTt4a3rmEELf4s0sTQUHC/eYTw4yYBKYUjC9quCi90EQlcE4YVxmTW59fSq4LaxJVMy2w4I5AIG3oOqJahyzTBQ6qaR9Cr+bJKW+U5ukC9nw2KSBO9+iz1Sq8+gxRHu6U1KldN7W56xiWvk+dSmWNxdMpfhRbFPT2mcSOvCEdt6XZNpkoP50RTpHeFfFebFHJuCE4jj2/KSHJjMFuY1SvLzFfCCE9Ju0CEGcA7+80r0k5roF0G4LIZNLdvcGcb1J6PgTtiKIrRLAwZMG9ZgxSukSimdwORZyJXLomMLixp1SPZzkQeAfNSOlq3vKKt/i/Z97lpokVzD1MJVq9dV+kRrqmkBwNL8FWuJ1PlVGy8qKebycv2pJjMT9s5QtrVR1aZseFShH075K/pPBMS5gbqsL0w+rsHznUz5hQnn3zy2quvvnrRkiVLittvv/0mAPjc5z6311/8xV/se9ddd4195zvfueUlL3nJxHTLTSrLAOCiA374tqkZdxA4pwtBW6awno7C+kK/9o7CWsfYGUQMv0ZOaMhUEcJh6V3MS5Jm6RGtItiDYyQrQVnWtf3QKBbd5Mx+fEDYmarR0f9EPLpflZqryks3xaXJyq2eQU0ZFHVyxSrtN29PWrXMbnxCU4osMKlBNSiALs4D0hpHiqwi1fNa9DqXLuVGfFM8y10/JYm8PYtoMHPnrQSwewvWM8444/F3v/vdj55++unrHO2II47Yetlll93x9re/fe2g5SbBOgDu2JahxaeJ16L64ldRpUnh0punmRasn7DInhrj3irbZSE7Wi2Ec/jVaU4oS55Khx3Rqk4GzJGpBEMDZExVVtZ8JfFzjgz8sYR3WkDOf5RxWuDdOjjHCNHylAZlJFJ3nGCAUFLkNWrgt6Ca4IK4Ro4cP0R1paabslNXlGpti4SjU/IghJFT/kTYple9fZnHPYwQhLuvRKspClevFrnRHvm6Rcpj5dwazrfXu11PqwvdptrqEE+EbG+3vG4Ax2boPE3Yp0fp2xMPXnXOqsnHh7tt3OjS/Sf2fdX0t4078sgjt8207iRYB8Do3m1c/pIfoj1pJy/ZB5pYPsgNFh5T9Nr5d8Hlj4YLxVsthjhNin3xrdcYJtNJs/M4oyRdez6Ijp9RAkqDyTjjYyotX2l+ZAQGQ4OpAKj0XRHDLDVg67FHsXHh593aMwUtHwrBJ7Eyrnx9Z6bs+ShrkTqecJ0IBLArV9mwArEt19IYZDwfCV7WdjKLDu0i1xaO48TmfEjwMQikLY+lubj7KS3pefDGpAHFCsrGM1bIrDemzMdVzzR3rcLzE+IEAtWem+484mpaASi4WD6t9WUkOzo0tB2dZzCZdbxs45rsxLMucUMDpIDzbyGjThPvY0SL8lRorozKvaiicRUAdU+PJn413DIxvz5usE17SG/Cr9ezJQwBSbAOgNF8EyY6H9jxd7OVRhhgZGYFZlakWI4jltx4D07Cm5Mp182q1f7VlTNYq8txADc7tXlJjWusd5Yg0ipdw9SQusl0hmiHALMeNjfrX1UOogyE3DgloBEwmYlOTDlAOYAMTC2AcmgY14YaOUDG7aF2Q7Gug7fWmCHJUYlgJ4U0gMV6Vm+VRd9/EVmCDr5sbXUkpwBxqM8rS343JgQFqKIMGrqNsdlZx/sagbKPiM1HZiTAlKm90khWIdQobRNKQ/fuCYHg8TmMKsg9nYhtWcwVXvmiBLeQiKhmbMFdpZq7yOgahvP3bhzDFfB0EkPMXP0UImrxFH+eFcke5QsjBESSLgW7CaxdcgCC2/W5xVSW5c6GJFgHwN57Phv/+1Vfwuatj5kXXQ6TsRMbViRIYeMYgDB1X+TVNS80QWz54tkuSVAKChnIOhkgpZAhM527io8Z2bhzsmAdGzgaEJY4uF5SLkOorTeM2lQ5H4Hq8oXaml9u4K2VZ45u6y/NRW15CuvSugosobVzcBGcZWhtLHTnftBsKRbKYpvu8gEc1rxWl8NoFw5LZpybQ798Rhc+X0yv5OM2tN4aO/fQ7rwKr6CIq9LwfLFMRZNC0rTMqKrciCesL565gvGrZJTBeMmM8KhUo4l4ZSkP5HMvBE+zkwYIpngpU3Rtmvi7XD+3Lj1G3doNJKpwwAvuuhVs6V2+7451Uvc/W0hXdgBkTz2JPb9zGfYEhDZKtYc/euBrSx5kvi5pwpNLjUdbgW6PzC5uHB34I4t4A40lr67wN4XdGbmJNrZt3utMdfKNDwOw6wij8/PpQqiT5JETfFw4s0tjlKCrEFfOP7JIV6rCT4DKusQzY1Eq47kJKjPLajJ7VJkJZ5ZHZZZm0+Qvy226yCfCLNtmrXbvKQiIFK+aYoJmhSbmhejoY2uoOThVHUIRFGt+of3Aqq/TqkQI/qPDaAZ8zCoL7ruyvY+ZPTrvWQTjHQvWeYl/TmCfGWF5k3hnKBIu8fvoY42Cp+naco8YYgUb1etdz1XfB7a5HRUxWknpktZQVpWiVOr+Zwvpyg6AiY3P4I7bxgEuIxsuBE0nUhtmqg7lCGsj0NmTqIsFa2b1muFCJvPT1AJIeZq26SCzZZnbuozd0fOqQDMLOsGkoGF5ocDK7bQiB8LEObJpG/lOs5ION6s3XI9Ar9CiITE7ZMduUk8Jv5UdRNjTy5DGGuASiksQ2oDlU5Zu8pQI2+OJsK/DbgbHBQimLIUQjmhc2g3lRNq0PAOREMjKCvlYeWlSSqRAkTzUlMcrOBXBFPE5JaZeZo23plR24a+WD3j+WIki8/xYb0tScQwKoVAePT1ON8piJY84cuXo6gznJ29LF+VWnnu3tCmU7lgo1hWhZuWnOgok+WVx1dGhBjF/0LHI3vh/6nl3IzRtG7dkyZLij/7oj1Zv3Lgxf93rXrf+oIMOmrj22mtvn7q0gCRYB8DEyBrcTm+ynZShNS1H6TZgxtWXtys/xfQg1+Dn/7LdhdTR2IZ12OXUpSm4KUNs+04RN2I4lOvK8ulxC6uU8F3P/iH30kMs2RHnKXjc+lftEh29ImK9qGUvcg1dlO/3YFUhzeeleJ/XOk0cRd7mpRL9wF5z0lB21q8isXOrD5dx2CkNUrFimFnFLBQwxGF5xaSS5me5opq/ws/1cnyalmnVumW59TvmHgSq1Bkrmu5nn1Sr8IGCUhf203UKoKEZ5dE94dFTbu+jgnwDwhMex0Pb4zevaXu2ZloIxz1Cc57AX51L3dSXxIK8mb9Jze+etk/xDI6u1bR7odu2cW9961s3zaTcJFgHwGOPPI0T7r15asaEXQIaRmBrImhlhbeLu7AygtjFWfDApaMhDaIMJ8wpAyOPumavqKCpy67TfRpRbNCQk2cUxa1uE7p7rvNLfxt+igAJfpfOovMneNna1O6qSPJKnTtSA83yKbbp9uhGOxwNkr8S92Ev9KvXsNJWCo1uUoyrgq5JGY4nOMV5plK1SVxfe6oNeTmqr5c6SADK8f16cCTMBEmwDoCN44T/d+DyxgfXv5Ycx+MuBKD4Tay9ztUZfDLdOPch3+GXJDt/4xioFDwliTSYY2nDTIzSl2X5AJRk0rStWIuTde+44hCWbVaA60VExxbSZGfmbQUOk3idpezKVWwW6CjLo3i6YXirPrPhKh+BTZrtkDKRP2NGbuO5NpZ9rg2/S3NhEwcy1sh0c3pLhKtluPITtg/Me9L8HMPSdvTJ/4PiR8UCmB06E4aNJFgHwMjERnTUlqDJ9gBXjg5O6fXpYf2B5KqV5IZapVBy6xDNGkogY8IogvBTVqA4Ld8JEFVJj2l2aLjC59rgB++kFdOUxnJ4NaSjyi/yNdXBMMoAwyoOVlEIcZPPruA1HgYVo4NA9+XanjPQ3HAc27Zy1L7S0o1iYhQR4/89qDvmfrqhRXfOYfjSKEPKKjMkaG5gOAxlazbKRPQU1Jw+IFo37VotlZiohcLsalL+4nx1pceEhV3HIh2oxRt5PF88UCnb4e6nJrFQhty1QsMxfg5QOxoFMdwTU6E5hhXVvkni+QxXQhJiRTfQqZFOXfjDtQ6mcNNa1KgKX1V3xqifqWrvFb5ntzp4ce8qEwZEEqwD4J5Nj+DPfzY25FKneKumTAe6i/HBUMJYrM4NrnvxpYUZd7yho4ydDAynPTFmUmatm+ty7I6SGCUBBZmwO5YKKOwogvsVCoI3pvl4A90JDHnGTYpMlB7xUDOPU3hQUXQqZUOkN/HI8qrx6fEE1yMA+REFpxhWj13TXJjDCIUbIVFV/kpaFU3nPCW9ct5VetM1caiPcHUXxk1PZ5OyVOOppG2evxk7yjrWXQ1JsA6A20cJf3zEfK9rNg3rOusBPr0uCGS65HeJgR60XgKiSTtsNXbAfd9zLz+JOInOjaxWTggTdgAzkcNZdKYQIuMaIFgVwWLp1ln4dBey379ia4p9hqgjYUOghnQ/OctbQuzTlbMK3Oxhx+8nX5mylB9itp2uSHcdtrTYXThjjoZ146FdM3yrYI5mGFik2XCuDb2lgXHPA2Ta8Lh8uTbWas6h3fLeNykykmf2FZrZQFUUDQfOA5O0cnXN6rULhILhWLOypTUa07vxT49efX9iq7M5bVo8Xd7V7y1HwiwhCdYBsHdnPtZtXhUTuzzcXUHT4K2U6zRsNzSrZEdbDVc64TBs3N3ahIjXOnF07wYj2dtwXrV4H9fMlRkUgJDXWQ8yTfJoak6r0szOp7YTJgarQDPDzMZN3iQBW4mttcooYDtmO7SobSftOmuXX3bwks6odvZmd06N8G277sZuqutpqCyGjpsUQMMqBjrFzZWKXJXm2Tnkk8+Ja3FViaoKFudUSvopdu1kO+HKz/b2iqBh0ASAQivdPYVQLE2Kiq6BG8pWvh31nU57P7PcnafyLIe0+lPdr+pAXendUuJ71qsMAJjIR/D6PtuSMD0kwToAXoBF6Dw9161IGB6C2jBVp9cs/DkIf8knadX0aLSgLvh1pUes1Uvd28pd0pvKaKL3o+hU03tZR0BdiWoqVyqNrqhGBbCHRejjlTAqvE20qdoXYYprN2X+Sjn9SNteQrIfnqrQfWQ8TZNr2jbut3/7t/f7xje+sajVavGaNWsmL7744nuWLl3a4BC2O5JgHQAjqzv44cpvhbV9XNch5UvveCBp1jWhoVlV3KrkgV4p0/ZqziLSxNDKhhWbb6LKfRt1YTOJR5P79mcclpeKUVgeDWW+68FO0FEhXFKYWRzefbZDxOwn0Pi9Q1jO7rXDrhAzhTm4mnAWS2QRN1nYNk+mKQyh+olabuKVMjN5NSEDvPN7BUBpG2aEI4Qjfev43/+gjAN96+xfceZ/xNaVpI9nIBi6CZs87qhgNglw5ZpnRd73hIS5wbiajgOTXRNN28a96lWvevrv/u7vNrRaLfzO7/zOyg984AMrzj///AemU24SrAPgztYoPrNs4Vw3Y1bQ5NIOVmD2BkWHONwsQHZ8weIGb4uGtDDEadZbujWU0gmHc2fAPh6FWdulN7DfboGW/zZbXX/pZrBa5YupNuPUp1eGgWPrzPAQM9gpHoBX9GJr0NSlnOLIToFyg7awCoPMS1ZZCsdaOxyfyOcUqbDsyw2fW+WPzLNZAjYeht39cjMVlou5EQG/xAwuzZyEBnll0Q2/+3Og+mrWyAL295/8tTMke04UroPnr+WHXXsbCDXrVxC8xe+Gx2NOO0TurnWY9RzKlRPEzN+VewDHYsdYy3r/N85ZtW3I28aNLd1/YtUrp79t3Otf/3o/HvlLv/RLWy699NK9plt3EqwD4PCli/Hrz3ocD22diPx9epHEFfHElXQZsfy1dMlSSScAisj8FJARISNjeeWKoCjQMkXIlEIGmDARcqWQE5BBoZUpGye0lEKeZWgRQVlappSJkynbtINR2sZo611Ac/AUy2yd5tsXXGvvQdb7jTUiyxRSlsbpvRNjYEap7fZfti6tNQpmFJpRMKNkDa2NdV5oRskMzeJo85faWvKaoRk+nWHimm3nzSbOPt16xXP123aXbM8PjgZ/zpJewnje898A/c4w8Ve/ELZHI50rT1xvBWTHV1DmDl39IzfG0evD5hQMvTDM+9PHmHGfeCAZrFPi85///NI3vOENT04336wKViJ6NYDzYDal+Awzf6ySTjb9NQAmAJzGzDf2yktEfwbg7QAes8X8CTNfadPeD+C3YEZA38XMV83GeS0aVXjJqhaARQi7v8jukYQBJ4f+IHjDyybzx07DRRmiPCMEtBEurFFCe1rhdlJhbYWIRskdlJbuaFF+1mizxjbWKAvt0wvWES8zw/mhJVBwhm7bq0A+XUF5zV1RuApmazr46+bOjUjEQWiJ62R25VHIYAS8soI+s9vdKVLIoLqkUdc0z4NqGkVpucqQU4ZcZchg/Pf6ta5W+LIV0OwEtBfWTkgzirJEmzXapUZbF2hrjU5hrn2nLDCpNTruV5YoZR1CWXE0wK3FtfVbolNOnAJnBL/Yjs+itAysw5peQ9H2HGycg8Lk4k7VY1sic6xQRoqUuE5xfoR6LI3IDOWTImRkbMLMPFZGeSQzjJ8psrzK0JSxHjMy/EqRDZvnK4NCptw9NuXk9rlSFKxwdz5RO6O2B4XQtT+Ew6447pxc2D0jTc9NeNUrk6lI9gchPZbxcd8j46qioIU+xGD1/AXYUTCVZTkXeO9737siyzI+88wzdxzBSkQZgE8DeAWADQCuJ6LLmVn6AjwewHr7OwbA+QCO6SPvucz815X6DgZwKoBDAOwL4FtEdACbfcCGivu2PIzf+8HfDLvYHQpKCjEYwZXZr6el7Vo0glXqOyXRuYTdT3YtZKSQU4bMCVwrdGtHlaNlwy2VI6e8ma92NHxKKm3WKYVXUWynmwvFBoDZVxdOuQtKUOAJ4WY+ijtxoRQ5x/HK8yjPX22XVJ4gwqFOUZ+ox4xcOOXPjVhoO1qgrdBns/We4IvCtgwWCmEHGm12IxfVOnTFB79ssxBugSE6R3d/HOr57PlW8pr7ZUeBpFIEVN4qiFEvMULGQUhX06L0aBA4xPcoVgJIa26a8KlPfWrJVVddted3v/vdXyg1fd9bs2mxvgDAHcx8FwAQ0SUATgIgBetJAC5i8wRcR0R7EtE+ANb2kbeKkwBcwsyTAO4mojtsG74/3NMC1mzeB1f8+K/RKQvoyiJUN0PUwXn5if4KtbT2MlCVO5Rh8jBgJ+aQO2qCshNkHJ20PTLiuLbfkZhg9pAm/2GLnLqu46P08NMIqp8XuoUljcT1qqRxtVz7zY3t2iImtj8bVixobumM9nFdOcZhXUvXZDtfYpSqREnaHksUqkRBJQrSKFSBAvZIht6hAh0q0aEOCh8u0EaBggpsoa1oozA06qCDAm100KYCk2ijTQVKKs2zZe+/V1ecF6HKc5bQBzhMWlNslILMhhUpa5m7a65rgogr72t4t8X7Kt53zzus++SLq9qn8C9fNGqG5nfXpb1w2SF4+b67uxv+Oi699NKFf/u3f7viu9/97m0LFiwYaMB8NgXrSgDSvN8AY5VOxbOyj7xnEdFbAfwIwB8w80ab57qGsiIQ0TsAvAMAVq9ePY3TCRjPR6FzePXS7SlpIwFNplq/n3x6hZ0gUnHY7B0q6LV0SaeIh5ryyHTHL9oRNmtH/fybjl3CPEV6NO7Jrm7BJ+guzv7jZ3c+rqVznO7yuF9ZuRc7CLzi1aTAQHT48v555cVyRHE0KktSmMs6G8upKJExf4VPKFJkNKWgEIowojB8GmrHahj9KYjbAbGSLBPqvLPe3ucx8KLZrWJHR9O2ceeee+6KdrutjjvuuAMA4Mgjj3zmX//1X++bTrmzKVibnorq49ONp1fe8wF8xMY/AuATAM7osz4w84UALgSAo48+eqBuMttHYeH7x+1+joOU0KuFXWjV9CZLUIS7b5q8ayMS9lGCoA0i7K0QZjNjyvwKgEuAOzZeMrhASC8BLtjwlGwmFwtBzaULsxfagdajzU3n2Uuxm8aR++bnqflEO/out6LckXzGPZ0i5Y9EuKYUAhVeauYlNF+7QeIiHG1m3qt8184paI3vdZU0VdzS1Mrds4+QaNo27uyzz358puXOpmDdAEC6J9oPwIN98ox0y8vMjzgiEf0jgH+fRn1DwUQxiTueNsuaun1jMbQQ98M3VOFp4IdPiyctuRT3fShMTtL+e5GZvFSZ3MRsJy+x4NVmtixrlNpNgHJ53ESo+uSl6jczJc6/+h2teXJTSJPXTrlrRPDfFl26sukqmnRkJqdQNNGIKhOTqpOVyPM1laVUPHEps5OacpVBkeul06L6hISE3phNwXo9gPVEtA7AAzATi95c4bkcZlj3Epih3qeY+SEieqxbXiLah5kfsvlfB+Dnoqx/JaK/gZm8tB7AD2fjxO7e/DDOuHbXnrxUhZxIU50VujvAzETNkFOYJZxRZpcquQlKYvawmJDUqk1QUl0nL2WCx82spkh5EYoauTAiRSTmA9ykIxJpQDzpKJ51Sl34nALZMAFKtCHwxWU1ti/iC8uauk1giicpyYlKbnJTFzozNEQ+Ea5OXgrfMEWIKtSK0lxVgJvySOU6mhAFabTHIxHVNy0yejl++6ozxqeaALVmj+V4yYpDkTB8zJpgZeaCiM4CcBWMmv85Zr6JiM606RcAuBJmqc0dMMttTu+V1xb9cSI6AuYxuQfAb9s8NxHRl2AmOBUA3jkbM4IBYAzz8NJFJ2GiaANkp8xLhsYRFgL5iQ3SumUf8jSqjxSFBR6WNxpe4+bhSzZ1hWUS4Rim+5Pf6Np0OGTXmob1mW60UrbUdSRytM31Ny4c5tJRlAcAlB16qy4BiOKVsBwFBMXlyXxsvydGIwAUl9noFNnfSG2iFMZjTedrxmjttCYwSmgtwja+TZfQuoRGx85eLaG5RMGlGTmAHSVgjZJLezS/hITthWP3PiQJ1lnCrK5jtetLr6zQLhBhBvDOfvNa+v/qUd9HAXx00Pb2i62PbsCPH37GC0jTRduw7bjdjjKwaUF7dBLFhat8Nj/1nuJNrO32Ws3HjM0un3G8G79GPkV6xuGM/G45kLvnhHPxe5F6nuAwXfvrVOERNMC4VITnIbvvpg3bfU1Lv9epoynrXSfwuKPf93SK67o9kIORwex32yJGRuZFzAjWuUc8vwwQalcDLVIw5FEqGw00n6dBEaQKU1OcKS5HPNpguM8GLDKyL6hZEbW8VkOMFUL/YoX3haV1VlEcu9GsQqk5vLtyLWpoUtD6vO7lYdrZdN2jMHWhu7ggcEMbZG2N8S6fb5virg4Safu2x7tXmjAjJM9LA+Dg/dbi8qd+gS1P2c+90Vshh13cAvOQHk9mqM/24CaaDsNADOunVykQKcAezaQMBVKZoCmQUjALIAmKMkC1LD0DkeFVWW7ykYJSGaAyUNYClAIoA5RLJ9Fu2xqto7hxN6Rtj+UsMOtcgjWgrX8mG2eXl2EsQrbLHFibsl2YNeCsQ23D3Al5tFm36OImXdZj8mlt7U3NJiyGFEt7/c23aOsxihkFGGWpUUCj1MZ7U2F5Sn/085fMt28QzDwmQslkHSOSicMI+YIUSspQUIaSFEq4uDnqmrKCEI8UlJhu5FDMR5U0t7H6VPmmortNt7laXkQXYWooW9DNdn2mdcoqc4ptXNLA1oe0tsfAq0R65lpgeWV+E9Zw2wiykIjhLQxiVZ5XSKso1tG5V+hCtEqeMIhSF4e1nYZq8ZCvG0/VAaLLM38LATiulpYwcyTBOgCeUOO4Yo8jgT0QWQD1SUvib6P1QTWa/C4j2CC/yZjvTME9n3Tl59z5hbh1yi/4Si3c/hUyPwIPa1tHCc2FL49EG8PRtC/QzJQmRZmnAQgebsh9sw3nrWplxovoFQEqIzGRCXaiEQX3jhTcOfo4yPIFN5DGGw8FTz69yoFxATmiCPOsW8dcKesakpCBkFu3kjkZbz45cbBAnVnlBD5bBaAsgLIDlG0fZvsz4cIqJjYvYPMDXomxygi7sX3Hy06lY6uU2bDvuN03Rdc2VNI5KgMRr11R650TOHUPQsGCTw95Qhks6pDl+oddWY/EVjkMNHglkuCUytwolILPhMVRZV7J9IonMqE4SpvUr6EzfyJz1qW5863wiuvSmOZPV4drzRyZrv4btnw5qr1E1dxv+ibiFIJKGX6SJRHUwn2QMDtIgnUA/PShLfjW9ebSNQ25RNZmQ0jy1dLl8FCPvATy69zEduRmbR/Zo+MT/yD+EsdxAIJmhSEbF3MtS4lbwuKvDVHwHlPWzrGSh6pnKOOVMAUa+39xjGEdPjDsesEqn/YOOEyZwtmC57RlRGVbRxPO05QN62oacZRuhkMZpKyQVUDmf9ZnsyI7IUrGM7RUS6wqId9HuokyVUVMKjBVxSRWfOzTQ1LZo6guqRjG5Yi6ojY1122riuqWymeYXBXKNBOOICYZmXjpJzWFNBZhpxQyGFrHPD6vK1coms79JAvBLpXY6jWEOC803Q8hzKrKtpSHVTeoXqWpTUhydBdv6BUqadU8gY0j+vNK4PQV2K3RtG3cu9/97n3/4z/+Y0+lFJYsWdL5whe+cM/atWs70yk3CdYB0NIjWNLeE0AYdKkLHREXL2UTj9w0uqKOopliXw63Cwe74S5ADmIpIzt8zWEbNzPkRmTSjU8J9lu4Ge801gBgM/Ss5AwtlkNZLGp0Q2GujWQFIrryul7cG07k+OT1cjuVUJxGQBhetHl9neR3AtGuHgbCKEGseGxvBJHP3qOPE8olzJZ+U6kxjTTiCkeTatObQzqCAERnT3XuekffHOcadzMHwgKuBlVQUNkKJ47vYe3IXegg/6BW775rSX0qWfU6xOfb7cymkxZUnX7QL2+Fj03k+ocncPpBfVW0y6Jp27gPfehDD5933nkPAsCf//mf7/0nf/In++xIDiJ2Wey56W6c+YtnTS9T0wyRKSDtLU+z3mmUm3Mr1FL/PWYQmh26InabbMnvT252bO2k4L9BWWFWTzNhIKQzVE2J6DVZq+m7lqQ30ap0CEVAk/1WK90aWqHmtitzVqtxjRi2LjN72Yawp4HCFmbktilzafZIYbsyl278SDA0kT9KZ09OYYC4A/JIMGV6xY7IKBeCr56fIWcexeXW6bIQ6aKTIO8pQhssv9Vj6uU3tElqbQTzWKvKcxrdbSH7XbqySiPBKpTW3ahy/ASx/6/24zxgMxocTX9obCPXzq96nVw+dy3kdfFKdO1dCZBUbqDFcfn+di9H1hbUUoJqtRrbMBe451vnrNr6xHC3jRtfsv/E2l+d/rZxixcv9jrVli1b1CDOdpJgHQAbr/sBXrDt5zGxUQHtdkN636huL13Iy5XX2vUy0srhOE7cJd3WOFOjrZsCPg3+eOiKGsLyKMzUKr0HjxT2XKPH4SColJix7KbJhHCgOdvf+ZXMABFmKKtAmBnMZkJQZsI2n6EraO+IoqJ8dLlPvZ8Zm96DZcr8PR6QmeRtyh/Nk6+MZ3ZLiybocIXPhZltHoZUHKeyHl0b43Yy6he08oypqV+qIOam+wLBf/+t5+1WVqwC3LP4DgC7+VhwF/ze7/3eyi9/+ctLFixYUF5zzTW3TTd/EqwDYM8923hydH5Eq71C3PyyVGyJWt6q5hnzOWvB5NAkxKfVgpkIzq8+wIHHOZe3YQ0GnIUmvg9q45nfWnUMVqU5ovRDvGGjahJH0wg3xOa6C0cjmx5yUmUozg4/h5itK+Q1tSk/xA2Q34Tb5fVhDuKUOHSLYTg8XOvqMLrvQrkqSkNHPFM9pCem6Be7KyDdaNPkqZq6M66rB1/tXKSS2MeRZLxqO1Zs5Vm9aQ0Qq+jrE367Nab55s9G2/fYuOfwCx0QU1mW2xuf+tSnHvjUpz71wPvf//4Vf/VXf7X3ueeeOy0vfkmwDoADX/lKPDbvfBTPPCYGhzgeu2FPDekgswSE3BCX4OGY05VnhtPsmj5msJ81a9ztMYx7PvPmKSs53LCqnZ3rNyiH/y5V9e9dPQ8/IxTsl8qwPQcvDilYeQSIt9/SKIS7dcriUtXslnonQ8bikEkcJp6YCUX2WkYzVM2yGndkO+zNXMLtVeomG8FPejEDsWGSjFEw/Abu7JxmtMCcQ3MGZhM2c4JzH2bOAc6heASkWyDOQdyC4hykcyjkUDoDcQ7FmdlthTOhwIirLGgQiggA8T1R8Pi0Ci1SYsTdYDOcyqjcuVpdJqHJp7yrq0ZHuCVN4xEu5lQXo+wp/6z63WilstjlCHsH4RVG+ywTEIb+bYnE4Xw5bjeLsw5O8StXmGNquAbwfCzCsfJcf87DWnj2HDLexItuPFSlh/StI7enTeOmwOmnn/7kCSecsD4J1u2AUrfx5L3XzHUz+gNlRpjaJQeoLkXwSxK60CmDWwdLVmBr9801WuYBL5ikQAMg1qoGelAeQn4vxH3cLR2J16P69a9y3eqQvRa5/mogz8BuiYfKzfW364DN0a4JdjSXLq5xEKXNKoeB63StZ62mkV6uBXyscY63XAJSLURKWtYmLDZIJ6tsWNlsaCTKFEKCEf0Rz43Ll4Vvs6SCUCeI2bROsbO0aO1og7gSFbtJbdGz2hUUFUYum5gt3esuhcQGbnnj5OTAruVIi752Yl3iTWWZMlbuc3hvvt0UP/vZz0YPPfTQSQD48pe/vOf++++/dbplJME6AMb3PhAH//bV6Gx9wjykWnbqQYgEo0qj1lk1vNQcCSV5jIWX6Ugy30ErlfkOHCqznbh1AOHXxYkJQ67zJsDtFxfWt/l94gJNdGI11Ma4uJbGNd7KsbrEIFpPKcNO82bINZ1+LaUuAS6hS3NkXQK6BLuwoGkf14AuDA+XgNbQpdu2xvCzLuJydGHpJZhtmo7rYO3KKxrTZNlad+rlcwlpjUvlo34tqtfSPnvVZ0yU1d81juubWghtR9gRGr9+1TlJgQg7Oio8TolBCNcEUvVZZWkLxopAuD4mzI1p1fvo75I4peo75t7JLvTGvFRh6U7PtjxaK2d3Q9O2cV//+tcX3XXXXWNExPvtt1/7s5/97L3TLTcJ1gFAKkM+b0/k8/ac66bMPXpp2f2z7NaILHrvPCBWxpo8ctUVFXTptKewRCu0mmCo1BePQDilxnnMsm13AkQ6Q6iNcoQ8bngeREZRhAqjLN7pQ2Y9jmWeNyiFzmSnQI+ECVX4IQSqUBx7KYpVxaL+4VQk9ZuP0fUNaVRmewnVKVDhI5W6/51x27iEhIQ+EAuGLCkiCQk7OebeI3lCQkJCQsIuhCRYExISEhIShogkWBMSEhISEoaIJFgTEhISEhKGiCRYExISEhIShogkWBMSEhISdkucfPLJaxcvXnz4+vXrD6mmffCDH1xOREc99NBD0149kwRrQkJCQsJuiTPOOOPxyy+//PYq/Y477mj953/+58J99tmnPUi5u/U61htuuOFxIpq2Vw2BpQBmvJg41btD153Oefeoe3erd6Z1rxlmQ+68+pxVE0PeNm7ekv0n9n/59LeNA4Czzjpr1V/91V9teMMb3vDsQererQUrMy+bSX4i+hEzHz2s9qR6d7y60znvHnXvbvXOdd07Mr7whS8s2meffTq/9Eu/NG0fwQ67tWBNSEhISJh7TGVZbi9s3rxZ/eVf/uU+3/72t2vDw9NB+saakJCQkJAA4JZbbhndsGHD6GGHHXbwypUrD33kkUdGjjzyyIPuu+++aRmhyWKdGS5M9e7ydadz3j3q3t3qneu6d0i84AUv2Prkk0/+xMVXrlx56I9+9KNb9tlnn2I65SSLdQZg5jl5MHe3euey7nTOu0fdu1u9c133joITTzxx3bHHHnvg3XffPbp8+fLDzj333KXDKDdZrAkJCQkJuyWato2TeOCBB342SLnJYk1ISEhISBgikmAVIKLPEdGjRPRzQfsiEf3Y/u4hoh9beouI/h8R/YyIbiGi94s8pxDRT4noJiL6+JDrHSGif7L1/oSIXibyHGXpdxDRJ6mPHZCHWPdHieh+InpmqjqHVS8RzSOirxHRrfZaf2x71W3Tvm5pNxHRBeR34J7dekXey2VZ2+mcv0NEt4l8e2+nekeI6EIi+oW9378x2/US0QLB/2MiepyI/rb3lR7qOb/J0n9qn7Wew5RDrHda/VdCHUmwxvg8gFdLAjOfwsxHMPMRAC4D8G826WQAo8x8KICjAPw2Ea0loiUA/grAy5n5EADLiejlQ6z37Tb9UACvAPAJInL38XwA7wCw3v6iMme57isAvKCP+oZd718z84EAngfgRUR0/Has+43MfDiA5wJYBvNMbI96QUSvB9CXEjPsugG8xeVj5ke3U71/CuBRZj4AwMEArpntepl5szjPIwDcK/LMat1ElAM4D8CvMPNhAH4K4KztUO8g/VdCBUmwCjDzfwF4simNiAjAGwFc7NgBzLcvwDiANoCnATwLwC+Y+THL9y0APbXradZ7MICrbb5HAWwCcDQR7QNgITN/n5kZwEUAfr33GQ+nbhu/jpkfmqq+YdbLzBPM/G1LbwO4EcB+26NuG3/a8uQARmCeiVmvl4j2APAeAH/eq77ZqHu6GGK9ZwD4vzZNM3NPj0HDPl8iWg9gbwDf7VXvEOsm+5tv8ywE8OB2qHfa/VdCHUmw9o8XA3iEmd3C4UsBbAHwEID7YCynJwHcAeBAa73mMMJt1RDr/QmAk4goJ6J1MNbyKgArAWwQ+TZY2kzQb93DxrTrJaI9AZwI21lsr7qJ6CoAjwLYDPNMbI96PwLgEwAmZlDfoHUDwD/ZocUP2A57Vuu19xYAPkJENxLRl4lo+WzXW8nzJgBftErrTNBX3czcAfA7AH4GI1APBvDZ2a4Xw++/dkukWcH9400I2h5ghj1LAPsC2AvAd4noW8x8FxH9DoAvAtAAvgejBQ6r3s8BOAjAj2CGpr4HoIDRbquYaSfQb93DxrTqtR3AxQA+ycx3bc+6mflVRDQG4AsAjgPwzdmsl4iOAPBsZj6biNYOWNdAddu0tzDzA0S0AGZo8X/BjI7MZr05zEjEfzPze4joPQD+2tY9m/VKnDqD+qZdNxG1YATr8wDcBeBTAN6PaYxSDFIvM28ccv+1WyIJ1j5gO+7Xw2h1Dm8G8HWrWT5KRP8NM5RyFzNfAfPNEUT0DhgBPJR6mbkAcLbg+R6A2wFsRDwMuh+mGDoaYt1Dw4D1Xgjgdmb+2zmoG8y8jYguB3ASBhCs06z3pQCOIqJ7YN7fvYnoO8z8sunWO0DdYOYH7HEzEf0rjII5bcE6zXqfgLHO/z+b9GUAvzXdOgeo18UPB5Az8w2D1Dlg3UfY9Dst/UsA3rcd6sWw+q+dASeffPLaq6++etGSJUuK22+//SYAeM973rPvv/zLvyxdvHhxAQDnnHPOA6eccspT0yk3DQX3h18FcCszy6HW+wAcRwbzAbwQwK0AQHamJBHtBeB3AXxmWPWSmQk734ZfAaNl3my/b24mohfa4bm3AvjqgPVOq+4Z1DHjeonozwEsAvD727NuItrDftd2HddrYO//bNbLzOcz877MvBbAsTDfw142YL3TqtsOGy619BaA1wLoa1byTOq1w69XAHiZZX05gEGfu0Ge66q1NyimU/cDAA4mIrdRyCsA3LId6h1m/7XDo9u2cWeeeeYjt95668233nrrzdMVqkCyWCMQ0cUwL+9SItoA4EPM/FmYYaDqi/VpAP8E07EQgH9i5p/atPOslgsAH2bmXwyx3r0BXEVEGublk8NTvwMzM3AcwH/Y3zDPuWvdZKblvxnAPFvOZ5j5z2azXiLaD2a26K0AbrSf+/6OmXt2BEM65/kALieiUQAZgP8EcMF2qHcgDKnuUUtvwZzztwD843aoFwDeC+CfySx3eQzA6dupXsBM+nlNr/qGXTczP0hE5wD4LyLqwAzXnradznla/dcw8Iv/PGfVxJND3jZu8f4TBxw32LZxMwXN/Ft8QkJCQkLC9PCTn/zknsMPP/xxYO4EKwDcdtttI6997WvXy6HgL37xi0vmz59fHn744RN///d/f/+yZcsah8N/8pOfLD388MPXVunJYk1ISEhImFP0IwC3F84+++xHP/7xjz9IRPj93//9lb/7u7+76stf/vI90ykjfWNNSEhISEiwWLVqVZHnObIsw1lnnfXYj3/84/nTLSMJ1oSEhISEBIt777235cKXXHLJns95znO2TreMNBSckJCQkLBb4sQTT1x33XXXLdi4cWO+fPnyw973vvc9eM011yy4+eabxwFgv/32a//TP/3TvdMtNwnWhISEhITdEk3bxp199tk93WX2gzQUnJCQkJCQMEQkwZqQsJODptiuLiEhYfsiCdaEhO0IIvoIEb1bxD9KRO8ioj8iouvJ7IN5jkj/ChHdQGZvzHcI+jNE9GEi+gGAX9rOp5GQkNADSbAmJGxffBbA2wCAzF6jpwJ4BGb/3BfA+Ig9ioheYvnPYOajYPxQv4vMfpmA8fz0c2Y+hpmv3Y7tT0hImAJp8lJCwnYEM99DRE8Q0fMALAfwPwCeD+CVNgwAe8AI2v+CEaavs/RVlv4EjGP0y7Zn2xMSEvpDEqwJCdsfn4Hx+7oCZvuulwP4v8z8D5KJiF4G40D9l5h5goi+A2DMJm9j5l1215GEhJ0ZaSg4IWH74/8D8GoYS/Uq+zuDiPYAACJaaXcYWQRgoxWqB8LsoJSQkDAknHzyyWsXL158+Pr16w+R9I9+9KN7r1279rnPfvazDznzzDP365a/G5LFmpCwncHMbSL6NoBN1ur8BhEdBOD7doeeZwD8JoCvAziTiH4K4DYA181VmxMSdkWcccYZj7/73e9+9PTTT1/naFdcccWCr33ta3vecsstN42Pj/MDDzwwbTmZBGtCwnaGnbT0QgAnOxoznwfgvAb245vKYOY9Zqd1CQnbH7d8+5xVW4a8u838xftPHPQr09827vzzz1/2x3/8xw+Nj48zAKxcubKYbt1pKDghYTuCiA4GcAeAq5m5tsFyQkLC3OKuu+4au+aaaxYcdthhBz7/+c9/zjXXXDNtgZ8s1oSE7QhmvhnAs+a6HQkJOxKmsiy3J8qypI0bN2Y//vGPb73mmmvmvfnNb97//vvv/5lS/duhyWJNSEhISEiwWLFiRfsNb3jDJqUUfuVXfmVCKcUPP/zwtIzQJFgTEhISEhIsTjzxxE3f+ta3FgDAT3/609FOp6NWrFgxre+saSg4ISEhIWG3RNO2ce9617seP+WUU9auX7/+kFarpS+88MK7pzMMDCTBmpCQkJCwm6Jp2zgA+OpXv9pI7xdpKDghISEhIWGISII1ISEhISFhiEiCNSEhISEhYYhIgjUhISEhIWGISII1ISEhISFhiEiCNSEhISEhYYhIy20SEhISEnZLnHzyyWuvvvrqRUuWLCluv/32mwDghBNOeNadd945BgCbN2/OFixYUN566603T6fcJFgTEhISEnZLNG0b97Wvfe0uF37729++36JFi8rplpsEa0JCQkLCnOKm75yz6pkhbxu3x+L9Jw552fS3jXPQWuOKK65Y/M1vfvO26dadvrEmJCQkJCRUcNVVV+2xdOnSzqGHHjo53bzJYk1ISEhImFNMZVnOBf7lX/5l8W/8xm88OUjeJFgTEhISEhIEOp0Ovv71r+/1wx/+cFqTlhzSUHBCQkJCQoLAV7/61YXPetaztu2///6dQfInwZqQkJCQsFvixBNPXHfsscceePfdd48uX778sHPPPXcpAFx88cWLTz755IGGgYE0FJyQkJCQsJui27Zxl1122T0zKTdZrAkJCQkJCUNEEqwJCQkJCQlDRBKsCQkJCQkJQ0QSrAkJCQkJCUNEEqwJCQkJCQlDRBKsCQkJCQkJQ0QSrAkJCQkJuyVOPvnktYsXLz58/fr1hzja9773vfHDDz/8wAMPPPDg5z73uQd9+9vfnvbmAEmwJiQkJCTsljjjjDMev/zyy2+XtD/6oz/a70//9E8fvPXWW2/+wAc+8OB73/veVdMtNzmISEhISEiYU/z0mnNWPbNxyNvG7bX/xGEvnf62cUSEp556KgOATZs2ZcuXL29Pt+4kWBMSEhISEiw++clP3n/CCSes/8AHPrBKa41rr7321umWkQRrQkJCQsKcYirLcnvik5/85LL/+3//7/2nnXbaps985jN7nXbaaWu/973v/WI6ZaRvrAkJCQkJCRaXXXbZkre+9a2bAOCMM87Y+NOf/nT+dMtIgjUhISEhIcFi2bJlnSuvvHIBAFxxxRUL1qxZs226ZaSh4ISEhISE3RInnnjiuuuuu27Bxo0b8+XLlx/2vve978Hzzz//3ve85z2r/uAP/oBGR0f1BRdccO90y02CNSEhISFht0S3beNuuummW2ZSbhoKTkhISEhIGCKSYE1ISEhISBgikmBNSEhISEgYIpJgTUhISEhIGCKSYE1ISEhISBgikmBNSEhISEgYIpJgTUhISEjYLdG0bdz3v//98SOOOOLAAw444ODjjjvu2U8++eS05WQSrAn/f3v3HhXVned7/1sFBFBLEFAooQTlVoJSSmKnNemjkpMGoyat0TadyTEaj0emh2jadPRJcpBo2mNn0tPG2D2JJpB0xkt81Dw6RFujiYfEy8RchkIFJIqglEJA5KKI3Or5Y7pmXEyVsuFHanrt92utrJUU1Hfv/uvT319R+wMAuuSuNm7x4sUxa9eurSorKyt+9NFHr61evTpC61weEAEA8KrCz1dbmuvV1saZQmJbxv037bVxFRUVAdOmTbsuIjJjxoym9PT0hA0bNlzWcm02VgAA/iI+Pv7mtm3bgkVEtmzZElJdXX3PXd7yn7CxAgC86m6b5Q8pLy+vIisry7Ju3TpzRkZGg5+fn1PrDIIVAIC/GD9+fOuxY8e+ExEpKiry/+STT4K1zuAoGACAv3A4HL4iIp2dnZKTk2NetGjR91pnsLECAHTJXW3c9evXjbm5ucNERB555JFrS5cuvap1LsEKANAlT7Vx2dnZmrfU23EUDACAQgQrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAF06d+6c3/33358watSo5Li4uORXX311mIhITU2Nz6RJk+Kjo6PHTJo0Kb62ttZHy1yCFQCgS35+fvIP//APVeXl5We++uqrktzc3GHffPNNQE5OjnnKlCnNlZWVp6dMmdK8atUqTdVxPCACAOBV33zxiqX5muLauCGxLff+5JU7Ptw/Ojq6PTo6ul1EZMiQIV2xsbE3L168eM+BAweCCwoKzoqILFmy5OrkyZMTRcTR02uzsQIAdO/s2bP3FBcXD5g8efL1q1ev+roCNzo6ur2+vl7TEsrGCgDwqrttlv2tsbHROHv27Njf/va3l0JCQrr6Oo+NFQCgW7du3TJMnz49du7cufVPP/10g4hIaGhoR2VlpZ+ISGVlpV9ISEiHlpkEKwBAl7q6uuSJJ56ITkhIaH3llVdqXK+np6c3bNq0KVREZNOmTaEZGRkNWuZyFAwA0KVDhw4N2rNnT2h8fPxNq9WaJCKyevVqx+rVq6/MmjUrNjo6Omz48OFte/bsOa9lLsEKANCl9PT0606n8xt3Pztx4kRZb+dyFAwAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAABd8lQbl5eXNyQuLi7ZaDTe+/nnn2suByBYAQC65Kk2bty4cTd379597r777rvem7k8IAIA4FUnj75iaVJcGzd4SGzLjx7sXW3crFmzmvpybTZWAIDu3V4b19dZbKwAAK+622bZ36iNAwBAEXe1cX1FsAIAdMlTbVxfcRQMANAlT7Vxt27dMrzwwgsjrl275jtr1qz40aNHtxw9evS7ns4lWAEAunSn2rj58+c39HYuR8EAAChEsAIAoBDBCgCAQgQrAAAKEawAAChEsAIAoBDBCgDQJU+1cUuWLIkaOXJkckJCQtLDDz8cW1dX56NlLsEKANAlT7Vx6enpTWVlZWfKysqK4+LiWrOzsyO0zOUBEQAAr/qXY69YGhTXxgUPiW358QO9q42bPXv2v9fGTZw48cauXbuGaLk2GysAQPc81ca9//77YRkZGY1aZrGxAgC86m6bZX/zVBu3cuXKCB8fH2dmZma9lnkEKwBAtzzVxm3cuDH04MGDwV988UWZ0ajtcJdgBQDokqfauF27dg1+4403Ir744ouzJpNJc/E5wQoA0CVPtXEvvPCCpa2tzZiWlpYgIpKamnp927ZtF3s6l2AFAOiSp9q4efPmafpjpe74q2AAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAUIhgBQDokqfauGXLlg1PSEhIslqtSQ888EB8RUWFn5a5BCsAQJc81cbl5ORUl5WVFZeWlhZPmzat8aWXXjJrmcsDIgAAXnXs2CuWhgbFtXHBsS0P9LI27t577211/c6NGzeMBoNB07UJVgCA7nWvjXv22Wcjd+7cGWoymToLCgrOapllcDqd/XOXAAB4YLfbK2w2W52370Pk32rjJk2alLhixYortzfciIi8+OKLEa2trcb169df7v4+u90eZrPZYrq/zmesAADd8lQb57Jw4cL6jz/+eIiWmQQrAECXPNXGnTp1yt/17zt37gyOjY29qWUun7ECAHTJU21cXl5eWHl5eYDBYHBGRUW15ebmVmqZS7ACAHSJ2jgAAP4KEKwAAChEsAIAoBDBCgCAQgQrAAAKEawAAChEsAIAdMlTbZzLqlWrwg0Gw71XrlzR9NVUghUAoEueauNE/i10P/vss8Fms7lN61weEAEA8KrPj79iuaa4Nm5IcGzLf5vU+9q4rKwsy+uvv141Z86cOK3XZmMFAOje7bVxW7duDTKbze0TJ07U9IxgFzZWAIBX3W2z7G+NjY3G2bNnx/72t7+95OfnJ6+99pr5yJEj3/V2HhsrAEC3utfGlZSU+FdVVfmnpKQkRUZGjq2pqbknNTV19MWLF3u8iLKxAgB0yV1t3I9+9KOb9fX1dtfvREZGjv36669LzGZzR0/nsrECAHTJVRt39OhRk9VqTbJarUk7duwI6utcNlYAgC55qo27ncPhOKV1LhsrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAChEsAIAdMlTbdzy5cuHDxs2LKW3323le6wAAF1y1cY9+OCDLdeuXTOOHz8+6ZFHHmkSEcnMzKxZs2ZNTW/mEqwAAK86cuIVS32j2tq4kKDYlqkTe1cb19drcxQMANC922vjRERyc3OHJSQkJM2dOzemtrbWR8ssg9Pp7J+7BADAA7vdXmGz2eq8fR8i/1YbN2nSpMQVK1ZcefrppxsuXbrkazabOwwGgzz33HOR1dXVfjt37qzo/j673R5ms9liur/OxgoA0K3utXEiIhaLpcPX11d8fHwkKyurtrCwcKCWmQQrAECX3NXGiYhUVlb6uf79ww8/DE5MTLypZS5/vAQA0CVXbVx8fPxNq9WaJCKyevVqx/bt20OKi4sDRUSioqLa3nvvvUotcwlWAIAueaqNmzdvXmNf5nIUDACAQgQrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAF3yVBsnIrJ27dphMTExY+Li4pIzMzOjtMzle6wAAF3yVBt3+fJlv3379gWXlJScCQwMdDocDk1ZSbACALzq8L+8YrnaoLY2LjQ4tuW//7h3tXHvvPNO2IoVK64EBgY6RUQiIyM7tFybo2AAgO7dXhtXXl4eUFBQYEpJSbFOmDAhsaCgQFPos7ECALzqbptlf2tsbDTOnj079re//e2lkJCQrs7OTsO1a9d8CgsLSwsKCgY8+eSTsZcuXTplNPZsF2VjBQDolrvauIiIiLY5c+Y0GI1GmTp1aovRaHRWV1f3eBElWAEAuuSpNm7mzJkNhw8fNomIFBUV+be3txsjIiJ6/DkrR8EAAF3yVBu3dOnSunnz5sXEx8cn+/n5dW3evPlCT4+BRQhWAIBOeaqNExHZu3fvhd7O5SgYAACFCFYAABQiWAEAUIhgBQBAIYIVAACFCFYAABTi6zYAAF06d+6c39/8zd+MrK2t9TMajfL000/XZmdnfz99+vRR58+fDxARaW5u9jGZTJ2lpaXFPZ1LsAIAdMlTbdy+ffvKXb+zePHiqKCgoE4tcwlWAIBXHfzyFUud4tq4sODYlvT7e1cbd++997aK/NsjD/Pz80MOHTp0Vsu1+YwVAKB7t9fGuV47ePDgoLCwsPaxY8fe0jKLjRUA4FV32yz7W/faONfrW7ZsCXn88cfrtc4jWAEAuuWuNk5EpL29XQ4cODDk5MmTPf6jJReOggEAuuSpNk5EZO/evYNHjRrVGhsb2651LsEKANAlV23c0aNHTVarNclqtSbt2LEjSERk+/btIXPnztV8DCzCUTAAQKfuVBu3e/fuit7OZWMFAEAhghUAAIUIVgAAFCJYAQBQiGAFAEAhghUAAIUIVgCALp07d87v/vvvTxg1alRyXFxc8quvvjpMROT48eOBNpvNarVak8aMGTP6yJEjmgoCCFYAgC65auPKy8vPfPXVVyW5ubnDvvnmm4AXXngh6uWXX75cWlpanJ2dfXnlypUWLXN5QAQAwKv2nXzFUtuotjZuaFBsy/Qf9a42zmAwSGNjo4+ISENDg094eHiblmsTrAAA3bu9Ni46Orpt+vTp8dnZ2Zauri45evRoqZZZBCsAwKvutln2t+61ccuXLx+6bt26SwsWLGh49913hyxYsCDm+PHjZT2dx2esAADdclcbt3v37tD58+c3iIg888wz14qKigZqmUmwAgB0yVNt3NChQ9v3799vEhHJz883RUdHt2qZy1EwAECXXLVx8fHxN61Wa5KIyOrVqx1vvfVW5fLlyy3PP/+8wd/fv+vtt9+u1DKXYAUA6NKdauPOnDlT0tu5HAUDAKAQwQoAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwBAlzzVxp04cSJw3Lhx1oSEhKS0tLS4+vp6TVlJsAIAdMlTbdzixYtj1q5dW1VWVlb86KOPXlu9enWElrk8IAIA4FV7Tr5i+b5JbW3csMGxLT/rZW1cRUVFwLRp066LiMyYMaMpPT09YcOGDZd7em02VgCA7t1eGxcfH39z27ZtwSIiW7ZsCamurr5Hyyw2VgCAV91ts+xv3Wvj8vLyKrKysizr1q0zZ2RkNPj5+Tm1zCNYAQC65a42bvz48a3Hjh37TkSkqKjI/5NPPgnWMpOjYACALnmqjXM4HL4iIp2dnZKTk2NetGjR91rmsrECAHTJU21cWVmZf25u7jARkUceeeTa0qVLr2qZa3A6NR0dAwDQZ3a7vcJms9V5+z76wm63h9lstpjur3MUDACAQgQrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAF1qaWkxjB07dnRiYmJSXFxc8q9+9avhIiI1NTU+kyZNio+Ojh4zadKk+NraWh8tcwlWAIAuBQQEOI8ePXr27NmzxWfOnCn+9NNPB3/66acDc3JyzFOmTGmurKw8PWXKlOZVq1ZRGwcA+Oux6+tXLNWNamvjIoJiW+bcd+eH+xuNRgkKCuoSEWlrazN0dHQYDAaDHDhwILigoOCsiMiSJUuuTp48OVFEHD29NhsrAEC3Ojo6xGq1JoWHh9smT57clJaWduPq1au+rp7W6Ojo9vr6ek1LKBsrAMCr7rZZ9idfX18pLS0trqur85k+fXrsV199FdDXmWysAADdCwsL63zwwQeb8/Pzg0JDQzsqKyv9REQqKyv9QkJCOrTMIlgBALp0+fJl37q6Oh8RkevXrxv+7//9v4NHjx7dmp6e3rBp06ZQEZFNmzaFZmRkNGiZy1EwAECXLl265LdgwYKRnZ2d4nQ6DY899lj9L37xi8apU6denzVrVmx0dHTY8OHD2/bs2XNey1yCFQCgS/fff//NkpKS4u6vR0REdJ44caKst3M5CgYAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAIAueaqNy8vLGxIXF5dsNBrv/fzzzzWXA/A9VgCALrlq44KCgrpu3bplmDBhQuKnn37aOG7cuJu7d+8+t3jx4pjezCVYAQBete3rVyxXmtTWxpkHx7Y82cvauNTU1Na+XJujYACAbrmrjevrTDZWAIBX3W2z7E/uauMmTJjAxgoAQF/cXhvX11kEKwBAlzzVxvV1LsEKANClS5cu+f3kJz9JTEhISBo/fnzS1KlTm37xi180fvDBB8Hh4eEphYWFA2fNmhX/4IMPxmuZa3A6nf11zwAAuGW32ytsNludt++jL+x2e5jNZovp/jobKwAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoRLACAHTJU23ckiVLokaOHJmckJCQ9PDDD8e6HiLRUwQrAECXXLVxZ8+eLT5z5kzxp59+OvjTTz8dmJ6e3lRWVnamrKysOC4urjU7OztCy1wewg8A8Kr3vnnF4mhWWxsXaYptWXhv72rjZs+e3eT6nYkTJ97YtWvXEC3XZmMFAOjW3Wrj3n///bCMjIxGLTPZWAEAXnW3zbI/3ak2buXKlRE+Pj7OzMzMei0z2VgBALrXvTZu48aNoQcPHgz+6KOPLhiN2qKSYAUA6JKn2rhdu3YNfuONNyL2799/zmQydWmdy1EwAECXLl265LdgwYKRnZ2d4nQ6DY899lj9L37xi8YRI0aMaWtrM6alpSWIiKSmpl7ftm3bxZ7OJVgBALp0//333ywpKSnu/vrFixdP92UuR8EAAChEsAIAoBDBCgCAQgQrAAAKEawAAChEsAIAoBDBCgDQJU+1ccuWLRuekJCQZLVakx544IH4iooKPy1zCVYAgC55qo3LycmpLisrKy4tLS2eNm1a40svvWTWMpcHRAAAvOqtf33FcrFJbW3ciMGxLX87vne1cSEhIf/+GMMbN24YDQaDpmsTrAAA3ero6JAxY8YkXbx40f/pp5/+3lUb9+yzz0bu3Lkz1GQydRYUFJzVMtPgdDr7524BAPDAbrdX2Gy2Om/fh4urNu4Pf/jDRVdtnIjIiy++GNHa2mpcv3795e7vsdvtYTabLab763zGCgDQve61cS4LFy6s//jjj4domUWwAgB0yVNt3KlTp/xdv7Nz587g2NjYm1rm8hkrAECXPNXGpaenx5aXlwcYDAZnVFRUW25ubqWWuQQrAECXPNXGHTx48Hxf5nIUDACAQgQrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAF3yVBvnsmrVqnCDwXDvlStXNH01le+xAgB0yVUbFxQU1HXr1i3DhAkTEj/99NPGhx566Ma5c+f8Pvvss8Fms7lN61yCFQDgVa8XvmK50Ky2Nm6kKbblhXG9q40TEcnKyrK8/vrrVXPmzInTem2OggEAutXR0SFWqzUpPDzcNnny5Ka0tLQbW7duDTKbze0TJ07U9IxgFzZWAIBX3W2z7E++vr5SWlpa7KqN+/LLLwNfe+0185EjR77r7Uw2VgCA7rlq43bt2hVcVVXln5KSkhQZGTm2pqbmntTU1NEXL17s8SJKsAIAdMldbVxqampLfX293eFwnHI4HKfCw8Pbvv3225IRI0Z09HQuR8EAAF3yVBvX17kEKwBAlzzVxt3O4XCc0jqXo2AAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAUIhgBQDokqfauOXLlw8fNmxYitVqTbJarUk7duwI0jKX77ECAHTJU22ciEhmZmbNmjVranozl2AFAHjVK/bfWs43XVBaGxc7eGTLK7b/p9e1cX3BUTAAQLfc1caJiOTm5g5LSEhImjt3bkxtba2PlpkGp9PZP3cLAIAHdru9wmaz1Xn7PlxctXF/+MMfLkZERHSYzeYOg8Egzz33XGR1dbXfzp07K7q/x263h9lstpjur7OxAgB0z1Ubl5+fH2SxWDp8fX3Fx8dHsrKyagsLCwdqmUWwAgB0yV1t3OjRo1srKyv9XL/z4YcfBicmJt7UMpc/XgIA6JKn2rif/exnI4uLiwNFRKKiotree++9Si1zCVYAgC55qo3bs2fPhb7M5SgYAACFCFYAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAuuSpNk5EZO3atcNiYmLGxMXFJWdmZkZpmcv3WAEAuuSpNq6lpcW4b9++4JKSkjOBgYFOh8OhKSsJVgCAV60u/KPlfPNFtbVxphEtOeP+rle1cW+99dbQFStWXAkMDHSKiERGRnZouTZHwQAA3XJXG1deXh5QUFBgSklJsU6YMCGxoKBAU+izsQIAvOpum2V/8vX1ldLS0mJXbdxXX30V0NnZabh27ZpPYWFhaUFBwYAnn3wy9tKlS6eMxp7tomysAADdu702LiIiom3OnDkNRqNRpk6d2mI0Gp3V1dU9XkQJVgCALnmqjZs5c2bD4cOHTSIiRUVF/u3t7caIiIgef87KUTAAQJc81ca1trYa5s2bFxMfH5/s5+fXtXnz5gs9PQYWIVgBADrlqTYuICDAuXfv3l5Xx3EUDACAQgQrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAK8XUbAIAutbS0GO6//35rW1ubobOz0zBz5sxr69evvzx9+vRR58+fDxARaW5u9jGZTJ2lpaX/6Ws5nhCsAABd8lQbt2/fvnLX7yxevDgqKCioU8tcghUA4FWrC3Mt55sdimvjIltyxi3qVW2cS1dXl+Tn54ccOnTorJZr8xkrAEC33NXGuX528ODBQWFhYe1jx469pWUmGysAwKvutln2J3e1cRMmTGgVEdmyZUvI448/Xq91JhsrAED3bq+NExFpb2+XAwcODJk/fz7BCgBAT3iqjRMR2bt37+BRo0a1xsbGtmudy1EwAECXPNXGiYhs3749ZO7cuZq3VRGCFQCgU55q40REdu/eXdHbuRwFAwCgEMEKAIBCBCsAAAoRrAAAKESwAgCgEMEKAIBCBCsAQJdaWloMY8eOHZ2YmJgUFxeX/Ktf/Wq4iMjx48cDbTab1Wq1Jo0ZM2b0kSNHNBUE8D1WAIAueaqNW7Vq1fCXX3758s9//vOmHTt2BK1cudJy8uTJHjfcEKwAAK9a869bLOearyitjYszmVtWjX+qV7VxBoNBGhsbfUREGhoafMLDw9u0XJtgBQDoVkdHh4wZMybp4sWL/k8//fT3aWlpN4KDgy9Nnz49Pjs729LV1SVHjx4t1TKTYAUAeNXdNsv+5K427o9//OPQdevWXVqwYEHDu+++O2TBggUxx48fL+vpTP54CQCge7fXxu3evTt0/vz5DSIizzzzzLWioqKBWmYRrAAAXfJUGzd06ND2/fv3m0RE8vPzTdHR0a1a5nIUDADQJU+1cSEhIZ3Lly+3PP/88wZ/f/+ut99+u1LLXIPT6eyvewYAwC273V5hs9nqvH0ffWG328NsNltM99c5CgYAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAIAueaqNO3HiROC4ceOsCQkJSWlpaXH19fWaspJgBQDokqs27uzZs8Vnzpwp/vTTTwd/+umnAxcvXhyzdu3aqrKysuJHH3302urVqyO0zOXJSwAAr1rzrzss55qrFdfGRbSsGj+vV7VxFRUVAdOmTbsuIjJjxoym9PT0hA0bNlzu6bXZWAEAutXR0SFWqzUpPDzcNnny5Ka0tLQb8fHxN7dt2xYsIrJly5aQ6urqe7TMZGMFAHjV3TbL/uSuNi4vL68iKyvLsm7dOnNGRkaDn5+fpmf/srECAHTv9tq48ePHtx47duy7M2fOlDz99NP1FovllpZZBCsAQJc81cY5HA5fEZHOzk7JyckxL1q06HstcwlWAIAuXbp0ye8nP/lJYkJCQtL48eOTpk6d2vSLX/yiMS8vLyQmJmZMbGzsGLPZ3L506dKrWuZSGwcA+MFRGwcAAHqEYAUAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQCgWx0dHTJ69OikqVOnxomI1NTU+EyaNCk+Ojp6zKRJk+Jra2t9tM4kWAEAuvWb3/wmPC4u7qbrv3NycsxTpkxprqysPD1lypTmVatWaaqME+Eh/AAAL1vzr7st55pq1NbGDQ5vWTX+8Ts+3P/8+fN+Bw8eDHrxxRevrF+/PlxE5MCBA8EFBQVnRUSWLFlydfLkyYki4tBybTZWAIAu/d3f/Z3l7//+76uMxv+IwqtXr/pGR0e3i4hER0e319fXa15A2VgBAF51t82yP2zfvj0oLCys4yc/+UnLxx9/bFI5m2AFAOjO0aNHBx06dCg4MjIy6NatW8YbN24YH3vssZGhoaEdlZWVftHR0e2VlZV+ISEhHVpncxQMANCdP/7xj46ampoih8Nx6v333y//8Y9/3Lx3794L6enpDZs2bQoVEdm0aVNoRkZGg9bZbKwAAPzF6tWrr8yaNSs2Ojo6bPjw4W179uw5r3UGtXEAgB8ctXEAAKBHCFYAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAutW9Ni4vL29IXFxcstFovPfzzz/vVTEAwQoA0K3utXHjxo27uXv37nP33Xff9d7O5MlLAACvWvOvey3nm75XWhsXO3hYy6rxj2mujUtNTW3t67XZWAEAuuSuNk4FNlYAgFfdbbPsD9TGAQCgkKfauL17917o62yOggEAuuOpNk7FbIIVAIC/+OCDD4LDw8NTCgsLB86aNSv+wQcfjNc6g9o4AMAPjto4AADQIwQrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAN3qXhu3ZMmSqJEjRyYnJCQkPfzww7F1dXU+WmcSrAAA3epeG5eent5UVlZ2pqysrDguLq41Ozs7QutMnhUMAPCqNd/us5xvqlVcGze0ZVXqdM21cbNnz25y/XzixIk3du3aNUTrtdlYAQC6dLfauPfffz8sIyOjUetcNlYAgFfdbbPsD3erjVu5cmWEj4+PMzMzs17rbIIVAKA7d6qN27hxY+jBgweDv/jii7LelKBzFAwA0B1PtXG7du0a/MYbb0Ts37//nMlk6urNbDZWAAD+Yvny5SPa2tqMaWlpCSIiqamp17dt23ZRywyCFQCgazNmzGieMWNGs4jIxYsXT/d1HkfBAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoRLACAKAQwQoA0K3utXHLli0bnpCQkGS1WpMeeOCB+IqKCj+tMwlWAIBuda+Ny8nJqS4rKysuLS0tnjZtWuNLL71k1jqTB0QAALxqzbcHLOeb6hTXxoW1rErN0FwbFxIS8u+PMbxx44bRYDBovjbBCgDQJVdtXGNjo8/trz/77LORO3fuDDWZTJ0FBQVntc4lWAEAXnW3zbI/3Kk2buPGjY6NGzc6XnzxxYjXX3992Pr16y9rmc1nrAAA3bmtNm7sggULRv3Lv/yL6bHHHht5++8sXLiw/uOPPx6idTbBCgDQHU+1cadOnfJ3/c7OnTuDY2Njb95pjjscBQMA8Be//vWvo8rLywMMBoMzKiqqLTc3t1LrDIPT6eyPewMAwCO73V5hs9nqvH0ffWG328NsNltM99c5CgYAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAIBuda+Nc1m1alW4wWC498qVK5qf90CwAgB0q3ttnIjIuXPn/D777LPBZrO5rTczefISAMCr1nz7ieV801XFtXGhLatSf6q5Nk5EJCsry/L6669XzZkzJ+5O7/eEjRUAoEuu2jij8T+icOvWrUFms7l94sSJmp8R7MLGCgDwqrttlv3BXW1cc3Oz8bXXXjMfOXLku77MJlgBALpzW21c0K1bt4w3btwwzpkzZ2RVVZV/SkpKkohITU3NPampqaO//PLLkhEjRnT0dDYP4QcA/OD+Kz2E/+OPPzb9wz/8Q/iRI0fO3f56ZGTk2K+//rrEbDa7DVUewg8AwA+Ao2AAgK7NmDGjecaMGc3dX3c4HKd6M4+NFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAAAUIlgBALrVvTZu+fLlw4cNG5ZitVqTrFZr0o4dO4K0zuR7rAAA3XLVxl2/ft3H9VpmZmbNmjVrano7k2AFAHjVq998ajnfrLg2zhTakn3vQ72qjesrjoIBALrkrjZORCQ3N3dYQkJC0ty5c2Nqa2t9PLzdIzZWAIBX3W2z7A/uauNERH71q199//d///eXDQaDPPfcc5G//OUvLTt37qzQMptgBQDojrvauMcee2zk3r17L7h+Jysrq3bGjBnxWmdzFAwA0J0//vGPjpqamiKHw3Hq/fffL//xj3/cvHfv3guVlZV+rt/58MMPgxMTE29qnc3GCgDAXyxbtiyquLg4UEQkKiqq7b333qvUOoOicwDAD+6/UtF5b1F0DgDAD4BgBQBAIYIVAACFCFYAABQiWAEAUIhgBQBAIYIVAKBb3WvjRETWrl07LCYmZkxcXFxyZmZmlNaZPCACAKBb3Wvj8vPzTfv27QsuKSk5ExgY6HQ4HJpzkmAFAHjVq98csZxvrldcGxfSkn3vVM21cW+99dbQFStWXAkMDHSKiERGRnZovTZHwQAAXXJXG1deXh5QUFBgSklJsU6YMCGxoKBAc+CzsQIAvOpum2V/8FQb19nZabh27ZpPYWFhaUFBwYAnn3wy9tKlS6e6d7beCcEKANAdT7VxERERbXPmzGkwGo0yderUFqPR6KyurvYdPnx4j4+EOQoGAOiOp9q4mTNnNhw+fNgkIlJUVOTf3t5ujIiI0PQ5KxsrAAB/sXTp0rp58+bFxMfHJ/v5+XVt3rz5gpZjYBFq4wAAXkBtHAAA6BGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhfgeKwBAtzo6OmTs2LFJERERbUeOHDk3ffr0UefPnw8QEWlubvYxmUydpaWlxVpmEqwAAN3qXhu3b9++ctfPFi9eHBUUFNSpdSbBCgDwqle/KbCcb76muDZuSEv2vZM118a5dHV1SX5+fsihQ4fOar02n7ECAHTJXW2cy8GDBweFhYW1jx079pbWuWysAACvuttm2R881ca5bNmyJeTxxx+v781sghUAoDueauP27t17ob29XQ4cODDk5MmTmv5oyYWjYACA7niqjRMR2bt37+BRo0a1xsbGtvdmNsEKAMBttm/fHjJ37txeHQOLUBsHAPACauMAAECPEKwAAChEsAIAoBDBCgCAQgQrAAAKEawAAChEsAIAdKujo0NGjx6dNHXq1DgRkePHjwfabDar1WpNGjNmzOgjR45oLgcgWAEAuuWqjXP99wsvvBD18ssvXy4tLS3Ozs6+vHLlSovWmTwrGADgVa9+c9RyvklxbdzgIS3Z9z6ouTbOYDBIY2Ojj4hIQ0ODT3h4eJvWaxOsAABdctXGuYJUROTNN9+8NH369Pjs7GxLV1eXHD16tFTrXIIVAOBVd9ss+4On2rg333xz6Lp16y4tWLCg4d133x2yYMGCmOPHj5dpmU2wAgB0x1Nt3GeffRaUl5d3SUTkmWeeufbcc8/FaJ3NHy8BAHTHU23c0KFD2/fv328SEcnPzzdFR0e3ap3NxgoAwF+89dZblcuXL7c8//zzBn9//6633367UusMauMAAD84auMAAECPEKwAAChEsAIAoBDBCgCAQgQrAAAKEawAAChEsAIAdKt7bdyJEycCx40bZ01ISEhKS0uLq6+v15yTBCsAQLe618YtXrw4Zu3atVVlZWXFjz766LXVq1dHaJ3Jk5cAAF716jfHLOebGhTXxgW3ZN/7gObauIqKioBp06ZdFxGZMWNGU3p6esKGDRsua7k2GysAQJdctXFG439EYXx8/M1t27YFi4hs2bIlpLq6+h6tc9lYAQBedbfNsj94qo3Ly8uryMrKsqxbt86ckZHR4Ofnp/m5vwQrAEB3PNXG7d2798KxY8e+ExEpKiry/+STT4K1zuYoGACgO55q4xwOh6+ISGdnp+Tk5JgXLVr0vdbZBCsAAH+Rl5cXEhMTMyY2NnaM2WxuX7p06VWtM6iNAwD84KiNAwAAPUKwAgCgEMEKAIBCBCsAAAoRrAAAKESwAgCgEE9eAgDoVmRk5NiBAwd2Go1G8fX1dZ4+fbqkpqbGZ9asWaMcDod/ZGTkrb1795YPHTq0s6cz2VgBALpWUFBQVlpaWnz69OkSEZGcnBzzlClTmisrK09PmTKledWqVZqq49hYAQBe9eo3JyzlTY1Ka+NGDQ5qyb53Yq8e7n/gwIHggoKCsyIiS5YsuTp58uREEXH09P1srAAAXXvooYfik5OTR//ud78LExG5evWqb3R0dLuISHR0dHt9fb2mJZSNFQDgVb3dLFU4duxYaUxMTLvD4fBNS0tLSE5Obu3rTDZWAIBuxcTEtIuIREZGdkyfPr3hxIkTA0NDQzsqKyv9REQqKyv9QkJCOrTMJFgBALrU1NRkvHbtmtH170eOHBmckpJyMz09vWHTpk2hIiKbNm0KzcjIaNAyl6NgAIAuVVVV+c6aNStORKSzs9Pw+OOPX50zZ07Tgw8+eGPWrFmx0dHRYcOHD2/bs2fPeS1zCVYAgC4lJSW1nT17trj76xEREZ0nTpwo6+1cjoIBAFCIYAUAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQCgW5GRkWMTEhKSrFZr0pgxY0aLiOTl5Q2Ji4tLNhqN937++eeaywH4HisAQNcKCgrKzGbzvz+2cNy4cTd37959bvHixTG9mUewAgC86tWvv+yf2rj77u/Vw/1TU1P79CB+joIBALrWvTaur9hYAQBe1dvNUgV3tXHTpk273peZbKwAAN1yVxvX15kEKwBAlzzVxvV1LsEKANClqqoq3x//+MfWxMTEpNTU1NE//elPG+bMmdP0wQcfBIeHh6cUFhYOnDVrVvyDDz4Yr2Wuwel09tc9AwDglt1ur7DZbHXevo++sNvtYTabLab762ysAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoRLACAKAQjzQEAOhWZGTk2IEDB3YajUbx9fV1nj59umTJkiVRn3zySZCfn58zOjr61vbt2yvCwsI6ezqTjRUAoGsFBQVlpaWlxadPny4REUlPT28qKys7U1ZWVhwXF9eanZ0doWUeGysAwKte/fqrfqqNm9Crh/vPnj27yfXvEydOvLFr164hWt7PxgoA0LU71ca9//77YRkZGY1a5rGxAgC8qrebpQp3qo1buXJlhI+PjzMzM7Ney0w2VgCAbnmqjdu4cWPowYMHgz/66KMLRqO2qCRYAQC65Kk2bteuXYPfeOONiP37958zmUxdWudyFAwA0KWqqirfWbNmxYmIdHZ2Gh5//PGrc+bMaRoxYsSYtrY2Y1paWoKISGpq6vVt27Zd7OlcghUAoEtJSUltZ8+eLe7++sWLF0/3ZS5HwQAAKESwAgCgEMEKAIBCBCsAAAoRrAAAKESwAgCgEF+3AQDolrvauGXLlg3/85//HGw0GiU0NLR969atFa4nNPUEGysAQNe618bl5ORUl5WVFZeWlhZPmzat8aWXXjJrmcfGCgDwqle//sZS3tSkuDZucEv2fff26uH+ISEh//4Ywxs3bhgNBoOm9xOsAABde+ihh+INBoMsXLiw9te//nWdiMizzz4buXPnzlCTydRZUFBwVss8g9Pp7J87BQDAA7vdXmGz2eq8fR8VFRV+t9fGvfHGGxddtXEiIi+++GJEa2urcf369Ze7v9dut4fZbLaY7q/zGSsAQLc81ca5LFy4sP7jjz8eomUmwQoA0CVPtXGnTp3yd/3Ozp07g2NjY29qmctnrAAAXfJUG5eenh5bXl4eYDAYnFFRUW25ubmVWuYSrAAAXfJUG3fw4MHzfZnLUTAAAAoRrAAAKESwAgCgEMEKAIBCBCsAAAoRrAAAKESwAgB0KzIycmxCQkKS1WpNGjNmzOjbf7Zq1apwg8Fw75UrVzR9NZXvsQIAdK2goKDMbDZ33P7auXPn/D777LPBZrO5Tes8ghUA4FW/+fpfLecb1dbGxQYNbvnf943vVW2ciEhWVpbl9ddfr5ozZ06c1vdyFAwA0LWHHnooPjk5efTvfve7MBGRrVu3BpnN5vaJEydqekawCxsrAMCr+rJZ9tWxY8dKb6+NS05Obn3ttdfMR44c+a63M9lYAQC61b027rPPPjNVVVX5p6SkJEVGRo6tqam5JzU1dfTFixd7vIgSrAAAXXJXG3f//fffqK+vtzscjlMOh+NUeHh427ffflsyYsSIjrvNc+EoGACgS55q4/o6l2AFAOiSp9q42zkcjlNa53IUDACAQgQrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAN1yVxu3fPny4cOGDUuxWq1JVqs1aceOHUFaZvI9VgCArrmrjcvMzKxZs2ZNTW/mEawAAK/6zdd2y/nGZsW1caaW/32fzSsP9+coGACga91r40REcnNzhyUkJCTNnTs3pra21kfLPIPT6VR/lwAA3IHdbq+w2Wx13r6PiooKv9tr4954442LY8aMaTWbzR0Gg0Gee+65yOrqar+dO3dWdH+v3W4Ps9lsMd1fZ2MFAOhW99q4EydODLRYLB2+vr7i4+MjWVlZtYWFhQO1zCRYAQC65K42LiUl5WZlZaWf63c+/PDD4MTExJta5vLHSwAAXfJUG/ezn/1sZHFxcaCISFRUVNt7771XqWUuwQoA0CVPtXF79uy50Je5HAUDAKAQwQoAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwBAt9zVxomIrF27dlhMTMyYuLi45MzMzCgtM/keKwBA17rXxuXn55v27dsXXFJSciYwMNDpcDg0ZSXBCgDwqt98fcpyvvG64tq4QS3/+76xvaqNe+utt4auWLHiSmBgoFPk354jrOX9HAUDAHSte21ceXl5QEFBgSklJcU6YcKExIKCAk2hz8YKAPCq3m6WKhw7dqz09tq45OTk1s7OTsO1a9d8CgsLSwsKCgY8+eSTsZcuXTplNPZsF2VjBQDolrvauIiIiLY5c+Y0GI1GmTp1aovRaHRWV1f3eBElWAEAuuSpNm7mzJkNhw8fNomIFBUV+be3txsjIiJ6/DkrR8EAAF3yVBvX2tpqmDdvXkx8fHyyn59f1+bNmy/09BhYhGAFAOiUp9q4gIAA5969e3tdHcdRMAAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoxNdtAAC6FRkZOXbgwIGdRqNRfH19nadPny6ZPn36qPPnzweIiDQ3N/uYTKbO0tLS//S1HE8IVgCArnWvjdu3b1+5698XL14cFRQU1KllHsEKAPCq33x1pn9q4yYk9+nh/l1dXZKfnx9y6NChs1rex2esAABd614b53Lw4MFBYWFh7WPHjr2lZR4bKwDAq/q6WfaFu9q4adOmXRcR2bJlS8jjjz9er3UmGysAQLfc1caJiLS3t8uBAweGzJ8/n2AFAKAnPNXGiYjs3bt38KhRo1pjY2Pbtc7lKBgAoEueauNERLZv3x4yd+5czduqCMEKANApT7VxIiK7d++u6O1cjoIBAFCIYAUAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCG+bgMA0C13tXHHjx8P/Nu//dvoW7duGX19fZ0bN26snDp1aktPZxKsAABd614b98ILL0S9/PLLl3/+85837dixI2jlypWWkydP9rjhhmAFAHjVb74qsZxvvKG4Nm5gy/+eMLpXD/c3GAzS2NjoIyLS0NDgEx4e3qbl/QQrAEDXHnrooXiDwSALFy6s/fWvf1335ptvXpo+fXp8dna2paurS44ePVqqZR7BCgDwqt5uliq4q43bsWPHkHXr1l1asGBBw7vvvjtkwYIFMcePHy/r6Uz+KhgAoFvuauN2794dOn/+/AYRkWeeeeZaUVHRQC0zCVYAgC55qo0bOnRo+/79+00iIvn5+abo6OhWLXM5CgYA6JKn2jiTyVS5fPlyy/PPP2/w9/fvevvttyu1zDU4nc7+uWMAADyw2+0VNputztv30Rd2uz3MZrPFdH+do2AAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAUIjvsQIAdMtdbdyJEycC//Zv/za6paXFGBUV1bZr167ykJCQrp7OZGMFAOhaQUFBWWlpafHp06dLREQWL14cs3bt2qqysrLiRx999Nrq1asjtMxjYwUAeNXak2ct55ta1NbGDR7Q8vKPEnv1cP+KioqAadOmXRcRmTFjRlN6enrChg0bLvf0/WysAABde+ihh+KTk5NH/+53vwsTEYmPj7+5bdu2YBGRLVu2hFRXV9+jZR4bKwDAq3q7WargrjYuLy+vIisry7Ju3TpzRkZGg5+fn6Zn/7KxAgB0y11t3Pjx41uPHTv23ZkzZ0qefvrpeovFckvLTIIVAKBLnmrjHA6Hr4hIZ2en5OTkmBctWvS9lrkEKwBAl6qqqnx//OMfWxMTE5NSU1NH//SnP22YM2dOU15eXkhMTMyY2NjYMWazuX3p0qVXtcylNg4A8IOjNg4AAPQIwQoAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwBAt+rq6nwyMjJGjRw5MnnUqFHJhw8fHlhTU+MzadKk+Ojo6DGTJk2Kr62t9dEyk2AFAOjW//pf/8vy05/+tOnChQtniouLi8eNG9eak5NjnjJlSnNlZeXpKVOmNK9atYraOADAX4+1J8/1U21c3B0f7l9fX2/88ssvTbt27aoQEQkICHAGBAR0HjhwILigoOCsiMiSJUuuTp48OVFEHD29NhsrAECXSktL/UNCQjrmzp0bM3r06KR58+ZFNzU1Ga9eveobHR3dLiISHR3dXl9fr2kJZWMFAHjV3TbL/tLR0WEoKSkZsGHDhotpaWk3Fi5caMnOztZ07OsOGysAQJdiYmLawsPD29LS0m6IiMybN++a3W4fEBoa2lFZWeknIlJZWekXEhLSoWUuwQoA0KURI0Z0REREtNntdn8RkU8++WRwYmJia3p6esOmTZtCRUQ2bdoUmpGR0aBlLkfBAADd2rhx48W/+Zu/GdXW1mYYMWLEre3bt1d0dnbKrFmzYqOjo8OGDx/etmfPnvNaZhKsAADdmjRp0s3Tp0+XdH/9xIkTZb2dyVEwAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAChEsAIAdMtdbVxeXt6QuLi4ZKPReO/nn3+uuRyA77ECAHTLVRt34MCB8tbWVsP169eNISEhnbt37z63ePHimN7MJFgBAF619mS55XzjTbW1cUGBLS//aFSvauPCwsI6+3JtjoIBALrkqTaur3PZWAEAXnW3zbK/eKqN27Bhw+W+zGVjBQDokqfauL7OJVgBALrkqTaur3MJVgCAbrlq4xISEpKKiooCf/Ob31z54IMPgsPDw1MKCwsHzpo1K/7BBx+M1zLT4HQ6++t+AQBwy263V9hstjpv30df2O32MJvNFtP9dTZWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAAAUIlgBAFCIYAUA6Ja72rglS5ZEjRw5MjkhISHp4Ycfjq2rq/PRMpNgBQDolqs27sKFC2eKi4uLx40b15qent5UVlZ2pqysrDguLq41Ozs7QstMHsIPAPCqtScrLeWNrUpr40YFBbS8/KPoXtXGzZ49u8n1OxMnTryxa9euIVquzcYKANClntTGvf/++2EZGRmNWuaysQIAvOpum2V/uVtt3MqVKyN8fHycmZmZ9VrmsrECAHTpTrVxGzduDD148GDwRx99dMFo1BaVBCsAQJc81cbt2rVr8BtvvBGxf//+cyaTqUvrXI6CAQC65aqNa2trM4wYMeLW9u3bK+69997RbW1txrS0tAQRkdTU1Ovbtm272NOZBCsAQLcmTZp08/Tp0yW3v3bx4sXTfZnJUTAAAAoRrAAAKESwAgCgEMEKAIBCBCsAAAoRrAAAKMTXbQAAulVXV+fz1FNPRZ89ezbQYDDI5s2bK/Lz84P+/Oc/BxuNRgkNDW3funVrRUxMTHtPZ7KxAgB0y11tXE5OTnVZWVlxaWlp8bRp0xpfeukls5aZbKwAAK9a+2WVpbzxluLaOP+Wl++P6lVt3O2/c+PGDaPBYNB0bYIVAKBLt9fGFRcXD0hJSbnxzjvvXBo8eHDXs88+G7lz585Qk8nUWVBQcFbLXIPT6eyvewYAwC273V5hs9nqvHkPn3/++YC0tLTRn3zySamrNm7w4MGdrto4EZEXX3wxorW11bh+/frL3d9vt9vDbDZbTPfX+YwVAKBLd6qNc1m4cGH9xx9/PETLXIIVAKBLnmrjTp065e/6nZ07dwbHxsbe1DKXz1gBALrlrjbuqaeeiikvLw8wGAzOqKiottzc3EotMwlWAIBuuauNO3jw4Pm+zOQoGAAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAAAUIlgBALpVV1fnk5GRMWrkyJHJo0aNSj58+PBA189WrVoVbjAY7r1y5Yqmr6byPVYAgG65auMOHDhQ3traarh+/bpRROTcuXN+n3322WCz2dymdSbBCgDwqv/zZbWlvEFxbVywf8tL90f0ujYuKyvL8vrrr1fNmTMnTuu1OQoGAOjS7bVxo0ePTpo3b150U1OTcevWrUFms7l94sSJmp4R7MLGCgDwqrttlv2lo6PDUFJSMmDDhg0XXbVxL7zwwvATJ04MOnLkyHe9ncvGCgDQJXe1cUVFRQOqqqr8U1JSkiIjI8fW1NTck5qaOvrixYs9XkQJVgCALrmrjUtJSWmpr6+3OxyOUw6H41R4eHjbt99+WzJixIiOns7lKBgAoFvuauP6OpNgBQDolrvauNs5HI5TWmdyFAwAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAADdclcbt3z58uHDhg1LsVqtSVarNWnHjh1BWmbyPVYAgG65q43bv39/UGZmZs2aNWtqejOTYAUAeNX/+Zc6S3lDm+LauHtaXvpxWK9r4/qCo2AAgC55qo0TEcnNzR2WkJCQNHfu3Jja2lofLXMNTqezf+4YAAAP7HZ7hc1mq/PmPXz++ecD0tLSRn/yySelrtq4wYMHd/7617/+3mw2dxgMBnnuueciq6ur/Xbu3FnR/f12uz3MZrPFdH+djRUAoEvuauPsdvsAi8XS4evrKz4+PpKVlVVbWFg4UMtcghUAoEvuauMSExNbKysr/Vy/8+GHHwYnJibe1DKXP14CAOiWu9q4xYsXjyguLg4UEYmKimp77733KrXMJFgBALrlrjZuz549F/oyk6NgAAAUIlgBAFCIYAUAQCGCFQAAhQhWAAAUIlgBAFCIYAUA6Ja72jgRkbVr1w6LiYkZExcXl5yZmRmlZSbfYwUA6Ja72rj8/HzTvn37gktKSs4EBgY6HQ6HpqwkWAEAXvV/TjRYLjR2KK2NGxnk2/LSxOBe1ca99dZbQ1esWHElMDDQKSISGRnZoeXaHAUDAHTJU21ceXl5QEFBgSklJcU6YcKExIKCAk2hz8YKAPCqu22W/aWjo8NQUlIyYMOGDRddtXHZ2dkRnZ2dhmvXrvkUFhaWFhQUDHjyySdjL126dMpo7NkuysYKANAlT7VxERERbXPmzGkwGo0yderUFqPR6Kyuru7xIkqwAgB0yVNt3MyZMxsOHz5sEhEpKiryb29vN0ZERPT4c1aOggEAuuWuNs5kMnXNmzcvJj4+PtnPz69r8+bNF3p6DCxCsAIAdMxdbZyIyN69e3tdHcdRMAAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoxNdtAAC6VVdX5/PUU09Fnz17NtBgMMjmzZsr1q9fH37+/PkAEZHm5mYfk8nUWVpaWtzTmQQrAEC33NXG7du3r9z188WLF0cFBQV1aplJsAIAvGrdiRZLeUOn0tq4UcE+LS9OHNCr2jjXz7u6uiQ/Pz/k0KFDZ7Vcm89YAQC65Kk2zvXzgwcPDgoLC2sfO3bsLS1z2VgBAF51t82yv3iqjduwYcNlEZEtW7aEPP744/Va57KxAgB0yVNtnIhIe3u7HDhwYMj8+fMJVgAAesJTbZyIyN69ewePGjWqNTY2tl3rXI6CAQC65a42TkRk+/btIXPnztW8rYoQrAAAHfNUG7d79+6K3s7kKBgAAIUIVgAAFCJYAQBQiGAFAEAhghUAAIUIVgAAFCJYAQC6VVdX55ORkTFq5MiRyaNGjUo+fPjwwOPHjwfabDar1WpNGjNmzOgjR45oKgjge6wAAN1yVxv32GOPjXr55Zcv//znP2/asWNH0MqVKy0nT57sccMNwQoA8Ko3jt2yVFzrUlobFzPE2PLcA/69qo0zGAzS2NjoIyLS0NDgEx4e3qbl2gQrAECXbq+NKy4uHpCSknLjnXfeufTmm29emj59enx2dralq6tLjh49WqplLsEKAPCqu22W/cVTbVxjY6PPunXrLi1YsKDh3XffHbJgwYKY48ePl/V0Ln+8BADQJU+1cbt37w6dP39+g4jIM888c62oqGiglrkEKwBAlzzVxg0dOrR9//79JhGR/Px8U3R0dKuWuRwFAwB0y11t3OzZsxuWL19uef755w3+/v5db7/9dqWWmQan09lf9wsAgFt2u73CZrPVefs++sJut4fZbLaY7q9zFAwAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAADdclcbd+LEicBx48ZZExISktLS0uLq6+s1ZSXBCgDQLVdt3IULF84UFxcXjxs3rnXx4sUxa9eurSorKyt+9NFHr61evTpCy0weEAEA+MHd/oCI3C9uWaoU18ZFDTG2LPrJ3Wvjxo4dm3zp0qVTRuN/7JmDBg0a39TU9K9Go1HOnTvnl56ennD+/Pkzbv438IAIAABcbq+NGz16dNK8efOim5qajPHx8Te3bdsWLCKyZcuWkOrq6nu0zOVZwQAAr7rbZtlfPNXG5eXlVWRlZVnWrVtnzsjIaPDz89N0tMvGCgDQJU+1cePHj289duzYd2fOnCl5+umn6y0Wyy0tcwlWAIAueaqNczgcviIinZ2dkpOTY160aNH3WuZyFAwA0C13tXFvv/12aG5u7jARkUceeeTa0qVLr2qZyV8FAwB+cNTGAQCAHiFYAQBQiGAFAEAhghUAAIUIVgAAFCJYAQBQiGAFAOiS3W73t1qtSa5/Bg0aNH7NmjXDampqfCZNmhQfHR09ZtKkSfG1tbU+WuYSrAAAXbLZbLdKS0uLS0tLi0+fPl0cEBDQ9cQTTzTk5OSYp0yZ0lxZWXl6ypQpzatWrdJUG8eTlwAAXrXt81uWK/Vqa+PMIcaWJ/9bzx/u/8///M+DR4wYcSshIaHtwIEDwQUFBWdFRJYsWXJ18uTJiSLi6OksNlYAgO5t3749ZM6cOVdFRK5eveobHR3dLiISHR3dXl9fr2kJZWMFAHiVls2yP7S2thoOHz4c9Pvf/75KxTw2VgCAru3atSsoKSmpxWKxdIiIhIaGdlRWVvqJiFRWVvqFhIR0aJlHsAIAdO3DDz8M+fnPf17v+u/09PSGTZs2hYqIbNq0KTQjI6NByzyOggEAutXc3Gw8evTo4D/96U+VrtdWr159ZdasWbHR0dFhw4cPb9uzZ895LTMJVgCAbplMpq6GhobC21+LiIjoPHHiRFlvZ3IUDACAQgQrAAAKEawAAChEsAIAoBDBCgCAQgQrAAAKEawAAF3yVBuXl5c3JC4uLtloNN77+eefay4H4HusAABdctXGiYh0dHRIRESE7Yknnmi4fv26cffu3ecWL14c05u5BCsAwKv+v/97y1KjuDYuPMTYMmtK72rj+nptjoIBALp3e21cX7GxAgC8Sstm2R+ojQMAQKHutXF9RbACAHSte21cXxGsAADdctXGPfXUUw2u1z744IPg8PDwlMLCwoGzZs2Kf/DBB+O1zDQ4nU7lNwoAwJ3Y7fYKm81W5+376Au73R5ms9liur/OxgoAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwAACvFIQwCALtntdv958+bFuv67qqrKf8WKFQ6Hw3HPJ598EuTn5+eMjo6+tX379oqwsLDOns5lYwUA6JKrNq60tLT49OnTxQEBAV1PPPFEQ3p6elNZWdmZsrKy4ri4uNbs7OwILXPZWAEAXrXvs1uWOsW1cWEhxpbpab2rjbu9Om7ixIk3du3aNUTLtdlYAQC656k27v333w/LyMho1DKLjRUA4FVaNsv+4Kk2buXKlRE+Pj7OzMxMTQ/oJ1gBALrmrjZu48aNoQcPHgz+4osvyoxGbYe7BCsAQNe618bt2rVr8BtvvBHxxRdfnDWZTF1a5/EZKwBAt9zVxi1fvnzEjRs3fNLS0hKsVmvSk08+OULLTDZWAIBumUymroaGhsLbX7t48eLpvsxkYwUAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhfi6DQBAlzzVxl29etX3z3/+c7DRaJTQ0ND2rVu3VsTExLT3dK7B6XT2zx0DAOCB3W6vsNlsdd6+D5eOjg6JiIiwHT9+vCQsLKwjJCSkS0TkN7/5zbDi4uKAbdu2Xez+HrvdHmaz2WK6v87GCgDwqsOHb1muXlVbGxcaamz57/+9d7Vxt79+48YNo8Fg0HRtghUAoHvda+OeffbZyJ07d4aaTKbOgoKCs1pmcRQMAPjB/Vc6Cm5tbTWYzeaUoqKiM7c33IiIvPjiixGtra3G9evXX+7+Pk9HwfxVMABA19zVxrksXLiw/uOPPx6iZR7BCgDQte61cadOnfJ3/fvOnTuDY2Njb2qZx2esAADdctXG/elPf6p0vfbrX/86qry8PMBgMDijoqLacnNzK+80ozuCFQCgW+5q4w4ePHi+LzM5CgYAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAIAu2e12f6vVmuT6Z9CgQePXrFkzzPXzVatWhRsMhnuvXLmi6aupfI8VAKBLNpvtVmlpabHIf9TGPfHEEw0iIufOnfP77LPPBpvN5rY7DnGDYAUAeNXnn9yy1CuujQsJNbb8t5/2vjYuKyvL8vrrr1fNmTMnTuu1OQoGAOje7bVxW7duDTKbze0TJ07U9IxgFzZWAIBXadks+0Nra6vh8OHDQb///e+rmpubja+99pr5yJEj3/V2HhsrAEDXbq+NKykp8a+qqvJPSUlJioyMHFtTU3NPamrq6IsXL/Z4EWVjBQDo2u21cT/60Y9u1tfX210/i4yMHPv111+XmM3m/9TV6gkbKwBAt1y1cU899VSDqplsrAAA3XJXG3c7h8NxSutMNlYAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAUIiv2wAAdMlut/vPmzcv1vXfVVVV/itWrHA0NDT4btmyJSwkJKRDRGT16tWOefPmNfZ0rsHpdPbH/QIA4JHdbq+w2Wx13r4PF1dt3PHjx0vefvvtsEGDBnWuWbOm5k7vsdvtYTabLab762ysAACvOnHwlqWxTm1tXFCYsWVieu9r4/qCz1gBALp3e22ciEhubu6whISEpLlz58bU1tb6aJnFUTAA4Af3X+kouLW11WA2m1OKiorOWCyWjkuXLvmazeYOg8Egzz33XGR1dbXfzp07K7q/z9NRMBsrAEDXbq+NExGxWCwdvr6+4uPjI1lZWbWFhYUDtcwjWAEAunZ7bZyISGVlpd9tPwtOTEy8qWUef7wEANAtV23cn/70p0rXa8uWLYsqLi4OFBGJiopqe++99yo9T/jPCFYAgG65q43bs2fPhb7M5CgYAACFCFYAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAumS32/2tVmuS659BgwaNX7NmzTARkbVr1w6LiYkZExcXl5yZmRmlZS7fYwUA6JLNZrtVWlpaLPIftXFPPPFEQ35+vmnfvn3BJSUlZwIDA50Oh0NTVhKsAACv+vrPtyxNtWpr4wYPNbbcN613tXHPPfdc1IoVK64EBgY6RUQiIyM7tFybo2AAgO7dXhtXXl4eUFBQYEpJSbFOmDAhsaCgQFPos7ECALxKy2bZH1pbWw2HDx8O+v3vf18lItLZ2Wm4du2aT2FhYWlBQcGAJ598MvbSpUunjMae7aJsrAAAXeteGxcREdE2Z86cBqPRKFOnTm0xGo3O6urqHi+iBCsAQNe618bNnDmz4fDhwyYRkaKiIv/29nZjREREjz9n5SgYAKBb7mrjli5dWjdv3ryY+Pj4ZD8/v67Nmzdf6OkxsAjBCgDQMXe1cQEBAc69e/f2ujqOo2AAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAUIiv2wAAdMlut/vPmzcv1vXfVVVV/itWrHB8+eWXg86fPx8gItLc3OxjMpk6XS04PUGwAgB0yVNt3KpVq753/c7ixYujgoKCOrXMJVgBAF5l33fL0qy4Ns401Nhim9672jjXa11dXZKfnx9y6NChs1quzWesAADdu702zuXgwYODwsLC2seOHXtLyyw2VgCAV2nZLPtD99o4ly1btoQ8/vjj9Z7e5wnBCgDQte61cSIi7e3tcuDAgSEnT57s8R8tuXAUDADQte61cSIie/fuHTxq1KjW2NjYdq3zCFYAgG65auOeeuqphttf3759e8jcuXM1HwOLcBQMANAxd7VxIiK7d++u6O1MNlYAABQiWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAUIhgBQDokt1u97darUmufwYNGjR+zZo1w44fPx5os9msVqs1acyYMaOPHDmiqSCA77ECAHTJU23cwoULo19++eXLP//5z5t27NgRtHLlSsvJkyd73HBDsAIAvKr4n29ZbiiujRs41NiS9GjvauMMBoM0Njb6iIg0NDT4hIeHt93t/bcjWAEAund7bdybb755afr06fHZ2dmWrq4uOXr0aKmWWQQrAMCrtGyW/aF7bdybb745dN26dZcWLFjQ8O677w5ZsGBBzPHjx8t6Oo8/XgIA6Fr32rjdu3eHzp8/v0FE5JlnnrlWVFQ0UMs8ghUAoGvda+OGDh3avn//fpOISH5+vik6OrpVyzyOggEAuuWqjfvTn/5U6Xrtrbfeqly+fLnl+eefN/j7+3e9/fbblXea0R3BCgDQLXe1cenp6dfPnDlT0tuZHAUDAKAQwQoAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwBAlzzVxp04cSJw3Lhx1oSEhKS0tLS4+vp6TVlJsAIAdMlVG1daWlp8+vTp4oCAgK4nnniiYfHixTFr166tKisrK3700UevrV69OkLLXB4QAQDwqu/23LK0fK+2Nm7AMGNL/M96VxtXUVERMG3atOsiIjNmzGhKT09P2LBhw+WezmJjBQDo3u21cfHx8Te3bdsWLCKyZcuWkOrq6nu0zGJjBQB4lZbNsj90r43Ly8uryMrKsqxbt86ckZHR4Ofn59Qyj2AFAOha99q48ePHtx47duw7EZGioiL/Tz75JFjLPI6CAQC61r02zuFw+IqIdHZ2Sk5OjnnRokXfa5lHsAIAdMtVG/fUU081uF7Ly8sLiYmJGRMbGzvGbDa3L1269KqWmQanU9PRMQAAfWa32ytsNludt++jL+x2e5jNZovp/jobKwAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoRLACAHRp9erVw+Li4pLj4+OTZ86cObKlpcVQU1PjM2nSpPjo6OgxkyZNiq+trfXROpdgBQDozoULF/w2b94cXlhYWPzdd9+d6ezsNLz77rshOTk55ilTpjRXVlaenjJlSvOqVas0VcaJ8KxgAICXVey+ZblZo7Y2LjDc2BLz+J0f7t/Z2Wm4ceOG0d/fv/PmzZvGqKio9t///vfmgoKCsyIiS5YsuTp58uREEXFouTYbKwBAd0aOHNn+d3/3d9UjR45MGTZsmM1kMnXOnj276erVq77R0dHtIiLR0dHt9fX1mhdQNlYAgFfdbbPsD7W1tT779u0LPnfu3KnQ0NDO6dOnj/rHf/zHEBWz2VgBALqTn58/eMSIEbeGDx/e4e/v7/zZz37WcPz48UGhoaEdlZWVfiIilZWVfiEhIR1aZxOsAADdiYmJafv2228HNTc3G7u6uuSzzz4zjR49ujU9Pb1h06ZNoSIimzZtCs3IyGjQOpujYACA7qSlpd2YOXPmtZSUlNG+vr6SnJzcsnz58trGxkbjrFmzYqOjo8OGDx/etmfPnvNaZ1MbBwD4wVEbBwAAeoRgBQBAIYIVAACFCFYAABQiWAEAUIhgBQBAIYIVAKBL7mrj8vLyhsTFxSUbjcZ7P//8814VAxCsAADd8VQbN27cuJu7d+8+d999913v7WyevAQA8CrH/3vLcqtabW2cf4SxJfLn2mvjUlNTW/t6bTZWAIDueKqNUzGbjRUA4FV32yz7g6fauF/+8pf1fZ3NxgoA0B1PtXEqZhOsAADd8VQbp2I2wQoA0J3ba+MSExOTu7q6DMuXL6/94IMPgsPDw1MKCwsHzpo1K/7BBx+M1zqb2jgAwA+O2jgAANAjBCsAAAoRrAAAKESwAgCgEMEKAIBCBCsAAAoRrAAAXXJXG7dkyZKokSNHJickJCQ9/PDDsXV1dT5a5xKsAADd8VQbl56e3lRWVnamrKysOC4urjU7OztC62wewg8A8Krvt9+ytF1RWxt3j9nYMuwX2mvjbm+4mThx4o1du3YN0XptNlYAgO70pDbu/fffD8vIyGjUOpuNFQDgVXfbLPvD3WrjVq5cGeHj4+PMzMzUXCPHxgoA0J071cZt3Lgx9ODBg8EfffTRBaNRe0wSrAAA3fFUG7dr167Bb7zxRsT+/fvPmUymrt7M5igYAKA7t9fG+fr6SnJycsvy5ctrExMTk9va2oxpaWkJIiKpqanXt23bdlHLbGrjAAA/OGrjAABAjxCsAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoRLACAHTJXW3csmXLhickJCRZrdakBx54IL6iosJP61yCFQCgO55q43JycqrLysqKS0tLi6dNm9b40ksvmbXO5slLAACvuvZPtywdl9XWxvkON7YM+R/aa+NCQkL+/TGGN27cMBoMBu3X7sX9AgDwV+322jh/f/+un/zkJ02u2rhnn302cufOnaEmk6mzoKDgrNbZPNIQAPCD8/YjDWtra31mzpwZ+9FHH5W7auNmz559zVUbJyLy4osvRrS2thrXr19/2d0MHmkIAMBf3Kk2zmXhwoX1H3/88RCtswlWAIDueKqNO3XqlL/rd3bu3BkcGxt7U+tsPmMFAOiOp9q4n/3sZ6PKy8sDDAaDMyoqqi03N7dS62w+YwUA/OC8/RmrCnzGCgDAD4BgBQBAIYIVAACFCFYAABQiWAEAUIhgBQBAIYIVAKBL7mrjXD9btWpVuMFguPfKlSuan/dAsAIAdMdTbZyIyLlz5/w+++yzwWazua03s3nyEgDAq27k3bJ0OtTWxvlEGlsGPqO9Nk5EJCsry/L6669XzZkzJ64312ZjBQDozu21ccOGDbOZTKbO2bNnN23dujXIbDa3T5w4UfMzgl3YWAEAXnW3zbI/1NbW+uzbty/43Llzp1y1cX/4wx9CN2/ePPTIkSPf9WU2GysAQHfc1cb90z/9U2hVVZV/SkpKUmRk5Niampp7UlNTR1+8eFHTEkqwAgB0x11t3KOPPtpQX19vdzgcpxwOx6nw8PC2b7/9tmTEiBEdWmZzFAwA0B1PtXEqZlMbBwD4wVEbBwAAeoRgBQBAIYIVAACFCFYAABQiWAEAUIhgBQBAIYIVAKBL7mrjli9fPnzYsGEpVqs1yWq1Ju3YsSNI61weEAEA0B1XbdzZs2dPDxo0yPnII4+MctXGZWZm1qxZs6amt7MJVgCAV91656alq0ptbZwxytjivzhQc21cRUWFf5+v3dcBAAD8tfFUGycikpubOywhISFp7ty5MbW1tT5aZ/NIQwDAD87bjzSsra31mTlzZuxHH31U7qqNmz179rWZM2c2mc3mDoPBIM8991xkdXW1386dOyvczeCRhgAA/IW72rjjx48PslgsHb6+vuLj4yNZWVm1hYWFA7XOJlgBALrjrjZu9OjRrZWVlX6u3/nwww+DExMTb2qdzR8vAQB0x1Nt3C9+8YuY4uLiQBGRqKiotvfee69S62w+YwUA/OC8/RmrCnzGCgDAD4BgBQBAIYIVAACFCFYAABQiWAEAUIhgBQBAIYIVAKBL7mrjRETWrl07LCYmZkxcXFxyZmZmlNa5PCACAKA7nmrjRo4c2bZv377gkpKSM4GBgU6Hw6E5JwlWAIBX3Xq3yeKs6lBaG2eI8m3x/5+DNdfGvfXWW0NXrFhxJTAw0CkiEhkZ2aH12hwFAwB0x1NtXHl5eUBBQYEpJSXFOmHChMSCggLNgc/GCgDwqrttlv2htrbWZ9++fcHnzp075aqN+8d//MeQzs5Ow7Vr13wKCwtLCwoKBjz55JOxly5dOmU09nwPZWMFAOiOp9q4iIiItjlz5jQYjUaZOnVqi9FodFZXV2taQglWAIDueKqNmzlzZsPhw4dNIiJFRUX+7e3txoiICE2fs3IUDADQHU+1cQaDQebNmxcTHx+f7Ofn17V58+YLWo6BRaiNAwB4AbVxAACgRwhWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAAAU4nusAABdWr169bB/+qd/GmowGMRqtbbs2LGjYu7cuSPPnz8fICLS3NzsYzKZOktLS4u1zCVYAQC646k2bt++feWu31m8eHFUUFBQp9bZBCsAwKtu5V61OB3tamvjIv1a/BeFaq6Nc/2sq6tL8vPzQw4dOnRW67X5jBUAoDueauNcPz948OCgsLCw9rFjx97SOpuNFQDgVXfbLPuDp9q4X/7yl/UiIlu2bAl5/PHH63szm40VAKA7nmrjRETa29vlwIEDQ+bPn0+wAgDQE55q40RE9u7dO3jUqFGtsbGx7Xeb4w5HwQAA3fFUGycisn379pC5c+f2alsVoTYOAOAF1MYBAIAeIVgBAFCIYAUAQCGCFQAAhQhWAAAUIlgBAFCIYAUA6NLq1auHxcXFJcfHxyfPnDlzZEtLi+H48eOBNpvNarVak8aMGTP6yJEjmssBCFYAgO64auMKCwuLv/vuuzOdnZ2Gd999N+SFF16Ievnlly+XlpYWZ2dnX165cqVF62yevAQA8Kpb79VYnFW31NbGRfm3+C8M11wbZzAYpLGx0UdEpKGhwSc8PLxN67UJVgCA7txeG+fv79/1k5/8pGn27NlNMTExbdOnT4/Pzs62dHV1ydGjR0u1ziZYAQBedbfNsj94qo07efLkwHXr1l1asGBBw7vvvjtkwYIFMcePHy/TMpvPWAEAuuOpNm737t2h8+fPbxAReeaZZ64VFRUN1DqbYAUA6I6n2rihQ4e279+/3yQikp+fb4qOjm7VOpujYACA7niqjbvvvvtali9fbnn++ecN/v7+XW+//Xal1tnUxgEAfnDUxgEAgB4hWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAUIhgBQDokrvauBMnTgSOGzfOmpCQkJSWlhZXX1+vOScJVgCA7niqjVu8eHHM2rVrq8rKyoofffTRa6tXr47QOpsnLwEAvOrW+1UWp0NxbVykf4v/gijNtXEVFRUB06ZNuy4iMmPGjKb09PSEDRs2XNZybTZWAIDu3F4bN2zYMJvJZOqcPXt2U3x8/M1t27YFi4hs2bIlpLq6+h6ts9lYAQBedbfNsj94qo3Ly8uryMrKsqxbt86ckZHR4Ofnp/m5vwQrAEB3bq+NExFx1cb98pe/rD927Nh3IiJFRUX+n3zySbDW2RwFAwB0x1NtnMPh8BUR6ezslJycHPOiRYu+1zqbYAUA6M7ttXGJiYnJXV1dhuXLl9fm5eWFxMTEjImNjR1jNpvbly5delXrbGrjAAA/OGrjAABAjxCsAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoRLACAHTp1VdfHRYfH58cFxeXvGbNmmEiIjU1NT6TJk2Kj46OHjNp0qT42tpaH61zCVYAgO589dVXAR988MHQb7/9tqSkpOTMgQMHgk+dOuWfk5NjnjJlSnNlZeXpKVOmNK9atYraOADAX5db71dYnJdvqq2NGx7Y4r8gxuPD/U+dOhWYmpp63WQydYmIPPDAA807duwIPnDgQHBBQcFZEZElS5ZcnTx5cqKIOLRcm40VAKA748aNu/nll1+aqqurfZqbm42HDh0KunTp0j1Xr171jY6ObhcRiY6Obq+vr9e8gLKxAgC86k6bZX9JTU1tXbZsWXVaWlrCgAEDupKSklp8fdVEIhsrAECXfvWrX9UVFxeXfP3112dDQkI64+PjW0NDQzsqKyv9REQqKyv9QkJCOrTOJVgBALrkqoj77rvv7tm3b1/wokWL6tPT0xs2bdoUKiKyadOm0IyMjAatczkKBgDo0qOPPhrb0NDg6+vr63zjjTcuDh06tHP16tVXZs2aFRsdHR02fPjwtj179pzXOpdgBQDo0jfffHO2+2sRERGdJ06cKOvLXI6CAQBQiGAFAEAhghUAAIUIVgAAFCJYAQBQiGAFAEAhghUAoEvuauPy8vKGxMXFJRuNxns///zzXhUDEKwAAN3xVBs3bty4m7t37z533333Xe/tbB4QAQDwqrYPzlm6HC1Ka+OMkQNa7pkfp7k27je/+U1Nn6/d1wEAAPy18VQbbgrnVAAAC7JJREFUp2I2GysAwKvutFn2F2rjAABQzF1tnIq5bKwAAF1yOBy+kZGRHa7auJMnT5aqmEuwAgB0yV1t3AcffBD8wgsvjLh27ZrvrFmz4kePHt1y9OjR77TMNTidzv66ZwAA3LLb7RU2m63O2/fRF3a7Pcxms8V0f53PWAEAUIhgBQBAIYIVAACFCFYAABQiWAEAUIhgBQBAIYIVAKBL7mrjlixZEjVy5MjkhISEpIcffji2rq7OR+tcghUAoDueauPS09ObysrKzpSVlRXHxcW1ZmdnR2idzZOXAABe1fbBWUvX5Rtqa+OGD2y5Z35in2rjJk6ceGPXrl1DNF+7d7cMAMBfr57Uxr3//vthGRkZjVpns7ECALzqTptlf7lbbdzKlSsjfHx8nJmZmfVaZ7OxAgB0yVNt3MaNG0MPHjwY/NFHH10wGrXHJBsrAECX3NXG7dq1a/Abb7wR8cUXX5x1ff6qFcEKANAld7Vxy5cvH9HW1mZMS0tLEBFJTU29vm3btota5hKsAABd+uabb852f+3ixYun+zqXz1gBAFCIYAUAQCGCFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQCgS+5q45YtWzY8ISEhyWq1Jj3wwAPxFRUVflrnEqwAAN3xVBuXk5NTXVZWVlxaWlo8bdq0xpdeesmsdTYPiAAAeFXbP522dF2+rrg2blDLPf9jTJ9q427cuGE0GAzar92rOwYA4K/YnWrjnn322ciIiIiUXbt2hb7++uuXtc42OJ1O9XcMAMAd2O32CpvNVufNe1i/fn3YO++8M3TAgAFdCQkJNwMDA525ubn/vuW++OKLEa2trcb169e7DVe73R5ms9liur/OxgoA0CVPtXEuCxcurP/444+HaJ1LsAIAdMnhcPiKiLhq4xYtWlR/6tQpf9fPd+7cGRwbG3tT61z+eAkAoEvuauOeeuqpmPLy8gCDweCMiopqy83NrdQ6l2AFAOiSu9q4gwcPnu/rXI6CAQBQiGAFAEAhghUAAIUIVgAAFCJYAQBQiGAFAEAhghUAoEvuauNcVq1aFW4wGO69cuWK5q+lEqwAAN3xVBsnInLu3Dm/zz77bLDZbG7rzWweEAEA8Kq2LXZL1+UmxbVxg1vuecqmuTZu7NixNVlZWZbXX3+9as6cOXG9unZvbxoAgL9Wnmrjtm7dGmQ2m9snTpyo+RnBLmysAACvutNm2V9SU1Nbly1bVp2WlpYwYMCArqSkpBZfX1957bXXzEeOHPmuL7PZWAEAutS9Ni4mJuZWVVWVf0pKSlJkZOTYmpqae1JTU0dfvHhR0xJKsAIAdKl7bVxmZubV+vp6u8PhOOVwOE6Fh4e3ffvttyUjRozo0DKXo2AAgC65q41TMZdgBQDokrvauNs5HI5TvZnLUTAAAAoRrAAAKESwAgCgEMEKAIBCBCsAAAoRrAAAKESwAgB0yV1t3PLly4cPGzYsxWq1Jlmt1qQdO3YEaZ3L91gBALpze21cQEBA1+TJkxNmzZrVKCKSmZlZs2bNmpreziZYAQBe1bblG0vXFcW1cebBLfc8da/m2jgl11YxBACAvyaeauNERHJzc4clJCQkzZ07N6a2ttZH62yD0+lUf8cAANyB3W6vsNlsdd68h/Xr14e98847QwcMGNCVkJBwMzAw0PnKK69cMZvNHQaDQZ577rnI6upqv507d1a4e7/dbg+z2Wwx3V9nYwUA6FL32rj4+PhWi8XS4evrKz4+PpKVlVVbWFg4UOtcghUAoEvda+MWLVpUX1lZ6ef6+YcffhicmJh4U+tc/ngJAKBL7mrjfvazn40oLi4OFBGJiopqe++99yq1ziVYAQC65K42bs+ePRf6OpejYAAAFCJYAQBQiGAFAEAhghUAAIUIVgAAFCJYAQBQiGAFAOiSu9o4EZG1a9cOi4mJGRMXF5ecmZkZpXUu32MFAOiOp9q4ioqKe/bt2xdcUlJyJjAw0Ol6OpMWBCsAwKvatn5p6brcqLY2bnhQyz1/c7/m2rhvv/124IoVK64EBgY6RUQiIyM7NF+797cNAMBfJ0+1ceXl5QEFBQWmlJQU64QJExILCgo0Bz4bKwDAq+60WfaX1NTU1mXLllWnpaUlDBgwoCspKanF19dXOjs7DdeuXfMpLCwsLSgoGPDkk0/GXrp06ZTR2PM9lI0VAKBL7mrjIiIi2ubMmdNgNBpl6tSpLUaj0VldXa1pCWVjBQDoksPh8I2MjOxw1cadPHmy1Gg0yuHDh00zZsxoLioq8m9vbzdGRERo+pyVYAUA6JK72rilS5fWzZs3LyY+Pj7Zz8+va/PmzRe0HAOLEKwAAJ1yVxsXEBDg3Lt3b5+q4/iMFQAAhQhWAAAUIlgBAFCIYAUAQCGCFQAAhQhWAAAUIlgBALrkrjZu+vTpo6xWa5LVak2KjIwca7Vak7TO5XusAADd8VQbt2/fvnLX7yxevDgqKCioU+tsghUA4FVtW49Zuq5cU1sbZx7Scs/fPKC5Nm7s2LE1IiJdXV2Sn58fcujQof/0EIm7Xrv3tw0AwF8nT7Vxrp8fPHhwUFhYWPvYsWNvaZ3NxgoA8Ko7bZb9xVNtnMuWLVtCHn/88frezGZjBQDokrvaOBGR9vZ2OXDgwJD58+f3KljZWAEAuuSuNk5EZO/evYNHjRrVGhsb296buQQrAECX3NXGiYhs3749ZO7cub3aVkUIVgCATrmrjRMR2b17d0Vf5vIZKwAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAAAoRLACAHTJXW3c8ePHA202m9VqtSaNGTNm9JEjRzSXAxCsAADdub02rqSk5MyBAweCT5065f/CCy9Evfzyy5dLS0uLs7OzL69cudKidTYPiAAAeFX7toJ+qY3ze3Ky5to4g8EgjY2NPiIiDQ0NPuHh4W1ar02wAgB0Z9y4cTfXrFkTWV1d7TNw4EDnoUOHgmw2240333zz0vTp0+Ozs7MtXV1dcvTo0VKtsw1Op7M/7hkAAI/sdnuFzWar8+Y9rF+/Puydd94ZOmDAgK6EhISbgYGBzs7OTpkyZUrzggULGt59990heXl5Q48fP17m7v12uz3MZrPFdH+dYAUA/OD+KwTr7bKysiKjoqLa1q5dG9nY2FhoNBqlq6tLBg8ePP769ev/6u49noKVP14CAOiSw+HwFRFx1cYtWrSofujQoe379+83iYjk5+eboqOjW7XO5TNWAIAuuauNe+uttyqXL19uef755w3+/v5db7/9dqXWuQQrAECX3NXGpaenXz9z5kxJX+ZyFAwAgEIEKwAAChGsAAAoRLACAKAQwQoAgEIEKwAAChGsAABdclcbd+LEicBx48ZZExISktLS0uLq6+s15yTBCgDQHU+1cYsXL45Zu3ZtVVlZWfGjjz56bfXq1RFaZ/OACACAV7VvP2Tpqr6qtjYuIrTF7xcPa66Nq6ioCJg2bdp1EZEZM2Y0paenJ2zYsOGypmv37dYBAPjrM27cuJtffvmlqbq62qe5udl46NChoEuXLt0THx9/c9u2bcEiIlu2bAmprq6+R+tsNlYAgFfdabPsL6mpqa3Lli2rTktLSxgwYEBXUlJSi6+vr+Tl5VVkZWVZ1q1bZ87IyGjw8/PTXAHHxgoA0KVf/epXdcXFxSVff/312ZCQkM74+PjW8ePHtx47duy7M2fOlDz99NP1Fovllta5BCsAQJfc1ca5Xuvs7JScnBzzokWLvtc6l6NgAIAuuauNe/XVV4fl5uYOExF55JFHri1duvSq1rkGp1Pz8TEAAH1it9srbDZbnbfvoy/sdnuYzWaL6f46R8EAAChEsAIAoBDBCgDwhq6uri6Dt2+it/5y713ufkawAgC84XRtbW3QX2O4dnV1GWpra4NE5LS7n/NXwQCAH1xHR8f/rK6ufre6unqM/PUteV0icrqjo+N/uvshfxUMAIBCf23/LwEAgP/SCFYAABQiWAEAUIhgBQBAIYIVAACF/n9UySHOqn68lAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "