diff --git a/.gitignore b/.gitignore index 4448eb70c2c65357f336e880ce19cad46b022f58..e7ee3e2063b9719bac5707f3d8e9b3fc4e2f9bc2 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,3 @@ **/.ipynb_checkpoints/ .DS_Store +.venv diff --git a/.python-version b/.python-version new file mode 100644 index 0000000000000000000000000000000000000000..e4fba2183587225f216eeada4c78dfab6b2e65f5 --- /dev/null +++ b/.python-version @@ -0,0 +1 @@ +3.12 diff --git a/README.md b/README.md index 8c8f44e1bb96a160c3e8697c69f5b70b38d592fc..51f9f6bc0663f847f3ef91d33787dff6d1e2bb9c 100644 --- a/README.md +++ b/README.md @@ -1,58 +1,30 @@ -# Journal of Digital History Author's Repository +# Using fuzzy string matching on a historic book collection -[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/C2DH/template_repo_JDH/main?filepath=article.ipynb) +## Abstract -This repository serves as a resource for authors submitting articles to the [Journal of Digital History](https://journalofdigitalhistory.org). -It contains a Jupyter notebook that provides an example and a simple structure that can be used to write articles for the journal. -The repository also includes a `preflight`github action that can be automatically triggered on commit, but by default, it is set to `workflow_dispatch`and actionable from the `actions` page on GitHub. -The preflight action generates a report within the repository that contains information about the adherence of the article to the submission guidelines. +[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/git/https://labs.onb.ac.at/gitlab/bed/JDH_submission/main?filepath=article.ipynb) -## Contents +... -`article.ipynb` - This Jupyter notebook provides an example and a simple structure that authors can use to write articles for the Journal of Digital History. You can rename it according to your article name. +## Keywords -`.github/workflows/github-actions-preflight.yml` - This workflow file contains the preflight action that can be triggered automatically on commit or manually using the workflow_dispatch event to check that the article respects the Journal guidelines. +... -The preflight action generates or updates a report markdown file in the repository that provides information about the adherence of the article to the submission guidelines, usually named `report.md` +## Installation instructions -`requirements.txt` - stores information about all the libraries, modules, and packages in itself that are used while developing a particular project. +This repo is derived from the [Journal of Digital History Author's Repository](https://github.com/C2DH/template_repo_JDH/tree/main), and serves to submit an article to the same journal, including references and code examples. To run the Jupyter notebook containing the article, either open the mybinder URL given at the top of this README, or install the project's requirements into your own Python environment and start a Jupyter server. We use the package manager `uv` (see [here](https://docs.astral.sh/uv/) for more information about `uv`), so after cloning the repo run the following commands in your terminal: -`runtime.txt` - specify the version of the runtime (e.g. the version of Python ). Have python-x.y in runtime.txt to run the repository with Python version x.y +```bash +uv init +uv add -r requirements.txt +uv run jupyter lab +``` - -## Getting Started - -This repository it's a _template_, that is, it can be used as a starting point for new repositories. -On GitHub.com: - -1. navigate to the main page of the repository. -2. Above the file list, click Use this template. -3. Select Create a new repository. -4. Type a name for your new repository, and an optional description. -5. Click Create repository from template. - -Please follow the rest of the documentation on [GitHub](https://docs.github.com/en/repositories/creating-and-managing-repositories/creating-a-repository-from-a-template) to understand how to create a new repository from this template. - -Use the example notebook as a template to write your article. You can modify the notebook to suit your needs and add your content. - -## Preflight Action - -To check if the article respects the Guidelines, we decided to create a `preflight` GitHub action that can be triggered automatically on commit - or manually using the `workflow_dispatch` event. The action is triggered by the `github-actions-preflight.yml` file in the `.github/workflows` folder. -By default, the preflight action is set to `workflow_dispatch`, which means you can manually trigger it by going to the "Actions" tab in the repository, selecting the "Preflight" workflow, and clicking the "Run workflow" button. -The preflight action will generate a report in the repository that provides information about the adherence of your article to the submission guidelines. - -## MyBinder - -The repository also contains a `requirements.txt` and a `runtime.txt` file that can be used to create a MyBinder environment. Check: https://mybinder.readthedocs.io/en/latest/using/config_files.html#preparing-a-repository-for-binder -The MyBinder environment can be used to run the example notebook to test that the code runs smoothly. - -## Contribution Guidelines - -We welcome contributions to this repository that aim to improve the example notebook, the preflight action, or the overall workflow for authors submitting articles to the Journal of Digital History. Just contact us or open an issue. +This will initialize the project, install its requirements and then start a Jupyter server. ## License -Copyright (C) 2023 university of Luxembourg. +Copyright © 2023 University of Luxembourg. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see . diff --git a/Using-fuzzy-string-matching-on-a-historic-book-collection.ipynb b/Using-fuzzy-string-matching-on-a-historic-book-collection.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..6bcad7f1270f4aa375d37518ca94bf1ae471b6aa --- /dev/null +++ b/Using-fuzzy-string-matching-on-a-historic-book-collection.ipynb @@ -0,0 +1,809 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "title" + ] + }, + "source": [ + "# Using fuzzy string matching on a historic book collection" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "contributor" + ] + }, + "source": [ + "### Simon Mayer [![orcid](https://orcid.org/sites/default/files/images/orcid_16x16.png)](https://orcid.org/0009-0008-3322-5130)\n", + "\n", + "Austrian National Library" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "contributor" + ] + }, + "source": [ + "### Eva Mayr [![orcid](https://orcid.org/sites/default/files/images/orcid_16x16.png)](https://orcid.org/0000-0001-8402-5990)\n", + "\n", + "University for Continuing Education Krems" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "contributor" + ] + }, + "source": [ + "### Florian Windhager [![orcid](https://orcid.org/sites/default/files/images/orcid_16x16.png)](https://orcid.org/0000-0002-5170-2243)\n", + "\n", + "University for Continuing Education Krems" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "copyright" + ] + }, + "source": [ + "[![cc-by](https://licensebuttons.net/l/by/4.0/88x31.png)](https://creativecommons.org/licenses/by/4.0/) \n", + "© Simon Mayer, Eva Mayr and Florian Windhager. Published by De Gruyter in cooperation with the University of Luxembourg Centre for Contemporary and Digital History. This is an Open Access article distributed under the terms of the [Creative Commons Attribution License CC-BY](https://creativecommons.org/licenses/by/4.0/)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "cover" + ] + }, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQIAOwA7AAD/4SeGRXhpZgAASUkqAAgAAAAHABIBAwABAAAAAQAAABoBBQABAAAAYgAAABsBBQABAAAAagAAACgBAwABAAAAAwAAADEBAgANAAAAcgAAADIBAgAUAAAAgAAAAGmHBAABAAAAlAAAAKYAAACdBAAAFAAAAJ0EAAAUAAAAR0lNUCAyLjEwLjIyAAAyMDIzOjAxOjMxIDEwOjMzOjQwAAEAAaADAAEAAAABAAAAAAAAAAgAAAEEAAEAAAAAAQAAAQEEAAEAAAB4AAAAAgEDAAMAAAAMAQAAAwEDAAEAAAAGAAAABgEDAAEAAAAGAAAAFQEDAAEAAAADAAAAAQIEAAEAAAASAQAAAgIEAAEAAABsJgAAAAAAAAgACAAIAP/Y/+AAEEpGSUYAAQEAAAEAAQAA/9sAQwAIBgYHBgUIBwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04MjwuMzQy/9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy/8AAEQgAeAEAAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A5XxrZGz+zB2JbMROHJ4J9WH8q7rQn1a50C2ggNuyAE7fMHDDk5JXg4rhvF5urqW186KMOXiXcJM9COpOMCu68Nahp2neHQqTxM7/ADsC65B7jr3rhW256nc5XXxPbR3UMsUCNGpEnlyBj656DP51q+GYbq98IeVbTgiKNd6LH90EZGS0gBPHYVk+IDFcyXEokRppIyFRCpHA+vWtzwveW1h4Qk3XEQleOM7GdVKkADHXJ4J6c0lsM8+lLnx7p25knJbI5IDZB45zW144WZfElgbhI1drkZZW3D0zzjp+XFYs7Rp4/wBNYMCituz0Hc+tb3j6aC58QWTpICn2hDjj7oJ/xqnuiej9f8jrJ7PzfCSXJvL5lD7Thk2/UDHI659MVyvhZkTxJdgmZyqw7fLYoWJ3ckjBwMV1E+sWy+EjZH7bIkk24yCEke43Y5HNcj4daBvE15I5JUrEyAEliQW7YJP5Gk9ioK09fM7PxhafZmRvNeVG+RYyz5XA65LHJ4rhPCFyTc35eWYOblgojcpn3Yjk/nXY+Jr22ncM3mqBn5fJcc45JJHua47wnHAuoagkjN/x9Fl8rLcYHOADQrFrRq56lq2nKvh1btZrjzFwcebIwb/x6vN/E0u/T7p3abzFTIy5YH1BBzXouq6rJJoxga3mSNiAG2OMD2yg/wAmvN/FDQppVyu1y7JjcysFHXvim7XIXwu5t/DWGO40K1im893eKTAWVkQKM44BGTVjXrWG0SCRHmbzDtdS7DHHrnr9RVT4ezrb+HbaZLV5ZFiYeYgwOc8Ekgd/ek1d2kMfnPM4XgISP0xnPWk0r/NlJ6L0Rxlu6f8ACeQsXmMQi3ZAAfAGeox6da9Z8S6XDDoEF6rXALRbhEZXYcnnnPp3ryWw8qTx/EPK3x7CPLwSenTBr1XxLPO+n2trJbTx28ajEWAoPp/ESacraGcf1PL2MTeOLEfvvLMTEruyw68A9e1esa5ptvHoNvdBplDICY3lkbd04yTx1rykGB/HVuXBgUQMCAhBUnI7/XrXpWt6jDLpVnaqwEcSKGYKSWwPYY9PyolsXT2+ZxOjuv8Awn0gdpo4ktxkoAXA3HOCQa9B1jT1TSpL6K9l2L5e1Dt3HI5529ef0NefaTHb/wDCcyl980JtVG2MFmPzHsvPau71zUW+wpZi3uYkwAzCFyzDGCMlR70tLfcOOyt3Z5VrsgPirSikruvmZDMAG6j0r11bO3urKFFWaL5N7SPJI/8A7Px6145rzIfE2mtEGChwArg7hg9x1r10zXD6ZDJHBNaRiPacFcNnv8x9zTl8KS7ChvL1POvGIjGj3YVZFdH2klyQ3zY7k4rt/BVjDfeFgzTTLJHAj7MqsfPbp6A1w3jciPR5EELqzuC0rtuMhznr0rvPBxmg8LqbezZt1uqPNlgBjGMcdsfrQrWXzH9qXyM/VrNLS5SF7udt6Eho1HynJ7Ec9Kz/AIeN5kepr/EHm6DAOAKv6tcPJJ588bybUOzap2jj0C/jWb8Np1EepZGV3XDEj/d4qErxfyKk7SRraBbodfaORJWMpLLtcqo+ZhyVwe1Q+KLNbWWPdPM+9SQm5gQPY7ual0uaJdXWR2kJjUlFjyxJEj5G0fWqniG4iurob2mKIhVU8hwQM55JFUrWF0Qvw/R721u7Y+cC8roJN7YHzYGQCATWPrsaWurW8SMZdk4G5skN3wRk+1afg+a2tdNuWUSvJ5km0xKz7QWJ5wDj+dZGoMX1S0aMsZzcht0iMinJ+lPS4nsvken6Tfm50SCKYxs287NilAwI4A6dOf51xWpXZ+3TFAhiLHYMFgRn1/Su0g0++1HSAE1KGRQ7ZhSINkgc4JK1x91bTW85t47mJZFzlNm3Bzg9Cf8AIpytoKNrszviDKt0baZp0dyYV2g5wN3X9a7jwh9rGktPdwEwxphCVG1Rjj26muW8RaHfa80fkPEGVkP7yXghcZ4C+xrq9CjutO0l7OWHDEEkxzblY+4IHFZpxSsw5JO9kcR4kmuJv7SkeIGAo21iv3Tg9DXReF/Ij8HXcc0MRWJEKgDaeR19+fWs3WfD2pX32l4441aVCgUzjjj0xj9av2MGrW+hNaPH+9VVUAOMHjtz70rxZfIzza6Ozxtp8gUIxXcQq45we1dL8Rmjk1q3eAsyC4jJJ45JI/DtVaTwzr0niu01IWeYoereameAe26tXxTpGs65qELx2MnlpPG3MifKARk9frVuUbrUzcJWenX/ACOgjeSTwhPdvcohSUBEVsqM9sEc5xXE6JM0Hi+7ZZgm6OM7gOvJ47Y9K9FFjNFoclmyWz+ZIsmcnggEf3cd65LS9OurHxtcXtxb5tJIVXcNpBOckYzU8yexVmp3aOh8bR20Athb+UkmCWkXJLDb369/pXC+EluHl1IQh8fbSZNncYHX2ru9bW0u5C9raEMRwAQcfga43w3pl/pepXdxeWMjI9wXC5HzD1xmnF7jtZo9T1uQr4LjjjhKswAbC9c968m8Qx3C6Hd5DCHYSc+oFd7qV7Jc2ESRgtghvK8puOc4Ncf4isr/AFOxuRDZNvkQgIg2jP51UrX0J5bRZc+HizHSNPlGTCkMmRnIzg9qs+KZ2vXhSON8hQeh64HH6Gqng2G40fTYI722ZJFiZcFSSDgjtmm3fnO0yJaEq/OTGQQf6UNdew1olfscjpEd1N4/ZYtxuRCdpBGc4Ar13xJczJ4Yhs/JkFywVCoUk9ckk/5615fp+jX1t4v+2NaSG38vG7PU8cdQa77XLpLxLZ4rOTKRBWj3ZGfru+lKXT5CgtPmzz23MkXxAjkc4eO1yS/zY7Z4+tes+JGVvC9jM53uUUJIznPJ6Dt0B7V5lpulajH43+3PayRWvlbPM6+nqc16Fr8yXlpaRwnzGhGPuZH1xmlJoIJ/ief6TLKPGt3NG8hb7MoDImT949vwNekeJbyGXQDiFEuMhS23DKwI/Hu1cLpdjqtp4ykvUikWEwqokCgZIJOMHvzXWa7dtcqPs0MpbjLFQecc96pNW+4cY7erPJtdeRvFulmVi7b0yWGCfmr2Gxka10yQ3G4rt3L5oGR6DBHoRXlut6DrF14gtLuKykkjjZSz5HY/nXqdzczT6HFCWaSSNQu0oCT+tDcWkvIKcXeS8zyvxi7Nokh+ba0wxx8o57V6d4Naa38MTu4LRtbIFDrkHAJOP0rg/Fmj61qumxwQWU0h3g7SVGP1rt/DzzWfhx7K4W5WYxBUGRgHH+9057Cmpx017lcrcpadjJ1+687Uh9l2oiIR+6Uc9T261k/DdS1vqRycb7n/ANBFad3a3oikHlvznGMd/wDgVZ/g3Tr6wivUngaHzTcFAcc7lAXvUxty2T7Cqq0loamiTtDrcSCXy1kHzKASW/evx7cVb8aQQ2l0ogMYYbjuX73GcmqegxXdhq0k9zDtTBxvG7ncSBgexqfVxc6hfNPHZlsg4bAHX2LUuaK0uNJ2RT8Asxiu4fMVlaSRzHtIyORn88Vma5BE3iCKGJo1TzwuOoHr+tdN4dSew027glt9kspfDMVPB6dO9Yl3pGou8AhtRtjlByXXkZ5J5zS9pHuHJKy0PQ9LszZaDEwFuZBIyllAA2lSDj36GuFurWY3bO0kYlfl89QfYjtXSC/uoNFjtYrNHkjbOQUGffH+TXOHTb65neY2gjLH/nomPwxVyqR095BGErvQy7fx/pqsCYboAdQFH+NX/wDhYukBf9Xdn22Af1rxgXEn9404Xcw4D4qnh0znjiWj2cfELRm6i4/74H+NSHx/ohQDM4Oc48sf414v9rmI5enrNMyMw24UZP54qfq6L+ss9mh8c6GB801x/wB8f/XqWLxvoi8CeTH/AFzrxH7S+c8CnC7f1pfVg+tM9y/4TfSDj/SJCPZDTD4q0Jjn7Swz1HlN/hXiYvJB3p41CT1/Wp+rtD+s3PaG8VaEf+Xwj/tk3+FA8T6HnIvj/wB+n/wrxj7e3f8AnS/bm9vzp+wkH1hHtP8AwluiAg/ai2D/AM82/wAKU+LdD6rc/wDkJv8ACvFPtp/yaPtzD/8AXSdBh9YPZz4r0Ut/x9Y/7ZN/hULeJNGYZ+2r7fu3/wAK8e+3NSG+Y0KgxPEJnrw8UaOoIF8D9Ym/wpT4m0Y9bsY9Qjf4V4+byj7UT3qvYsXtz2JvFOht/wAvK9eyMP6VA/iPRs5W+AOf7j/4V5Ibo+tIbk/3qXsGHtz13/hKNKQcamp9Mxsf/ZaZ/wAJbpig/wDEwQ/9s3/wryX7QcUef70LDh7c9cXxhpQPN6n/AHy3/wATTv8AhNdJB/4+14/2G/wryA3HvSfaT60/q6D6wz18eNdJA/4+yf8AgDf4Un/Cb6R1Nw2f+uZ/wryL7UaabtzU/VUP60z12TxrpDA/6SRn1jb/AAqxp/iW11S6EFg7TSgE4CFQB16nArxc3LnvXdfDEltUuGJ5Khf0aiWHjFXHHESlKx0914rsLO4MN3M8co6qYyf1GR3oTxnpBxi5b/v23+FcP46/caoiqehI/wDHUrmFunXocURw8ZRuhSxEoysew/8ACZ6V089+naNqD410zAw8p/7ZmvIhfyjo5pTqE398/nS+qof1pnrY8c6YCBtnP/bOmnx1poJ2xXH/AH7/APr15N/aE394/nTft0p/iP50fVEH1tlBuGpM0+UYY1HzXo9DzXoxwNXIl26bNI38bBV/D/8AXUug6YNZ1aKyLOocE5Rdx4HpV3xJp40horBSx2c5ZSpOSeoNRJq/KbU00nN7GFuo3UlSJBNIMpFIw65VSaqxnzMbuo3UhBBIIwfekpWHzDt1LuplW59Nv7WESz2c8UZGQzxkDFFgTZX3Ubqbip/sF5sD/ZJ9pGQfLOMevSiwXIt1JupGVkYqwKkdQRjFdxovgqyv9BTULma6V3XKhMBfzI/rUyajuXCMpuyOHJzQGI6V0GpeHobPU7W2jll2ztjLryPpXQz+ALKG3R/tF2WYZzt4H/jn9aTnFIapTb0OA3Gjca9I8J+EdMfWrqC8iN2scasu9WO0knnC49O9aeq+FdJtbyKSC0jjKzqoUI6nqPUkVm60U7GioSaueTAOVztbHrimbq+hr2yijghtZLeIM3AV7g/gfzrjf7GtJvGQtZtOWUm33rG/zYO4A+x60lXi+g3QelmeV5o3V7Tf+FNOViBogV1yxVYV6cdsAjrWRZ+CNE1Cynu3huY5FJ+WPJQEHGPb86pVosHhp9GeW7qN1d0vgiyvdSuYYLqW3WFA+11Bz9Mn/Giw+H0VzqMlpLfOgWISBlTdxz6ZPaq9pAh0ai6HCZr0X4ZjZdOxH3iOv/AhU+k+A7GLU/KlV77cuVVht24ySeoHp1rU8PWK6bry2yQeUrLkDII6npgn1rOrUjKOhpRpyjJNnJfET/kJxE8Zz/6Cv+FcXk123xFUnUogAScnGPotcX5Un9xv++a0ofw0YVr+0Ym40u6t/wAKeHYfEF5NFc3Rt0jA6DliT+lamt+CLbSxMEvyWjAPzkYPPI6dcVTnFOwRpzceZbHGZpd1ez2nhDQbdFgFhE7nH7yX5h+ZJqpN4f8AD/nyRHT45GjP8GFB/EYrL28bXsb/AFWfcyNV0yJvFdpb3lgYy279xKmNxwAOM+tdedD0kOE/4R2y3IvKMkO4n8BzXN6nPcal41s5NjK7Bgm04J6ev1rv2kKeFXsdric8MhTJLZz+X41hJy0VzeEVZu3U85treGx+KNh5dvHZx4G6ONAgxznjGP0qfX9EsNc8YXMJabyIUjVBE6gjlhjJBHbrREHi+I1gsuRKsJ6vjByepANa2nR3UnjG9kt0RmhhiA43ADc/PIBwPpVxlZp+RnKC5WvMwpPAWivZmaOS7hYMF2yyqSfcfLWx4P0o31g1vZfZ3+zhkk+1ueAGOANpHv2rstTtRYW2Lcq0FxlplKhiAe/t3rifAd69vLqrRBDHcPJgScDrxj8CacpuTYqa5UrEUei6XdXd+11bRSmKFAqscYJLZKg9sj61X0LwdpV3FLPLp7yIGbJDjH3iBgFh7Diug8OSNDrmrXOzzQloFbB/iYk8Y7Z/StDwHBKzCfJ2I8hcI3Rtxxx6deahTktEzTki9Wjg9Y8KaXbWd1PBZsAkZJJkHynGegbNdBNpS6zBpVlcxyPFcRrj5GUOQudoPTgr2xnPerXjstJZ6ndFZPLaFkDOSNxHHA9PrVzSTK2o+HLRpA/lKdm04Ylkcj6YJxSlOTjdsSjFaWOfvfh9YJK8SaXOpTk4f5gD04znFbzDZ4btlWzZsDCuzHLAcDj8D+Vdf4lW5FokMSgSqwZyFG4465br3/GuYUxx+FkEkEcjSD74nHHJI68p+H1rNTlJ+9qZyslojzjU/DC6ncXGoS3yw/Pt8vCk8DrywP6V2ngRIU0YxSeXOiW5GJEDANk9M9O1FjNJPoV9C7I0cUjsqlmUrkcn5eozjrS+G5lbw06EAouW5JBzkk/wHjOe9bOTlGzNYQitbHF61Ir+KtMxhVa4J29AoJH+NeglrY6ZczXUTTyKBtkbIIByAeOlcDrJLeLtJDKU2vlQuD7jqB7V3+r7Xt0laJicAYynPfnHWieyKhvL1MzwTczN4k1ELMS5t41OevLNxnseBzWt4nVbe9toUDBGnib5n3EnzF5BPOMf1rJ8IMw8Raobf92/lIHV8Y4zgDGfU1Jr0soSISqmxriMK4HIO7vxk/nWcl7yHHZnSWsc9hpF9DdrKs8g4DJvZsjA2nv+lcJZR30fjWGNA/2kWhA3EE/fHSuquDEbZQ10hyB8wjQDp7iuc0y5S18aZLLJMIPkkDFQQT0O0fT0oS1bFZ3v5nX6nII9LhRNhvSw3OqAzMR1BPXoe/XFQeFRHNpWqRSspVXLgbypX5jljg//AKqratPfCeSdFRC3DS73yfY8UzRbrOg3AigVgWLMZc9dxzjCnIz61NuxSTYvhWG2u9X1L7SS0jQ4WQk44znoRk1JpCQxeO1thFmGVNsinJ3YDcjJJH4GodD1NIb7UjJab5/KXG1gNo5yeQOPamaZqXn+K5mjiCs8QBDMR1J7hT19OKpJtkTdk7lx2tz4lnTymjjhjkGyPPBGM5xzj6/pWLpawnxiqWxHlBHI25I4x0z+NW4Lu6HiFYIvLjYRykMM4OcEjoPbvVLSJJR4wtQ6AF0cAgnpkdsmm01Fjpu9iK4tTceNIUDxoREzDzM8kBeOCOamvtKlRReTQCO2eTAk8obe/wDtk9jRLH5vjy0UzJD+7Y7nHX7vArW1bc9u1msWF38ynOMcYOBz6/nQm1BWYL4mZHhKNYvGsgWaM4jjCqpwHDM2QD24H6VH8SYIbW2mWMOquyNh5N3JZeR+Bp+gKkHi25Y/vnW2jCoI+W+Z+c5GOnrVTxqlvLZP5zyRHzUDmRcsBvGcYY+9Un7yE17jfqdzaT27eRb3FxmIpxCCUycdz3NYF6XGpzwROCinKxkE7RgcZP8An9a6WG+87TIojbGSOFsfeQNnHsaxb/UIlmdPIMQ3ZPzLkn345qH8Je7ZxV9cuPF9o2IyzowJADBeRyABj9DXe3F1ctp+WvJV44TYg/8AadcDdws/jG2O4hFVyXZivGQOpNd5cPYx6ecXw3kYwZDt6euaqVtBQtZ+pw6StP8AECwWZCzLG3zKAGYH17Vr6beXNp45ultVRZWRMtJJtAGWP8I571m2SufiDZSJNv3xMiNEd5yOwrW06B5PG15vZlIij3SPGMocsSMkYB/KnpohLXRd/wBDf1WTVbeKQPdWWxyN0cakZJ75zXE+CkgeO6k8mJyZHBDsDjkdiP1rt9W2eQI/PBk+8y7V5HsQK5T4fv5Vvdjy3c7n3AIgxye7EGhbu4NWSsT6FYxS3+qMflj8hSAjledzemKteD3PzRecwLFuFVePmIzkqc/nVfSbiOK91nc8seYFGM47+2R+NXvBMlvDaSTsXZ2LAMiOxHJ5yBilfqUrW1MbxlL/AMS68jErNiM8Mq++eiirENxtfQii7HCE78E/wN0yD/Wq/jaOP+zbp425ZCSXUrnr6961ntC1zoccbK4UIxdnCDlD15JXjocU9LGcutg1nU7hwVNzIcjncOnQddmB1/SkmggPh+B1EpdgSW3MP4Qem7H5U/XYJFlz9oTbjASO6c8fiuO1Vrg7dEt2FtclCgHmC2BTOB0O2m1FPQwpt298LKRv+EfuomhSQJNIAXY5xk+iHr9aZ4ViWXQJ90ce87sFnPynd39qfZQGXQbyYInzXDnkJnGT68+v5VBojq3h5tpZJkX5kSOMKMHHdSc0Rv0OmHkc1raqPF2kY24yfutn9a7XUM/ZIynRRyPO5/OuNu5I08ZaRubzFyTukXBUkd8Yzjr+Fd9q90ot4Ql0WideSIsD8t1OV7LQcL3l6/oYPg2Ez+K9SVhwIwxLN7DjP41Pr9vLb3dunyL/AKTHh1+Yfe/z+VS+Dhaz61qaSRckpGrxj5S23qSckduPajXrFbXU7SKdCsjzoW2MGBQn1HINQ5BFu1v63Ni+tp44I910MY3YCIcH8DXKWEZHjRmcCUJbZyRjHzZ7f55ruZra0vbCS8t4beKOIcrK8pZuM9c8VyGnSW0/i1gbh7WA24cMyrIwO7BA3A9fp2pXBPVGzqn2ffsRY5OrEsHU9TWdppj/ALNujtjCdNpLHHPfFa2q6YYl8+S+ljtZT8j+XCze25Qox0qv4btJdQ0a5EUzpKjkFYljVdoY/MdwPJxnA9aXN1LjO2plaDs/tbUtjjPlKBtl29+wIzT9MjR/FR3MoMce8sxV8YJHf69KteH7eO51rUrUXsqzFQYvLjRTIwz94kEDHt+tN0+ymXxbJbxXkjT+UAmVQMWJORnBXHfpVKaTMqvvRaILCNZfFa4ZSohkIPB6DH8I/nRpEQ/4TS2PyqQjttUFduMeoq4mlzWviNYby4kLtFJ8ieWx6DHzBcVVs4JLXxhZxuZVb5vMRyrehGCB6USlzRY6KtFIhvXWPx1pzyBjvDgAH6dfarurrHbyy5QMpJxgrkn34ziqer5j8Z6Yyx+Yy7yEwTu59ga0tVzNPK7wIJCclGGTn0wQDRHl5FcNpMxvD8kh8Xs1sDnyoxtZvvcyEj9P0ql47aWS2uCzOVNwvDMDj5hWh4TxL4wvUfy4nMcRDNG52/O3AUY9aj8bBdPUpc26yjzo3CSIVJG8c8MeDjFWpWaVhX9xr1/M620hAsJ283aFcfILgLuzn/OKwLtoxdOZcZLEgmTJ59cj2rqLeLzrFYLW833GM/Z44lAHc8k1y2peas00LXLfaUf545I1OPoV4NS5aI05tWYeseRH49hWxj/dxo/ljlsnA59a9A1GWP8A4RC3lVC10/JkJOMg8jHT9K8+u1kg8bWiPGYJAjlA6GHZ05I5PSu8u7nU/wCxjcKLVbUHHmhSR1xn72e+OlDtpcyX6nF2Ilk+JenSFPLlEBfCx4yR7e9aemrD/wAJxftfW6XUZWIssnRNxboOnHT8KztP33HxLsUxbvLJC+HyXQ56cH0rU0aSaz8d6lFDZi5k2pE6x7VjON3OW9eeMUnt8v1HH9f0Ol8UafpkDtBb2MHzIzBmQAqR6ECuQ+GUiLBqBnhjlG12XzEDY5OcZrqddvtX8iRH05EhMeXxIpl9uT2xXD+B0vpbS6NhE0gUvuCqzEAk9cOB2pJLW4WvFI3dDCy3espPM8KG2EgCcZA6DnPGD09q0fAkjiO2jlBNpIXLKyfITuP+cVk6PLKIdXLtAxIjC7iV5wcDGG5/HFaPhCS7udMjhtJ4w5B/0cK7u2Ccn7wHrR1LduVmV4/upJtL1NFXbbr8qqq4QEHnH49qvaetut94YUWoV0izMJAcMfLcjOfzFZHjgTrpN4LiZHZBtki+ZGQ57jJHpWpp8skes6DJb2907hQUjZRtkxG2cZI6DPeh/AzNbv5HReJEt/s0cpQs8w+4VUKnXpgZ/Os0SRR+DbON0ujPtGwYzjgcqegHrmrXiDVLljIP7LKSKpyNq/Jnk8BzisSW3u30W3lTVnEaoCYhH8sYwOCayglqZzWg/SIIL3wzqdxK5UwTyLnLEnk4A+YAcVX8O2s48NvMk3EiEFWPI+bPf69aSxaOPw1coFnBlkk3MgUKx3HsTk8jHFW/C1sL/RWQsItsKt5sis5YZwOM8dP0rZO2pvHucXqUTS+M9JiMmSQV3Yzjiuz1i3uYFWDfCwGMtleep78jrXIXYI8baYI1c5VwRG5y3GDjnvXcatFDJo636tIicAxebISegPzFqpytYItpv1/RGZ4Fjgh1XV/tV0sOJFKZYBWIUevpT/EUgudYhuhOJEE6bgCMKACeWOB6/wAqTwPNLJqmpqmSjSiP58FwmxTwT9TU3iOEW2tafGiiRVlBDSgbicPkHAHHFRJ6iT2/rqXL+8sViaCK5VYWRQclSVwOx3Y5HHOaw9Is7S88ZFUMn2cW4wyjeQd3tXYTStf6PJezpKZ0GY1DbUX5SeV5B5B69q4iwvol8YNLdWiTBrdf3PRCwJ5NF22ykndJbnU6tHNiOGaRxFBuKnY3zcnHBHHU1B4cMdlpVzK8wgmO4eVKQDyzFT69+lLqtlbWwiuZLe3kM/W3jh2eXkZ4Oe1J4VhD6BeRMpRAWbzMKxbliASQegHr6VFxrb+u6IPC629vrt7M16YxGFMbnADnv1/zzUuk+VP4wkuBcBmWIsDjIY8gD9RVXwtK48SaqhgQK6DzMABhgHoD0/KrGm2kWoeMZbYw4Z49sbg7dpyfmbbjPFDumTJf1949mFz4pMkk7xBkk+YdR0xyazlmlbxZBO0gmEhcM4HAOMfyH6VoCx/szxVHHC0UsgR9zsh24OOMMeoPeqHluvjCyikljkKh9rom0HI7ii/ujgnZMr6q03/CWaeYS4YrIAUHOM1s+J5EjsIrUJA0+QSyAFhznqOeQaxtXWQeItOZLgQMcjzGzx19CPSrurWl7FbfbJZGMBI/fMpz6dDJmtIW5FcX2mVPC7yjxrenkE2sW4kc8Mx+nbvVDx2891unVGyJYwoA5+8PT3/pVjwrPu8XXFvK3no8KFmjkaMN8zYJw2eOe/eqfjYzaYsn2e4cSGRG3JI+AN3A5J/OqV+ZEv8Ah/eeh2srQabHMojkZmBPyjdtx71xd2Hhlee6dA0jfNGDkiukiEDaYkf9npGFj3mdlMhbtgAnv7muJ1J1naUG2RVDf6wJsz9QDTs7IbbTZHrK3F/43tmnURF42GQC4UcY6fhXfXNpPH4b+xOoJGMyZOAvXP1z+FFFTfRGadzibCOOx+IVizTlEigb99gJyMf41s+Gik3jS/cTNJt8l2feMnBbIHY/Q0UUS+G/9bmkNF8/0Oq8YTCdprhHJSK2ZSzNgtx2HX161xHw4cW+k37NbyOSHII4z8xx/wDrooqI9Q2sjR0Fmgh1uYRDBQJtzyM8+nT3q34Bt2jsY70+UUWNhtyAw5znPf8Ap6UUU1qxt6M53x1Ft0vUJSYg8rA7FO5hyOp/DP410unyTPrHh62Db2jiMcZBwSTG/wCWOlFFE/hIXX5G94oglTTljMe2RPmchMMeMHJ//XmueutUtotBtLZLtGcKMoyZaPPUA9MfXNFFRSim5IylsirpNz5Hg3UEMiK8s8gj3qCep+7+Oah8PzLY+HABMEuGiCyRyOmOnBxuznB/WiitDqSS/r0ObkjWbxrpshlBiAbzJDIo+veut1iQLbrbW98jWxOeXXcBjGPvdPaiim+hMVq/Ug8DIom1ljbSTsJsI8eSV+RecgEVX1aUvr9hMsc5mafIaTczSYUgDsOn8qKKlv8Ar5Ep/wBfM3NWF4xXzLJ1Mm0tEu0B8dPlDnNc9pLWp8aSzajst40jRTG37sqSSRjr6GiipuVF3aNzWry0mlcy6lHNCMlEEgH03EdaTQH8nw9cGOOZ3HWa3VtuD2PGG6/rRRSuXaxW8MySnVNZ+yWw4jUyea3liMDocsM5z/8ArqbQ7z7N4rZ5I/LYQ8MhLjBJy3ygn1oooe5lfoOe/S78WRyMm4kMRG0b89OgA/Gs2FkPiy0ch45NzjEisC/yk9/TFFFL7LLhsvUTWY/O13T8Oq5c8sM/3q2fEJaS1NuERiQMvk8D6f5+lFFaRfuIlv3mc34cVbXxbc3E0/l24tkG/hMneSAAcZwR/nNVPFynVIyEvIGO9R99VCqGHJGfTH5UUVV7O4W/dnbm8ht9HjS2efeOr+U7p/KuF1OS3gicl3kkLfM7hgD+YoopxbdkxS0uf//Z/+EOkGh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNC40LjAtRXhpdjIiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczppcHRjRXh0PSJodHRwOi8vaXB0Yy5vcmcvc3RkL0lwdGM0eG1wRXh0LzIwMDgtMDItMjkvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RFdnQ9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZUV2ZW50IyIgeG1sbnM6cGx1cz0iaHR0cDovL25zLnVzZXBsdXMub3JnL2xkZi94bXAvMS4wLyIgeG1sbnM6R0lNUD0iaHR0cDovL3d3dy5naW1wLm9yZy94bXAvIiB4bWxuczpkYz0iaHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1wTU06RG9jdW1lbnRJRD0iZ2ltcDpkb2NpZDpnaW1wOjVkNDEzODNmLTEwNjctNDdmZi1iODBlLTg2NWYxNTQxMDM0OCIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDplNzQ0Nzk1ZS03MzU5LTQ1OWQtYTNiMy0xY2UxOTQ4ZTczYWEiIHhtcE1NOk9yaWdpbmFsRG9jdW1lbnRJRD0ieG1wLmRpZDoxOTNkOTc1MC1iZjMzLTRjNDgtYjZkMi1jOGQxOGQwZWI1MmIiIEdJTVA6QVBJPSIyLjAiIEdJTVA6UGxhdGZvcm09IkxpbnV4IiBHSU1QOlRpbWVTdGFtcD0iMTY3NTE1NzYyMTU2OTE0MCIgR0lNUDpWZXJzaW9uPSIyLjEwLjIyIiBkYzpGb3JtYXQ9ImltYWdlL2pwZWciIHhtcDpDcmVhdG9yVG9vbD0iR0lNUCAyLjEwIj4gPGlwdGNFeHQ6TG9jYXRpb25DcmVhdGVkPiA8cmRmOkJhZy8+IDwvaXB0Y0V4dDpMb2NhdGlvbkNyZWF0ZWQ+IDxpcHRjRXh0OkxvY2F0aW9uU2hvd24+IDxyZGY6QmFnLz4gPC9pcHRjRXh0OkxvY2F0aW9uU2hvd24+IDxpcHRjRXh0OkFydHdvcmtPck9iamVjdD4gPHJkZjpCYWcvPiA8L2lwdGNFeHQ6QXJ0d29ya09yT2JqZWN0PiA8aXB0Y0V4dDpSZWdpc3RyeUlkPiA8cmRmOkJhZy8+IDwvaXB0Y0V4dDpSZWdpc3RyeUlkPiA8eG1wTU06SGlzdG9yeT4gPHJkZjpTZXE+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJzYXZlZCIgc3RFdnQ6Y2hhbmdlZD0iLyIgc3RFdnQ6aW5zdGFuY2VJRD0ieG1wLmlpZDpjYjZhNTczMS0yZDlkLTQwYjktYThmNS02NDYzNzUyM2QyZWQiIHN0RXZ0OnNvZnR3YXJlQWdlbnQ9IkdpbXAgMi4xMCAoTGludXgpIiBzdEV2dDp3aGVuPSIrMDE6MDAiLz4gPC9yZGY6U2VxPiA8L3htcE1NOkhpc3Rvcnk+IDxwbHVzOkltYWdlU3VwcGxpZXI+IDxyZGY6U2VxLz4gPC9wbHVzOkltYWdlU3VwcGxpZXI+IDxwbHVzOkltYWdlQ3JlYXRvcj4gPHJkZjpTZXEvPiA8L3BsdXM6SW1hZ2VDcmVhdG9yPiA8cGx1czpDb3B5cmlnaHRPd25lcj4gPHJkZjpTZXEvPiA8L3BsdXM6Q29weXJpZ2h0T3duZXI+IDxwbHVzOkxpY2Vuc29yPiA8cmRmOlNlcS8+IDwvcGx1czpMaWNlbnNvcj4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/iArBJQ0NfUFJPRklMRQABAQAAAqBsY21zBDAAAG1udHJSR0IgWFlaIAfnAAEAHwAJABYAGGFjc3BBUFBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtbGNtcwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWRlc2MAAAEgAAAAQGNwcnQAAAFgAAAANnd0cHQAAAGYAAAAFGNoYWQAAAGsAAAALHJYWVoAAAHYAAAAFGJYWVoAAAHsAAAAFGdYWVoAAAIAAAAAFHJUUkMAAAIUAAAAIGdUUkMAAAIUAAAAIGJUUkMAAAIUAAAAIGNocm0AAAI0AAAAJGRtbmQAAAJYAAAAJGRtZGQAAAJ8AAAAJG1sdWMAAAAAAAAAAQAAAAxlblVTAAAAJAAAABwARwBJAE0AUAAgAGIAdQBpAGwAdAAtAGkAbgAgAHMAUgBHAEJtbHVjAAAAAAAAAAEAAAAMZW5VUwAAABoAAAAcAFAAdQBiAGwAaQBjACAARABvAG0AYQBpAG4AAFhZWiAAAAAAAAD21gABAAAAANMtc2YzMgAAAAAAAQxCAAAF3v//8yUAAAeTAAD9kP//+6H///2iAAAD3AAAwG5YWVogAAAAAAAAb6AAADj1AAADkFhZWiAAAAAAAAAknwAAD4QAALbEWFlaIAAAAAAAAGKXAAC3hwAAGNlwYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKW2Nocm0AAAAAAAMAAAAAo9cAAFR8AABMzQAAmZoAACZnAAAPXG1sdWMAAAAAAAAAAQAAAAxlblVTAAAACAAAABwARwBJAE0AUG1sdWMAAAAAAAAAAQAAAAxlblVTAAAACAAAABwAcwBSAEcAQv/bAEMAAwICAwICAwMDAwQDAwQFCAUFBAQFCgcHBggMCgwMCwoLCw0OEhANDhEOCwsQFhARExQVFRUMDxcYFhQYEhQVFP/bAEMBAwQEBQQFCQUFCRQNCw0UFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFP/CABEIAWIC7gMBEQACEQEDEQH/xAAcAAACAQUBAAAAAAAAAAAAAAAGBwUAAQIDBAj/xAAaAQACAwEBAAAAAAAAAAAAAAADBAABAgUG/9oADAMBAAIQAxAAAAEa5vphPIxM6jzTabbyooowFmrnVyviiMsuNnYQoRgjQE70UPSfM7UjQEE2mXZbPpnRLEs0IkWYCnbYQx4nEHAJB2Ff9FRpJ9IvsUznA7V6xXCb2KGGsuhx3lzfQG9DhauOquHWIUg1u6gSDZdSLNijF8XC7GuXUyAbzpVZ3ZgvVxdYWr/Kd6femSLR2NRQdxBhLN3mS4mXMs/JWtBDYhtahiLKLocZv8/0h1ic+hx+LirxxSgJzj+hOP3+yDT7yRZfRLgqDO4NSoXVZ3pwC2JHqFDgQOBrrPOtvmQ5SDqJw6j8tLTGtBmRrJwTVVeMsi5LuGzuA1QuZMkz0GNpcVwYP0FcP8x783t76wpWueZBbewsbCiWC5Vu0FlJ9RonHpENbEYFqXWr6Honj9uT7KjSEkGJtLtsukEjVlkV2+d6T4HfZ/RViJInnFXvQ12KKI/qpMNR5/a0RLhT+24oa6ifTMlnPRtHkBiVsdg8LIrrcz1Zxe8Z9FHUGlph2PWVRXa55EBn00o7ztY5eYQDcJkql587vJe3I9K/988YtqPRsMaNyDUSvY4/pbiei6bEm+lz2sj1C3oqwKNLtosYusOMR9RnalS7PgCImY11W0ylKZXikyKY/R3aA3+QFKdCK5pR387ps/rLSHCwDNEEZtfGTn9dZ4VzoNQisbtRv8v01yexNhz52fRKcNNYsPF1UVtgF2qZg7bqOCS5qioedDMBW76DbW9CwHEGmmgPKnVb7EXjUIAae6vG9A8j0TQ6aeKWeHmEVXXNw5CtGOWYgfezemjzkUVOkEHGuy88mB0/SFmJuegoj9AdsKT6XK9Dcv1Jd0eUweWmlG+oKVhWM8icEz6Az1pUal0MLHpt8gVkf1OI7eV6d5dPn1zJFpGVfU6Ngppvoef9I8f0E/nKgcVJx9Nw9PlQXF0pei1BCXhDT0BlicUWTrB19tE5x1GQ4t3gX5l9L3bvBrDMWVWFRZvLsgfU9Euo6ODoCZItWiDwueQzreiL5YcsdQM7VL3K9I83uT4RoB1AgE029kY4Od57O2D2mUi7biY33qqrMpRkQFo7zm8t6FlPpMYHNHlzKphmNCaHXAmutxvRfF9Ex+kpB1USloJcJyhGr2+WdrdB7WU40ihK6PMACkd55UDqP8zRgHnJfPUiBqpjocj0HzPUsXpcmW5yyjY6kAMKkd486Bv0or0edofOhkDcPgBRD9bjvPk+ncbq2heuZWls4/kJVKv8D09yPQSehJ5xWfD12f0ubE8zSucLDCFw3TtKxrABeaIGRJ1puHLSkSfQmufiDvTQOQhxOwCjCzwSbZry8SpoELrlWyvCgNMdN2GQXIThciY6nM9KcvsTwsINxQqG23BySMovBGVxljoXSb0vhLYovkZoai6XO9F87rlzS01YhwRR3G+MViMElO3zPS3F7xcYEJVR8kRquEQkv0kmIu47l2cGFxJfUPMKR9RhqOujLVGoJWJoCshOzzfVHI7pMwqLaKPh3HUBIdLmzQ2vQqL+3Y4/O+HFCu10d1+R6H5HomYPEZuRmCx0yNkGmenw/SHM7RLUTh12Gs8TMCGdwYzmPAAdZv0GqcTZuBCNbsqn4ugewOgmh8Ro/FxkGe4yAUEEcGw1nzbQuHFRc0ObkBtac04ZQY7jQzYlo/zHzze3KhwoHUJzLjGyTdYAvMDTqnCvSYAt6t5EK1F0uu+ig3ef1yUmJ7a8AI8RU48ZEyiV/V5T+4voCreIrYorO4bY+TIld0UDxXovbnl5i0E73EZXVfSRORdRuB1hgo0PXFS6z6XLeHK75q0gK6PCrbHdiWnQ5UmNl7czpTrYhOMR4cDmlE72OK9+N6lq2sPmMOAJz1iB2srelxPSPL7khoK23kgF0ifK4wTUDBRcFpLtoAPAnHAjwKGXcS7jB6K04MMAiVVmezgGzycoLqWuWU3vzeid9JIp4Ylf0GxkNr1lQzF1HlSC7GdenGoerzPRnN7M/WEWVKXwdtiamWFQhXSpaVLRdFtWUgXTVB34EC6z6vLdvP7ZP013OjzRVBtKdc2kBItVdKdrleieN6Mt6q5Rylh1RhU9mudXCq6fLZaPYdrG2JxE1OZ4IaEmXeU3ef1XcSpXIVJT8cJVF9blekeR6Vtdjh6+TaTa6fGssk+nyyMLbjX7LAKpz8rCk6zfIFRJdTh+gOR6p39TmYcwkYkZQdVmyqKV6vF9J8vsy+YpGAMZXqm/TVheZa+buMCAcOP0FpniUi6PYPpI7F0222pNFSFEGFkfo9mFjtca/DSj6SzBH1XM8gQcPKjfZD7JAB5heTsv5HnL2HWbWFJ0eX6J5XaO1B+c+mlv0wyRNt4fNSZGwDSUxjou2FMFeanidIWvCy6PIb6nfN2wOTPJAE2li2xxB3ArAUHY4/oLkelNOkGSQXHQmBHdRYsK/o8Zmo9lrsMMvl8xKNPQlUoXeMy0e69SgKVEk5vqQVBSvS4/ojn+nP8Ap8mQ5QlM70IFcScf5BMBx5rdwiOjXPGrOi7yLJJPrcL0FxfXODqoYI4GVTrnoOaAIqF/hemeV2pPEUjqJYt3W/0ubHcyK05hvI4Ag31G+4Cy7IwvNosYPSbT6OBhi4DCqrcfYzfAgAA1W+s+Ob03L2eTCIMLMzEWiNdsrH4+y3t85b7YDxiTvR5j6Q7ZRoahieve2nbTVHz0TboZEu2dBxkKVKLKjb49hdbdDj+ieP3JrpiZ2uYEBbAKPYFQQF0N3uV6U4PoTRwcXqhwRIu88YFkv2Oa6eX1XmMnMXKwslLAQXa5jVR7jfPk6XQRF9WLwBUP8h9870J31ufyK2vdu8qYEj0uKSrNei0utOdQQWroVho0SKV6nD9JcH1Tg6KAgVkVWNBwvELnp7qcP0/xu73bGomVJjHddDqXMiNRGPC5xEUB6lZ3KhWJDh9pOxB5kdDnataFAMBwi6YsWVtZ6ysXVGrjovNhHg5Rly7oNqxvKrOB1WKVYKGUJgE31OX6R5nbIsBRx1Nmtt0LzMPy1Mk2sGVZ0bb4TPEvWJBsbyqmOxzngj6FnYVmekqFiYz5VjZ9B9iTXW43oHmekZmAQRBi81vWoLNFb0uS0Uuz6AXkMxQipcHrCT6vIdXN7DwxWtrSyWJxZAjety/THJ9Gcs82H3oJExAVhLdLjTi7XqZLqzLSa8C5F4gltVMdPhehuV6tzn54vTIgIuGcjmgp/pcH0Zyu1uMuqiiZyPXbO0ww7IMPPMFeKPr0GlpYvGjAgCCgNb6bmc5XBIPqGWpmOgdFKmRiZBnAmy/RZLANwYAjJE6wElVKMdE80ESogxALXoch3c70Ejsa4tCVrLjTakKEK0Ratq7rY9CJsYSg+iBhgp/qctyqd80KoQkALDPABvmrUDgSc6/FfHL9SdMJx8wLj1oxXHiKXo8hlqdpviL2Sl/moeCTXU4rz5vbcwZpzlcsbjcCSPV5T75vp2WxzR+tBIjR8pMdHhTAGvTKnanTABM6GhQaIsqejw/QPI9c4meeM0YNzrWK4GwqXp+f9CKdPsrKpIJiJ9k7ghPdjmg6xTTemwA42YIkTAxAmmugbHTjNDFlz6sE3yjZK99zvEftEfbLqpp1nG6trOiVvl8O8bK1sxrOa1XnGZ6tTuxrmucewwZl9BM9V63jJol4yokoOzJNUm6pVXhJnV4VIgoZTLHNofPeefQ6q+2txOwSuG5zN2mY+t89YiCrTQWJke8rvjzNU1CFWKsOb9D5h7j5KzcWZapZbhvuxmNyTCtcEHxbBNYc7rq9Vqq+e8Q51uPQZ7BpGaixb14Je8dAybc7yl5VjordZu9y0lrrZm6usLls11ZLA9Pk3upMLXRjeUlS8c6z1jHVZzWcvksfNjXVW8rrn1jvmtkupMMSrvjKHXJfQ871hm9Ga2au11tl76uqrfgmiTKqtd80zfWdV506xo3nXdZ1e3O9lb11Wi8dVa2yct51S+TNXkvmb61s1WMm2XnV41M5e2Xli75JkPfLrHRjdXV95wq886vV6dZ594343q1ndL5JnWO9m87Zeya2XVZuq1Um2rwzdSbKu15yrWMmWbUvf4fTm+/BezO9uNaJOqXsubM3tzrfjXPK2XXdRNt1pkylbc6xkxuttX0VdtTPWbVLVd9ZylYyZ1vGZ1bzuxu49a7zjqsJL1q2awusKrEmaJnC6wmaq88bzkvLxkwkyl8g66aJhWdeq1bzhrOF52SW3WySpeFZvglhbykwvNtTZLrN41WNzVvOVXrJjRrO8Zdg7y3V5Kq7yY41jm8ZeUvn1mpWMmEmdXz6rC6SHX5OWdZVdVrZV3kyl1NXqVJUze6yxeUvKryzM6myrzq87vLMyqVctK1alpmqvOpervctVXl43LyXqWuWuYyVqZ1WFzCVq3nKpUvZUtJhJUmOpUza7tUtqYzOF1aStTCplUqSrmN1aS0vLMq5Vy1TG5aS8mMrC6w1RkE7tGZUWFYOK7x735vdjW6tXkvUzrVSr1LXdpMpdrzhJeULvpZ1eU3aVnm71edbvJa5eS9VVVa7xus83lV1cvUykzxeUvOTKrvUvJUqpdqlalrlqq0qrvKpVSpdXLSquVUxuWlWuVJaVaS1yqlSrXL3eMq0l5KktVVd2qr3dSWkqVV1VXUvKqtcvLqTGZtLxusNVa616y1ud0mqM4FayR6nPzzeedbc6yq85eWJlLtqYyVJeS8rC5aVjJBuo1N3l1KvUqryl1Uyl2l5yYXm9S9Spd5L3qpMqq9XeTKpVypMs3eS0l5KrVXVVL3LS7SqqXuWl3kqSqq1ypV5LVKu75q93UlpKur1dSWktJVypWUmN1erqVa5UlqmN1eXUlXLSsJKktcwlVcqVeW4eV1W2FpfkUQXX5dSZVMpd6mUlpKkvKtLxlVKtd2lXqVL5DL21eUu9S2d3kvLyzV5qqknlqM2rUlSWkqS9S8lSXkqXUlSXkqSpKkvJVS11Uuql5KurS7yWlVLxkvKqS0lSY3V5M83lLtJVy0lVVSXkyl3kxkvJaTGVUlrlSVJVy1SpLyVJaS0l5LSWuVJsqOHldZt4OB0FAdvj6pVVL1dS6kvJUlSVJUlSVJUlSXk0kDhrN5qpKzKrVXL1d5KqyEPVgy83CYvq7ZupVXLy6kqqqXUlVLXLyVJUl5LVL3KkqSpKkqSpLyWkqSrlVKktKxusN4yzrPN1LvKtNXqWkvcqSqlSWuVJVSpKuVJeS1yqlSVJUlpKkylY3KuWldg9t/k9dqjYCIt5+73G5ZmpKl3qXl1d3zV5KktLvdXq6qrSZXeGx6tYqXUl5VS6l1JeparK1O+LtcLG6qXVSpKkqXUl5KkqS8upLSryWkvLqpVy8lSVJUlVKuVJjKqS8lpKktKqS+s4yVUvW8pLy6kqqxuVJeXVSrl5WNTK5jJUlSVJaSpMpLSXktJUlpmrmUuWARp8zrNETIXFkF3+Jy6xaXbMqS8uqupL3dqu8lSVJeSpKkzzWgosdVfN5SWl3lVJUvfnZIr3hVvz9SVUqpaSpKkqSpd5qpVS7S7zF5MZMpq0l5dpVS6kqS8lSWlVJUqpdSVKqZqSpq8lS7y7SsqupKk2SEk3IjLF6qPvEZoWuS8lSVJaS0q8u0l5Vpd5VSrSVKtd51qfXKx0Om1ANh1qoDvcTj1i0l5Kq7yrSWrWWqti6kvNZS7S6ktK3YvnKLDeLZl5d5eUupMpJ0b1gOQLXEq5UlSVV1JUlSXl1V2qVJeSpLSr3KrVSVKqVa5e5apeS9zGpepUuZoklNx9SJ0DXqb867M6qa4rx1Vp1c3sXoowdXi0J1JvdmKhpY+TCsf5bSV68rvUdUg7CO2lzsj5b3x0MUKpVyql5ey6xlFQmjDLsdjBJzmmWJkM2ohe5xI/eKl1KqSpM6vZRMZWuqIAnYKvRJBMatXx3OHIFH0eRyFFhvGNVld2zeU1lK9D870MJjKpdRiT860l5KkqS9S13eVUlSVJVSpdSqmqqVLtUvdXkq7qSqq13Ul7lqrozt9c/0XbYx7QxfaYS2i/wDn9+UvI8DWnWAU6PoZHoYLlg9ZAWl2Gsz2ZFBkuOg1D00HSj6CRmOMdxmxwWwM85OGtBAxxjKptkgjU2YXZZMDSZhxghbswPkGAI3lHwIqKK7nGjCDvKqrq5Up7cjuMyOiY8jJVNOI0QdKxcddAFNN3VXR3c4cEUHAUdVV5LZu91Unp/hejhbyiuvxeAoryqkvUIxNTtn5cWPFTithxkqXeqtcvJepPCZcYX1zpUFZUtmVJPDKzVTxhBxVaAXFNWr6B69M8XvYHoYmxq0ADop+ieL3NJSQkmQ1wttL0eg1G5YgLoCZXdadwDGsR64hCQnZ53pPkdqUIAPtqaWAq3Mt+jQl6D6FGn0dYNDjqLtM/KMVW3yE2xiWu9DHsZcCfRAipJfs8iXvXNrWqt1WOLQWpz+w1YQIFsPOpvAZuYbswDjuxjFXWzoMup3US1d1uL9HTofUoQHMp5+7/B9ScfvcOIhuryO9lbuwWPGfilFK7TNA3mPQRpSYY1x5tesImGm5HEgti5cXH4G6EOqvTK4GBtlRt56REffLJBlGHbyjuwlHGH1UR6870br5iK7YYUL4Q9nmvbn+kKQA7FMqfpbFy8z0kv0sUsC5SAZlJ83QYKnMuHSdeaXLvFeHO9KSjVMVeem3unAxZx5JrDStb1NhCdXQngopJ6Lc5K/57S/IydNEAtjgBDcCXRCtpLbqrNbR4Ee+StdWchu1S3DTzMFdpNLxlXEFOPDNm5JJCV7R+xUMMyRfl5hsp1TUJOGTG6g4FL9njeo+R1+TGVX1ETdlXZLJ+d2gcOhwyzOhpAOFdoZkFuJ3QwYDRXZ6bBDVY9dgLajrF0BtYBwqwOEFw6xsu+xpGKKCGXLTjkzrS/oTTW6LHEqqGDAJEgdpD0ZyvSykFyjEvW9jmuX6MH1ZTnpAJ3QoqhSds6U58eE60aMsXeK5kvTnGUZVNdXPMjkE4htSq6aadaJ7Wbya6nI4ASejmeYrwNj0IfMEX9WPYXdKXUACIB7qTWXdHN65a12jCBsgPROM0wRhbagdUzHp4af6LX0p5AHGdKoWEmHzB3FWdz+ifCYIcrDV6gaH537vM9K83twNjCmkG+MkB0uYZ8brgA8qToV6aW1vWiOb0wBGuKw0g3IE2/Kwfs3HnKf6S3opIq6onoVBcT2TlHAw2iNlGFOOCXJ1mZ0FZXtiaQXSowQDegSkQhpD0ty/R8rEjxjGLgiXleo0ulivkGYMvCpu0UhSEia1YAkb1eb6o4vT3vYEMH7E8rZzLRj9RYCl7jR0LJLKnBOhPd9RWLmix2fmtYF1GrU8EeqAF5686qDrZb7uBmK0VedSh3CRJnpufQBRXaZeUl17ddtQLBCQAluTc3zxduh+euoicKdljUZnK8lQsvwYspPq8b03zO2NUIMf5bgFvrxOfL0OmHz/ANYXohdiVBSdPGOE0quNWsmYxWmUnyF2ZsaHpTdFH0QuyBBK70yTWuOsY6GGphbV7FNqpnN23DlW0k5G8uzNbCJ5i0YUCmk/TXK7d5B4lR2BADqfoRN+PAzx5XWTwT7DPRQ42tQF5FWEHwo/u2GAzuA2PgEVwrlgD0M0EkGMrJYeEggyNmmVCwlgdFI24LC3DCp287qARkFt00XC01M8KQ+iAfSuFEiXieZt6CJpeG5vZRvQyeuFmY61FKliMWD9Ua1vmMxDtGRdHAElyZmIDhGdbj+g+T3B3Q+BjnMijszCYDfVF08JXrc9yqvy9bAIqeZcir1BYE12NGIFFVp6MAFUdBF4L9CEVw7h1naa6yyH7h60nAVYbjXQ30C7FKa4ZibJNgD7gOVSIMk8uZ2pPOBjUiN4GGEn2s/DhOO3oHbQdSx9mxRY9wtxQP8APcaXbkawNbzw3jgqHdNxtUM7VnZmUuQEzCWBlFTEBWOEcacbA6ofwo/ub1wIqAc8j6Aw2Dm1EiL0rhAm0jxXsSRJyL6B2uf2VtiY3juuXOoKiY4zwMprJpFqc7qtjBMGpDKaGtA85drlel+V3huD59AeQBcTY7JMritJLqptJV+YHlcMAa4zxw9ipRvmLazbH0zh1iVPQVeiL4NWfSAVIOywK+gneiHoKxFDFhb7jPEkpNkpmCcJigFR6ACqCx0/QHP9BI7CH1fOPC+c5fo8XXiBE4Q4VznPao+j1bxA4kZmKpvkOdP0xJpOJzmDvY3oDS07EzAzlfOjH+wCA4IsclymVCMUJh6bWL0xAdCgUn/zuqvDc9W9VNp5PyALowTj0MbYUM1+g3diXQTLllCoVoE6ZNacLiDo9xFaIAppB9Bo8zsFw93KKJGSE0NRdbj+iUO+LwUMcTOrfIdGLExDpsKzpcp4pNyNRUGCYru80IOFy0BVJaDAi2L3S26ST5SfBaGxVc6CBH5qEu2IXYreBbIz7ZSCrSpaYGXi4gArJV7tIWOn6AS7/XYRm9QucATXN9J460SvcDRlyxyWvjoYXiOzIfFLRrk+ied3e1kMeIULjYwSGpOlhlQL0DtsxmTA0HAsXlNdtENWIK46riI+AZg+uo+Od0l6RBZ9ZD0EBofEXnHrhJgGOlKb7bnYTVi5wcnPkhRqzpdxQ8Q8QmN0GRBQqVvmMJHusOiTugiWILaynejxfRnP743YgdrmOwGyERYoLK/vSu6XPdQGu3cWw12iJvixoEJbKvU/eBMVDuhq11B2rdYRpI4a5NVQrm+hN1inaE8wTGGSK3Pi0nmQNcL5WdcaX2uCpirCr1T73eUIzWIcUAnOf6vw7ArGDbIDE5z2AathHcEh86TziD1S75adELwXjxBQtMLXQ4qWF7X24OdmCJiwLm5joZTXy+xnHTclvAI6HhLPNDpr7aKp7Cb6YPEBkIA8LqhrfNNA9hgsCCAlADcyZXOzzNl+1QwZhvG6FjgJhUN8tkc/usS66NYgsSDxlIdXjeo+b2A2oEtJvAPQld5iFdr+hqvpc18Cb780q4FnheiJAQm2mRoqGgttkhhhWznP9C8/pgGlTJ7k6cSAqtYHGHTsFmCOQS22526V5Rn+HSjQw3GwIiQ8wq+Of2ZCDhJkfmRJzn+jkmokZhUlrxgLQGzhiRWN8WxBTKDwV6nXkMDVx2qDC00MtxlQO0Dq3ZpBCtbHdc9qMKhC5OEbzYw6DaCOUJ0o9EFtNR9pJ/lYhxSEXNH3AwnONwdRnbACCMu2ed2jabOWOkq0dgsLjcXVa7EqnOYx0fQsWBkSjGpBbGlI9xvSXI7QlrEAeNCWSSQIWQrK6u6HNei7EvUTt4bNPC8sZobq1XTAg+CiRBrllL0Al0l9Fm4/xha4PB3uUeM9swMgsMM2d6b0JZyMNJqRKMZzAJpLAonRz+numBfWovdQREXwo2G6a4sLBDQPR6lwLRB8ZKUEmuou1UupLRSGwSCJODWWXgsPLC9Cn7orxQJrcIRdqbWDgGHiFZVNB+RiRlfQXP6gTF1T10PQYi8AqgcHjt5WbaTTQ7EsbI6MkDpCUyU+xracMNjUBDRWMSRF1I6g3eX2mZL6CBFM6G9YSnR5votDtjYlxFoj+FvEo4sGgEelg/z2ss3JDi3Ou0LbHByL1hq5zawxgSBpKCHFXqo4uqy3WufGZyHi3FYPJsjgJiPAY3OeUFpNGE0gv9z2BtYwTORBHz6e53S4HiCC++YCIE2v6LH196AF06QItJqFfOkuZECtWNtLlnmen+Z09Raiw1G0RWOKvQJ+cdrsuZCRlYwFYIEkA0CYiwQNKZhOuhYBidKPXn9YJtNVdnmHoW+4V66uE1A1lJoKvtEo14I6yPz5kR35m+F7AoqWDGXlELlaKsGuSfc3rHOMajYhMnjKCpupz/WfIfW+yDbFngy9pEh0DUNmwJ/nO5ZnvzautZiZeDr1jinQIPExXEnsDMNTdVR2L9uDTTZ6g+TYhCEhTYeNqgO6ERllmeleZX5gGw+gbmVBclAtpxhFm6t3SQiwdncBkUZrnvvPbnebylK64D7VZ53yZRKCxYQYwCfmNAfpmUtyo4QgNhsS2q3RsFayaGdb6aK/FuWsCNAVY9GbSEFzrU7Dduw/GgMoXPzuqH7TWPV5b8A5w7oWEbVga+aRP8dVvDVCxHRfSSKFmWOyUmGttRyluh0etMBwuv5v7abM5/YZ+lmGiohun0tKmUb1eT6f5vcXG8bKD6KAvsIMPV6K21lP9Zf1AlnvDnz46Zwqtjd4hJphN5bavHTZOkMACneoL2DydpPTT+TFFZGN5KFNAZ5BcQbUbVm2npfGUkyEw31So4hIRAW+fH2s3Bd+TIoJj1H5FD7R9JZ6cckBXPFGxJvnBBo0hhm6ABT7yL4W7OW64xjh60JkXZOHpmJKeyy1RnYXA9lEB4fpwAy+wExWQyYLzkaGq6uf1hGJKvsc9pl6DB5KwTo4c/Y3jnnYuuyCLAdEV5kJ0BnM6Xu0KD59rVlvsVAXLC89dZJhKddrlWJEcJ7pM6E4muhyPVfL7IFgYw0Jz00wBclSY74/hRP9NX0CMvaKKa6dIiBVEhpDtrTHFzErrpRqySl6gfRSTwSPDmVLLLoLEjMEUJv0E4AegPOy7XUbvP53lfrMvFA2bsFBbW5OfHHx6Y5bww2YfrUeJSAcX9OKFC8sjlhXjNO0ZIeTQHURdKl5H0jznecuB/BtOMLtrHohXY5ZQCwTN2y4FeUceGNxtYXoLFSba9EBNQEKs4kemPYAp+xz3MV8tAss6Yh90NYROV+oxNLgl7XxefJDP6DULA9LAvjeK1D28bdmVbPLcHO6h2eT5ABYSQi2UF2UfT/J7S70LDYnDlkjig2Jtc5ypOmg7cn7c7X4MMyOBsrcAbWKroNoXX0F2FYdED5T6Y+us7Mb48DBc7itDP2lxHOQLW58/aOVkUs1o0y1MQQ2My/Z52zQnOu9wTMDL46zEbC6FzDcPDUAPPTvXseIaFzrRgQW4qz1OjJ0Mbmo3Q4zVMvBIXUDdBmcaNhYD7IMnCwLHACuE2dnZ2LZoHOq50+mP5XV/U5jpWf4nxC4TdIAgx1mWl1eyFFiVG2hqLZ1Rtkzw5gxrMATDBWiY6HOP0uwdWHbdjOCcNZVfR53o9HsgNAtszxwDBkIOmcUwVZ9BBtrOb87ANruHLILK68WTEHusQ2PY3YRdsDpV6APhf0thWCCyKDyCHrF9WCvMcEzRw9ruKww3Cm5m6IZXtfHQ4ia9Jc/oRR8CGbiMrjreHpGujnYAmrCLG5SMyySg1RRcsVznP8AUfJ6MA7ocCQgVCnuiN3B6UXkS/Or2DI18ACIUdyBk62GYyPGth9B8GHkbDznMh1B2llN1+cfCems54x7HyCHDLMETrHNlYCICk5shln0mOx98YqAgyOQmRyOmlo1yWzzOocEyTjWWxC8ocofrqeu+R0lMWhopWiDOBMcy2wshQl7nt5Z7cPQUVFqgcXZMyQdNMq+BRwahgvQFb1KbIuvCq85loa45cBMxJsNFlIaCUN3ZRvo9mRKY9MCdJxJcdaFfUDyOqqac7DO5HJAGWF21jK1XZnpSfP56ybYCCYP9dBi87miO2Ahza4PzWot6hlLcPWG1i44PaVbumO1VZNuEkh7cYU15pkVGP0kRQbR2lHTt8rI6DKsZRd3M643pVU9bmOYD+RxRCxx8ohLaM1Ou7hBDg2lukhLgOzmyy64RSWGEYxCq8OPPLHoEzkHXZGxMfnrJZ9iHxSsa53rvldRPlvVRXsMBbOcms90TpZT9MPpZLdD2lW8O1Mi7JUXRWSWMxfj+f3unxKrrvoj9acfakJp4LVEBoZvQawFoNLwKpFc1D6dAgvCEJho56TKW5isO6smeZsrTQz1DjnJr1k4qUXGTD1juKPPVTpYoWXPGNWFxGmeSDUzqDjD6Znh4guAoGwwO7Xbtsdy6qhPoiDhk5yBb0Lh16ZY5wLz2VI6dhsPCsEDZSefM6g3aqh6/Oah3TtYAymVa9OoPCReB9nYuAHlOPpSAmnu/O9YIaAi+ZNoAI2BaL6POOleqwDCYaK6p6BI1TSjdR9Mq95bYW6QkdUGYj5iYv0AfFFn0VfTSl6BlSbWXukdXmHH0doHETgQVJ3IVcK86OPQyToYNdurknBoLSm4TeDV9MexFxNsUnVmRg8/NR2JOdrYg7BF6TlWvT/SeGWoKXvgEDs0B8B2C7NChAEtaeAqh5uGHvkzhSvpeo+T0Y57IiEu4A128P0GroKIUTpWWhyjeRjMix07GQAi2VuXbbG4GmsF2m7eX1x3aqf6/MZ53zgC8CqRfvUNYULQdBqEwuL2B6RmAn9ECsb6YgfF6lZA5sjoifc5bPR6TbMPAuh5aQGKSfSU9ModdY0DtGRwVnv1kUFat1a66CjyC5plr+l3gHoKci0mO3NMxTWIJOwawgDw3oo+HgWfczxCyGDMJmybdFMGqhYZTmdqawum2AtMDXZsI5gwGbnXJHMqxx1BuEitB17jYAQamhIg4i9tEe9FYgMliNihTLNMPR7crxWZB6nBez2yw1UCFXmx5YQhg0IMsDY9ULj1G3tiEbB5cJEXPzuoPWqpety3EJqRawJAJxDGGmWOlujMHJFL2LFS362Wa3GSuLNxliHTiciNpp1Rpcrqlxa4SaihVBWNT9JEjF34rSpQKPuyRrKMNxeosWE41hX0okyLFta7w1ZFBsZmRxwMIxAYtctCNri8ycpdXEfN9gm44sJ4I550/wBDAX0RY4mOduEPWGHNDgedROpIS4jAxE/Mkd02hdHgrA9VjtAYYFPQg9Jphzo5ywC2T0skBM9nod3PFJLg81dxc0X9BMAkXeeEoNox+t01VmZkBwtNFHNs6HlCjdi9GLACQnS/RnpBMgPjSR6ibv5nbiousenzGrpjbm9ajEAbMYVYEajGtsKHcBfPKhMemEBR7AwvBRm8hjtf/8QANRAAAQQBBAECBAQFBAMBAAAAAwECBAUABhESExQVISIjJDQQJTE1FiAwMjMHJkBCNkFEUP/aAAgBAQABBQIM8ijkSWMyKrG2enJUdXybiFKYSQELnRUc9QAG/UnLo0shlhMkyWCO9WOnSDNQ392lo263qOmS9Qt4nojCr4gdTRwsn6mQ7S2YnpdIpo1dLcEQ36hKOwfexyEFYFaaUWO2nULbCNflV0W3uEckq4e+TOs9/U5rlk2k1Ml2I9paIkiBZfLgv1DKE8Ns1CrZizyJDWusBcrVWKfT5kCOOW5kpPPctGb1J+PkyGMtzIcmny9UaAW3cslbpHyfUCuKQ8dZDRGvYVtHih9XiEx9rBa11vHEr7IRnX49jaYkrGWK66kPLAv2sey2bh0n7yJBBpN28qnkArgNvgOGWxjOclpDRX2w3Em2cYzAhYLUFWuxrLbtXqesSYYjircePIlWr2udYc5EyUPKiYqOi/xDKFOWw5nFY8JpC8KKDBZBo+ixBLQj5UyLO6+S9PERxh9RNFmOQza8jGSKe0tEwTr7iZLJmLOKxxpGy2iilRaOulWwv4SioItHHe6dXHitL8T6WwQGWcs2968b36aAM0GmbEGW1LDyUELo2oWIAelSMBRVch89s3TpjFNyrpVq5HRKlEfZDmsrxQu6W6OhXtvK5BgG9zXOlua63QckBvcmluI6insCSyPA2XZyaqH4/c5jyvjyUsm8JGikREprJJDLOuC5t3Fjws85DC1Bt6hod/BunZyyZMquknbYR3VcqVL7MF72GmxR2DeYZoVdWnYsjsr5s0MWQO4Z1yNJO4zqyx4JKVLDF0w7bzHQ5E4rJDZXvJ0cIXXVkC8kxsx8n0icgxTGidbRoqxa5fzio491qnGRPHvArZ7I4HGK+LLo98LH8eRKOhR6TL0HrpCy8lVDJEmSqxXWioQkNsqQOhYetOwXjy5xlUKCIYhwkQIHvDBk/f1/tZVFi2G47Q8VjQQxNREEMrZrTLqPjxqpDxwaKrhS6nUMWsDHmGc6KT9dIKnK3c9Hah27dNmQVdpcazSagZ5ApDHRM1E1yC0+NJFRpuO0cWT8Ybl/O0uBNaGp3SzA53KtdwHGY/ovBP6k23k/32DV6i/314t6jTOzklC6CnHyV6Kx5kV5bRFbK0yNCRdHta5twiI24YqxHbPy8+/0uPsiaUjujEnAcsS3IvfJD7x/v2RSdQd3VRZL1HcuSRJTs2uV3maXXaXThEhYsV7Db9Q5g3MldTdjLuXTrHErtOvRsO0/cJHNrC8uRhvbGg/ulPv5twm0uwanpEOvdJN2p6XPjr4MmS4kogGOTTI+zIMXpSzUbYMo/knsU4GjPOyPAjSZjSTTuLczBxDGEQ43dhMbKf6UeOgMqk3sYTeUmviK6HIVCCuWbxGKnZqBGpFr3I2tqhdFLYtfNGZ3yCfrolORtRNVoNQbKzSvwxtMSHBl35GQYbub26iTYdCMpabTp2tjyhsGCQXnYzgueyrXjZiR3OjYhcjTEK68fwAi/HI9yWQHoMn99VCZKg6dEWHLsJKx59lbqd3vuWOR2WX3OlY6SI2nagsRbe0bDbMeWWY1WuXbOufprdtdo/Z7pzWJhX9j3/KNG/cBxJBh0TSkisaI9dZWTpzOsiNt/u9Mfd1NaRmTpTo77S1B1PYewPMi+A0n+TTwFNA02A8OTOesbLayDHedzinnhWPHr1/M6/5Uy8avl2Dl9FQkjYPzKkxE9JY7kYwiOLpRj35Up4mSDdUfLFrhkpZDUiVtvHismzxHJJaJcYVoUdLRjG2f0kqZtkBw2WWnfGmEbMDBce1Y00hqHf1AjpqNUdH07DDKhUgnVgbURZpbOOIIn/rotRIXUCd59R8M0nwZCgFFysLKvR8w7FDqR3NukDbVcYr0yaj5UkomAJafFHq3cLSG7uZDjrHJHlTGrZySFc8Cucu0fLY73Nf/AH1SyIEIFijAulvOphc14qxZZyEZP+40l2jCEhmNsJLsWQXY5DJl4NzJujhCWuqZEaKadYukYOMmSuCDiJ+Y1KoIA7U4WHM1uNWK0k2ShctvutNtc6TCtDDAeS4rXcGo6wUeWRyPa/8AyaWaUcUc6Y5JKFMR0YrkEZwnWZ3vZAXaxri87S+e31Kw3WopZI0GCUNo58NzmthoN8hc0i5GyhnaMNoAkgnDoy53R9KO3lCiaXuJTT6RONTUiI8tUTkavmsxGWJoc8ySB0kiNGfWW8sbRXVoiGtJ5iElkHh5yq668aRArLCJBjj1FWbmvIyusJUWQMns6kkmek981EvTK/Kgpxx4Ea5mEtKS3G98awCy4dyi0kuSaDGhXAhyWzxukNlvd5cmK+AdobSFCspeRq05sbpPsWfSMjKoGrhIJy5YtmQ1IvzaurdZBFp2u7PSI+Sa6OHHRwPdJhy42TiKU+moTrAEHSFYVk3SsEOSKuGN8ihUeWiuWRp97gxYJrxWHJeKh22S4kmUB45TWahg1E+SxmnprWGrZBHJAlHaeJNDl0buk6cG40it0zFkotJThw8erbnpNfLSygLEaT3LR13njjaNr3MsKSqjtZXwn4tOLnZRZMRsV/KxrGKkm6fytFMNgqiVPI91faKCSKYudUs5Zb5kZtNZHcSPQWh2y4UgbCVZUbKaaOtfbpDgacmmKoDx7KTZwYGy2HTEjSHJHWZtHJs6TXJ+ZVdiOuHBKaU2QOOEd3M6CxTAlN1ONrGUEaKCDFGsmPZRSgy6igUBP10gdBSb5ZKzNRPYUWkuTmCnNiSLKXJTDyBnFqD+zSMtgKyvOSYM2lkMssSRLGYbui0v7wSe7jUJ25Ah9ALmQxzP+6FcMltKaYT/AO6DNWLA0vt3gc10maRyhd7qyXxSZ7n0tIZFgUZCWBZio1NTyFKAMnrfZrvM0TxbW0FqjpdlFnWLZwXQzSD9uQ1/Mg2wwrGC3rfBhw8tGeJKNYeQO0XeXpNvOfFsX8oxhOBIZAbkhfqLCR3gX++llLFiaXchY8lkeSVRQXMIV3dZy++PDX62E9fPufisZzdq+ttGRo0dpJUQ1SJW2ABxpciTyTS5WxrKuMpn2FOjySw+Oae5FyJFA5lTEjcxQxQbKfIRyuRnJyiakfyEhSILWJW+9pDcNpKovEMkw2CtlcYolTnqVqNDEAvi0zzOq9QynOjyB/Qv/XRvEdhqQjGg1A3YGnHm6KaOaatuMixDxkGXUQniZpcSSK3TURgpMsaNJa9/nzIjo+Uy8bf5XOpcjHxDObE1GRiYuP8A1k7PC7+6KRy12nNuwUzaXaPYAjkx6sYyT/k06RoqmgKoXuf5WXcsUsrS9OWruUzTcbupdOBLGlWivXLZXNmSQ/FD/ceIEJWnUYLQrfGu932HQ1UsF+p0ou08DGGPALzJOl7ld75ZOH4X/apUY6zT27a2Qoo9lKN8r/tYDagof30PZtlebefO3Wsq6/y1oxISJbiR+TmOUhwKXNPg7pUKC9pLBEflqj2ybACMfEqTlj6djcRXA3vsNQuYWSWG0sMUV5GBPLWJMnFlvrV/M6qEGUKnq2ICwZ48iVBMbBwo4c1R7ZFjkMGqkbQrfsI+xC4MR/66cjlVbp5Jj9Qx+iFpoijj1kl4yagtFHAL2vdfbvi6b7PTNLzRxz2FpGUcgnacnJzaj2t0jRiZWgYsiKHry+FzVwkTGgFlsqdS/wB1FIGGHWEAsw5OuVJa0+NjNySg+Er/ADaK4eFDrY3bYiOBrqhexRDFlkvKZp4J3UekUUM6zUKZJk+QZWr31Qu27iVBJeTI0iLks7G1h9ymkRyR2T/udKbOsa2mf1lRUlW8nuxkcp1tovjRP++n4QpsaLGfEg3ImklT5qTzsE4pLUPWGF7zYXH1a/ei2VivCGzsaPTxUEkmewLObnHktd5NG0iF0y1ziEnxdzSnFdMa5MqrHqDRSUMs6ayOebMjOU08DFSaj0dOVYE050JW7JZVcRJhohjQ48kopY7lGtQLOJdUfrTTjBiNkSPSrKUfhavI6I/9dIPIyPdWRNtScyC0girglCaTdR2HgBaMTNT/AAt0M7aLEgBnDs61AY+vYzLB42R4aq2wgxlKSNEDFExUSLamR+BjRli2AhCJYclCv6weKCpxRhLPWO9wWA3nRhOQgSc5P+XTISGiafpnMTUEJEeOrZ1mgHiZN9pGlSI2no3FV13zUaR2hfJK3nDdtaVt05iEVZEaUIhMdMe1xj8hWP3WmncZ9JalIOdKG4Ulfn+cdrLyYpYn/egkS2R61SJBsTGLIG4z3vLIdljyOkROM6KZB2d2/wDNbB/NlIVrWxEi8J4HqJkJULKejc0wrEm15IxBXfF5g9IhW5G4Lx8qhBIycaO2ZPMA+FcFxkIIeGky3RTinEZF0/aMkV0a5jOgWM0LrSQ4opfqBh8bJiXMWScVeZARhWpCxpUrd9hIG8bxu3qpXisurv1Al0dHQtGB7w+nzWlK+yIhAy2Jq8ao/RjmMDCsGNWTPcrTTd0tXsIKB+5hIoVi3DTM6PgnPZiuREeo9p7vlr+tf9rUzpUfJEvdTnYudqOZwXjOTjJ031+HT2o4zrSXDsZCGBHR713kruXSTRrWxmABGsPHWO9sVcMEPCKvCyr2ODiTosaBNmQjuKg+UjdjZ68pWn12m1yNEAooZBzvHYVDt5XpNgp/dUOE2PXTayOK5eCXL4i58Y3Cd18YXvMio1ba94+qF9wUD1XFexjZRRo5JAHPLJ99NyfDlhslI6YreTpnYlm/cdevy4ls8IbKe/CznMz1ApF5m4jkcic/iGqI1HIuIqJivbjl3VXqmJJdhvn4xiCayaI790fnFucWZwE7EixyIEAo+NXbFAzCIrWnjgk4GKKGjVK7Hvfwa0a4SEE2NoYA3rAC7EqQYlPDTPRoa4tTGZjayOmPp4pMfpOtXPTQq11HHVV09D3Jp+K3G08ZWtrRIj9LV5HRKiPBQS9TibFK+INziVkUzV0pWKsethxmMcFmPehG+IDHVkV+JpSsaQMcQEVyphIrTotVHVVqorldpSsfgtKwAFGFGJ2r1khRz4lVE2Pp6vO1dLVGCr4gMRRpmw3YseOuOjR+s1ZGLg9MwBODGaIpo7ZziVcRqenxlT0+MmJBj4kKLnjATGDGPPZy7JiccXiuLxzntnY5cUj8AZSsQi432Xs9xrun/pHe+OXsb+ibYjd8XduNcg2s5cUx+RxtAm++cts7N85bYr/Z4kcvxJiNTNsX9Gi2xWqufEzGLviNxUVzla3ZWpiJipjkRc9kQn6bJs5uK7bGvTEeJc47pwXNl32GwPUipwcmOZviiVE2cmNM9qpKXby0RvktXEMmdudq40quznnPOedmd5VKpc7PbnnLOe+K5c5cWck355zb2dvwKXHr2t3RVV6NzliuTOWyI9d/dXo7ZOaLnZiExH+6uRM39+eJrAGfxfGXB6yibJrKDn8ZQtm6zjpn8XQXY3Vdfiapr8bqmuz+J6xcXUtcuJfV+Nv4GPva92eqwFxtvCz1eDnqcLPVomJbQ34k+Lt3Rlzy423fGztBsjgbI4OK4edgUzvDiyhtzyxrnePFMxud7duxuI5rscPODsc1cRFTOY84pujW7bETGlfjl5pydiFcuO5LjmLtwXdRLnUuKPHCVU6MUaNzi/b5i4ikxxHpnaTdTrnlbZ5CYsxjc84eeaLbzx4kxjs7mOxZDG4SSPd0oLHLPFwZLC7PKDv5YcSaDbzY+LLAmLPjpiWMZc9WiZ6xD2W4h561Ebi6ggtz+IoO66kr9l1PAz+J4GLnw4vDNm515wdmz8+PObkztztXO9UzyM8jO9c71xJOJIzyM8hM7UzsTOxM552omdzc7m52tztbne3PIbnczO1md7c7m53NzuTOxudmdu2d+LIzu2zyM8jPJzvTO7O/O/bFPnkLnkrnkrnkLne7O52eQ/O5y4h3Z5D87353OXOx+c3Z2OztdnYq5y3xVXN1zmuc1zmuc1zT1ehj2xXMFqKEkkzfbN8R+2IuJvnF2cXZwdnB2da51LnQudLs6Vzq2zrTEMud7s8l2eRnkZ5OJJzyc8jPITO5q4hG4qpnZiEzsztztzuztxC4hs7c7M7M7M7M55zTOWcs3zlnPO3O3OzOzOzOec85ZzznnPOedmc855zznilztzszliuzlnLOWc9s55zzszsxH52Z2+/bnbndnZnZnPOzFcuac3SPbL2gsveZzzsznnbneud655C55K55DlzuztzuXO5cUudmdmb/ANDbNsaxXr+O+b5yzfOWcs3zkue+cnZ2OzsXOa5zXOa5zXOa52LnNc5rnNc5rnNc55zzmuc85ZyznnNc3dm65yxVzlnPOWcvw3XN1zliqucs5ZvnLN1zlnLOWcs5Zyzlm+brm6/gmaf2QEkewbNvGa7+7fOWb5vm+cs3zlnLOS5vm+b5vnJf6W+Qk3X+hvm+b5vm+b5vm+b5yzfN85Zvm+b5yzlm/wCG/wCO+b7Kjs3zlnLFXN/w3zfN85Zyzlm+cs5ZyzfN/wAN83zfN/w3/lZlI3lHku+iuGK2Yb2L/wAmG3aM/wBnf8Pf8d83/oL+G+b5v+O/9bfN/wCXf+SO3mWi+2lIni2znOJJ+4/DfN83zfN83/oO/Vf6KJ1xlXdfx3zfN83zfN/5t/62+b5v/T3zf8N/x3/pb/y16cpen9uiRybDtV+KX91/Xfi/0AM7TTnfD/8AhbZt+O2bfgILjvj6YspCN0XaPc/Ts1ivqJY8INwnbZt/RTNv5EypbvIo03iE+ytU2bN+8/m/9/0Hfy7/AI8VXKgSoecuw/8AmAp5srHaXsmI+lmDwgXiXGAITGVksmPrJg8cEjcgxHTJQdD1QVLpSlRsnTMBVgVaR7CvoWuxa6MXC0gWtmVLmCLD8++h0tTFV9TEV02lCmejwH5M02IzU0RYY7Sclqm03KYu347Z1uXFYqZSUPqqfwzBCNkAMN1O1AiJ8UO0Xllgm0/+VEV2IJ65xVPwp6cluSHpKAmCoaZirU12/oMF2JpGHIc7F/mTKxRBDLajhTnb/wDMjpueGyKo5BKxEVYmW/V0V6NdOrwSeMtrxNIhS4YJmsFue+geKGJZFihSRHiiYEfRcignFh6xZIWwjnCg5AhS1UFxGkECGQ+S/DTZDAmnKiiKqniMFKJZeN2Wb2JE07CiSBS9PqxsmsE0OnI6IOZAhxGeI1WRgDr8ky7JYBzyGAqHry2XwrZFTLL9w/l0XViFXshSXiswTB5Z1Sz4GkI6Nc+fLjGWVMsmOhmANbE7psq0luQ1JKHkmKWKv4bfimQ66OlRZRgOjSk9/wCStpCWUaPpVhEPpwTMPVyAJ/PRxRTLEumI/g29XHjw0/GmrUtZr9CRew+kIwUJpNOkonBJkb2kxwxBilGeuPInO8CNY9c3lLrqoRQzBQBveyI9qwBqIDFbqGLp6IkGTCjJHSEFRxW/7oW4FHERs+2zotKzHzWTYtxxS5p0a9LR0KAAktO44K+Xkj6a2rqiKWMeDFMa1gMGLSyFWPPjF4zZDwQaSPzBNDALjo4OAGN9TtrTxIS2A5DKz7v/AOG5/SZCNJs00hN4Jpwip6A9F/h4mEppIV0pD82IlWkGBICkwtwjokbRT3chVj5zy1KQlIVNvTCvaoiCDObHeC5GiDpq6O6HGgSBteA53eBwS9aLCM4O0vDPZQtQxCwmNgyJjRaStS5/A9vs7S85uOoZzc0vDfIFE9KFkhalw7uGsaLp+hjlh2dJHFkOk89Yek4jmP0pXtYXTAcXTYGjrwem3zSR5EibCdPQGjgcG6SiuQulBotRSOg2daOOsabGCiyNm5Y/fZG+5YxzDxZ/GDeH7w2nJA1K7TGuMuVwBSnS6uB45SuBkIiu1K6zceGTT6vJKUtSeOifxionBNQlIGJeySLXcHvdce98ywJ10LlHKNZCJHaYrTnXa70312o7ith8pR18fQ1cA0G0hV0Rs6pivFVSSwWeLEOK08eC2IDzrclcJw7OIEeViI2yfv4t0nywOal5Fm1IBms4+OljJjCQ3BtF4xdLGdEhmrWzYtjQGirerzgaFYqmdZq8cCC+ec9DEiY2a8R/JRWzLGc9t09HZVjaoxsKPPTWK4rPGdLfzGVPi0k1PF1KRHPoFUsRJDHCjyF7DrGSGb4wUMt8Q1fpwlqllpR9eG/kPfX08ALqaQIJG0b3dcIlo5kuRcrkt9obHCONA++op8vhEC8UiUV5Q4aRLI5yFY8EtQnqCeNEmj7M2ZtU1LJmTaXxy2MQHlKVHPjSVHCsXoR9w76Wv+8J1tbAcwZpspUETiuQffVnS2WOYJSOuGP8oC/7ydWnCKukJavtbEde5wDFbae9+EDtq3oG2aNzWFOgpZlR91plrg10xHmknVA5pCzKIR+iKy2kP74m6uBs+PbEXqrztiW8g6Pk3JmNfUbEujO+kvE+TTRRSNTEAKDj5kohDTpG7EjzW6iGwMTTghegAE8dbbD45qP4KvQ5ODi9LMCXuf2R0We1oJiI1B20eJ0XuaWYkQfqBLAo6axXJlgWM+yc08Y3sSiA6PXTxPkM0o/jDjRzvgCB9UlfLSJNQwnQZDmWOluS1ds3sDcr+X6P8mdGuKs1bF0yqsdHm/TLpQJRWMFaKbJmtkACTlqAdVBZR+OyPqEYBOjTIksxCseJ96wIV80MeBbEmjSQ0TwaYrTy6qZFAwlkx6ZX1juLp74YZavkyb0Kij13vLBAezCcGnt5LZxyicVlO1S6mhxvEiuso71kEkz8CVodUx7mMIZTxHvVw+yZYtMye9DXlO0KMto7IrZM2TZL6aGIGUxxb6laerZe2z5BJte8Y9PkRYp2v8qxVjRVMfyMPJDALKGyZZxwctRX9ORG+A9B0beF4VEWHfJ9PEkEiajQhXQq+xWKG/mrMhJvy1FyfXadUpKxZ3kCt7NrJV69fA0CnKQyh8kHp5IJHSSKFsEssgIzIT7WaAUbUDuRasGzalm8hZB25bPa+a8b2hINxplZBekG0V4Y+lF4hhWRXuJXIpH2siufYF7o8dq+qaUnduXlmxFvhEjwdB8WA1Y7xwacarkrIrSZKEiBvROzx2sYD31DAntWhqnJL1J4qR3llnAHUUxZB7Mj2gqquI2usVKUUqEyEXS1useKaJT9th801U6RtKjSyYdpQO1F2uDUscSdXmsemZ5kjCCIN0h73spwGXUEaY5I5SsxtkUqIvhahiWdg5j59s9DSLZ2GnTWqOElzd14oQBS2wNpDog8WS0qsgEkWlccwI8qS0BJrnPjaJEhauwhIhbHrRNOdpXrzWO4qq/s5W0mbEUTzRDZWNYC4Rfobv3jhN0agjuI+OLiaVYPGwSKrVv3KtRo44hwZz6+Q10WOx+pysdA0JzE6FaS4+GOWwPwKwbiHaMvk87Fd0v2q0tRHNIFVy3QjK8L4lzJWWcsQrMI9Ry6yrhSA3EUEePo8SuiUcZZs5hUkuvI7ocyfKEGthlQVxS8GFlxBEzUruVfpCEvpl0hJxNNMQjamG+sM6WFAypMicj4/QKm+PUVsJpxh4Bu40UgWlZ6i2yd5+To7xtDSPijnunkw8VYEfSERsnJEaJkwiw58GNDc41VVNSRFiK65D0D03JWJZVoLceEDbNZKZYopn2IErpKzrgNfUrFPFr8dAhudXmcmohOO9qq4ecXvScwg2EO6PfRoFVxk1tQ5paqDy9HgZClPrbCBDDKHJroAnSArHHR2KCiSpzlyVYLle4MxW0lUeDMr61joIo/qthGiRwPCDetbxt2p9DcrvGpGo7U4ogwxpgTMkygmKUII4BaoTarpbaPBqPW7BjfW5BVvZUOZXaQsDNqwNuzIaHdNf1XAlcOf27WA1lmjsTURUMTT0tY6OhGnZ6SXgovFdcNIopP+eqNKfHuHF4f6fEe2NIgCnDdNlRkHBYMeo0d4MCR41jWyrdyypV2rbKWdwtKSWirLSQ1Xaa8hmV8meg7NSmQchYzbCU4zKQxI99ObanjR+8drFuGiFMnAIR9gxBT5XI8O4MNs2zdIcYziA09B3r1sUSHYe7oUlGPPNVwEOjV1Htxof3GKUC4vWhHoN+S2NRlGVRXkawV0CTLcjyWJHthCcfUsesI1C17xNLBfh47hDmJxvq7ZDGkjHKfMEwBJLZLooXOu6ySzjNmoh7OQ0gtHnKgbQsgj5iOQdOc0ZgnSnRSEMroj3jt7OW5kQ1iYyxfmS2NT022/bxvYy/DY1fW+wr3v8yCjfNhZarGkVul3uSsOjkFJJ8zVSqkTR70YKtDzbMHGEktI6I/pcVo+10yRPlpdO4zotrOlOaW/XOq+RkiNbDx0yZGy1Iw9hURJXC27uGmo0eLDDfQhBNq2O5GanUiy5cadHrx9trWxRsWaNHx9QNd4mmqiPPrrepjgHVGlGjV8Oe9h66auSI89mTnTemCdCXiwuEERXBswCncZLZmxJExz2DOk2vramYkyLXoSSAYo2lWEFX2LuKagHsWuSP3mGJ0JqgfmpEb1UKbzokAbiSgpwWMjjSwOVtOv5nXgYSLOcNpTcO2G9R34ZZisdKkbuObkcxEHL976D4iGL1JLJIhjZtBe1gQpeVhAMdOfF7LLgoNJ1xijmwXOkSITuMApwAF5BIswMwQh9iWs/6IU+Skw1a3eYica62+wGzfUg14xT9oHGQ6NK17M1GNA1FQVGwOXbCMzguol3i6LFzYKF8K07HKeAOOJwhswcThkiAxXXreJ6JRbBViITxnJIaBcnezJH+aqJIQF407A0cRksNNpuGUDquA1k+uiCjXEYPgQX8ZlbXqNZEVpw3DPyzSsZR1V6PkzT7hsjV5IpMOg2x5xA8Z72FfTK31h0kI4UbZ1sDoUKugNc98MjIKIGZBsmvw53qSU/srdOxIMgEutrVW0EJhq2IilKBxhFhdRdSh6h0HtOixH7GjqdsiG5uSBlayq/cYMBy1cut3ZJiqFavizU8KJJdFm9qynKZmHcR4TM5ajE0LBrKhuIZ8UpnDAuQmdlnXhAIcoUfttxA6dJxCyRSoaukGjZS9zzqJw6s1aZzq9E9XtWx0iKOImVyJ6wVOMK2+xOR4tR1C9saRFIV0sbgK7seuo3EJXVAOyA8BxxUQrjajRzIujR9kSLCILJ9SuOiKo3RmKxBoDJggbXabHrehsSMWKiF6yLKSO1JTQrGL/nqnMbGvicg6bjlkRoDzIKUQvZIBMVtqisr68LjWNPBOmWEFyRr9FFB014bq+8dGypT6SmHuCWoWpLfj/wDFTCU1uftYPrcC8giivhnDXcVFXvytZ1zIp7AQSkmtWV2LV0HYlfZOO7LhzikroZXPkuk+O8ao+/RemgT6uMLi1yo7JLEah3k6tMwTSLEIZrI8lx+orm5GE2PattKxWPtq5XLYxFyRJgOb6d+digOOw9YQTH1a7kiNxIx2XECAiCmV28i4hlALTsMvgPRhFkhTekHzNIY90MkVuVsEyW8vyHJMCqrAA4Nkr+cK1+xlJ/uKlEr405xO94pBcQRFzUO7a2hkr4JpHGDuRSaoc/x9IuJ0xWrwmSO7FQCjLEC5Ht6nTnRmsuuLpFUwSx40WM/Ego9s5BJk1GMYjuudCbaSItySaEWk5Lo8cMeY5r2yVdM7+Ns13pNYZQz6ScIOWRYx26iRUjaWjGDE1DEMPKBrfEoxBcOdkzbhMezxKNG+rFaJsSSPx7WFXRhx5QY8iStUJ7YYuiWCNZsYeNPRZjiNp9OuN1WhJHfJnEjW0CNay8lQbQIiRbBUuJB2A0ecUUsaws9pc61fhJMtznT2sbp8bZ1qmkobBSYEMeHpWNSnZ5Wohx4Ao8udB5Ns4zyT6+KUUWW+vvoVdeSTHoLsWOrLdXEi27crbs4S1dZcFZPh2gsnusIeaYZZ3OS6m6GsmPZhynLLmPPD1B1SItqx0ccp9tP0jxYum3KgELGuAMX0u0/bpbf9y1b3OivZJRpPJHjZLg5qJ28WtnR4tM+bIeN804XW82Mar01ZJGphzb0jSyNRphyahKJX3A8lzp4mWM1ypafVy6iuMBoHAAIs0KNP0PbLihUU2O6JZAlsLEtDBWt0g9HRRxEOLoZHw5osnNQfKh1ktY8mvl3rsmHvSJcSivBp07Y8S2K1W6d6o0UVxWNwtnCXJM0LBTGMkC02/wAG+so9rKagSntwUMWKCRXV20iBBVY/0cglzIXH271yTMSRWaZiSnxptdO3thEHNFYEc6eNzwxyuim1KVpBab+/iWzRPtZBiE8skd84gpEfSZigsa2U6RHk6d7ZMlpas1A5Xaji2HdHqhxSw7dIBYjZTwjd/wCUjtwhVRSL507TxIAhXLjRw7O1XXyjWQyUs2M+6lI8OjLYVdAkV5rvJxHCbpiSOLLFQSZqSqAtYp5H59Z984JIs2rex/KwjbrDtP245I7NRRbAOOOpUaYyKaU1MuljGj6OkRw1k60eaBJPKju1O9pImgnNdgbloUmzCTySK6wIMdsaIs5/c2TJfyvDddjVQlnKSmr4zyVtQgkogylmUhYo5R3Hl6XIrYWqSuRKW4QNfHlXZ3oPUbcICzipLnSBCpFZ6nUhsFFaV9oxmqlD49JU1rYNvXxXZpaNFNESBBEAtcr08Gue26rYg49QVRW1rK8ljpr5V6KktXDkVE9HkgTQkD2htK+TChxbKUI0q1js9OhTa+tyRbQCvsJoCujgTuJGc6L4+7dSh6V0um8+GHaNKGU5ZgXgfObxXRG3qcVOGS9mBmk7rKiX8+rW+WOuksEK3lmNHV3UpPbVERdzVar2zZKgjCjqVkVvLUWmjvWPZSNyT1Qo6ICJDanKLc/46dPerX6K6mI4QE/Oo5geTeParuG1m1VGG0/bGtYup41iGEx9fMnEmQ50FkSaw7NWi4M0lDbJoopemHqKQ4iX7eMTRTQtipTkQsKK+DOs50gSPRDHcxBMt6+K2PeLuaHKdHjaZbyNNLGRlmVyTjWPbGIn1lGdAhvXvMPQC9QK+cGYSTQqklbNjn6ofuCAqebo0h2gvZhHRb9No1HEk2cPUMM1W3TTnCqqQhPIkTitHqKUsiVYneaDU/uBHtFSw29mrH2LeMvTZpLivdDkr7X1PRdQbkbbRbYDotLppWxYk8spW3Qmd8VF5maqw2i+dqBOLNNfcw9yR5ZiKZ73PWY5XJo2M6XIjxiBBK3fWO7ZBNPb+virUYjCrUziDfaS5NQwIET/AHVEq1VgzO8y6I1JIgEeODHaXUteEtW25Va5lnEeyJpWsNPixnq0hRmk5TsVphI5AXSqySiEPc2FeWsSeR8+UIjvP58h2S/l52uJqCuYaK+O8xo9zMQsSG3mup02iaRMjagJ3x2WjkabULt4ejmdgqyQZDWJjimXb/DVU5K3kg9TTO2Pc+0iK7mLTchI8icQnMzPi5qkcn3oHvLX6hftUaRAhoFAbjJsDtbLl8TzNVCRIVY3eXptSLl6TpLqIatjaMOg01XI5JprsSmqHqU80vdDmGckix5ugUyK6wk2DR1NV/5S9WjkyXfTzydsnq3uKaYepjW94STloNQaf0Z8JZ0o7Ms3ds6H48sEuOFoBhYMupHtcHSjkZYCDDlAkVr+S1y8p0Zgo+hmkHJQ8lmTETJkrmLT8aQ+e0pvHdKejnSC8TPMxrOYtT19qyOk8sexKjIwny7FxMrhHLqGDJXxpnAL9QEISJo1xgRLOYd6SpT1zSRmw7GUQcqOQjAyWvc/UJZchkcx1ajhlbYR3fSz/eDJ5+v0IHGeQHjyp713B/dqJr0haLILwbFrkEYDjG1QjEjaKI1jojBOSwjpzmiJKUEcMdk0rY+TUOXNQN4zNPPAaJEgdZJaeYN8ETXWcpjA8trGGG4JEuzTY4tBjRYqVZIqzZCOE6hUWaparYtK9Bz6CbEjmszgkZqWR3QamE6LHvGdrdInCKvRIEnHE+XyhwFuJQix9Ou67e0L5GAKM+rUq3dBNyQWQjSHMb1XjJ4GRXy4rc1G5PS9MooiXEhSRhLHW2g3DGZIsnkbInMRLyQEwtJrFYyNeQm4S2r3MPPhK5JcMq6divlyf4WGGItWjyHrZ0AlRztZoNGQXpLpaiO9tICQ6VQ+Oyulsj3cG3tnYe1vW4WzsuRrOXg708w9dpuYVZtCZhrccqsZpmJIumTtOeLk2ikjSqmqJX3/ACGW25OiyTyrCVp6asR1LJ4mmESexuwbH2jK5gtRss67azsIckxkEmRpAAZqR7HRKWbW1tLJva5Vk3UPe1k1syqp5kSHTgtX4k6bydJndZJMnJc1WsnraMDN+qsRyqyE8Gq4Ql/iZnEt61FlXMQqTet1m6UkysvTs9I0dHlxgeUJWkt+tF1B6g68D2iqSoM0G4nMbMu5xFtZziiqrAESHfSmSBV1wyNHZdzSqW0lqhbLYEq1imZQo4d1YgkKCIKSDUoLOawEw5HrJszKqd8mxj09sTJUOwESxU6VVUxsiFPENzZTeE2PZCiJOnTzo2c9j9UonXpEbSS6yVFhtlTCuwszka4AFYujpDo7Y5HSSLpUhDnlJFPpY3TYjtSSWVlVEsIt7XRqwa2SmBF3dqeJaDiAsrKXYv7ZMIizBTYkJvXqqG99hlhUGjZeyWlg6QtUhV5K1k1kxzIZtHqFLWwlmAYkqUppqpEv7OYSfXjM8JV+OYrdo9kn0k4nVdV5rNMkFvslSbkmHPYc7Ce5Y3+nzxjgWlqD03zPnapaiC0OREMy3HHbOtyzSzGWbcS1QrbIvayachFvyKSfp1omBYbyyPo7DjIOsSTNCEgf/v08GO6o1mMImUUefagFpBhAu0rB2forZ1vXkrG0eyT64U4g5rLGOuqNlFFhQo1dewgPj6RM9IDLPvdJDbcS2eX4mJB08RWWM4zy5DdIsLtmnbJGSq+YPCRJ2VvYKzdZRYgphJEUVydrItTKupjZT7xj5MuS2w8dwJpZ6ii3cp8w2om/J0kFDya1ygxLD5GopZJKS1erdCbKyCEjXuTZxovGfpNOc+H2K4DWgkWMbnB4ojh8m6kjbnWkKsSJeWBHwmMcja4KyNQaZXrSWjlDcJ9JpyJ5EGSPrdYI546D3mwFdEg381/Sjd78LBxxXW3Au/nu+KFP+zkJxvwz+obq6VOSyoJMMUWzexuo9ljaTavpxHMjV1ydSDvk2jaQ/vfFciVxHQG2NjJej2uR0pqjBcTHpCuvuYakaOoM1DKeQmWO3lIMih2/MdNyhtqtUnGeLpJ3XS0MtsshvHMNk/rXVi8QVLeUnSxyhrr2SV4rlEUVJWNsIeq46QhUcZ5qfTadM09jMHk3kaXZo5tZp/2ny1GKtp0azWRrJOsmmzyFkq6DIau9lX1sNKeR2omooyRKrTyJZgtNNOAlqVH24JTDWzmEMOc4ZE1GRHRtFKjZsaU0kgXI+WBglEb/AAaPY90OCQkPD2MQdZImmkSdH7ElelOjgrLdsRkyaSWWRXl2B/5JVR/mERjktDgY5DOYOqRzrqmsFhQ7lwI4LxSyI+ia5J8SxK+C+VGI9+nPhnufvDuOsUrn1Xg2PGG0md5Gr9e1Po56/R2Tey2qQ7EUrxMuXPINBK5boPTA0YRoqhVUkO26hnvXc4Oj3cHwpTJQy8FDZuBEOhlQs93aK1tmubc/cxQFcKoP4ayuoVfZmWZIWvOwSpxtBQ1DUagiKKt0eVgqXTsQRBlHyUjwx5urvfKVu8iieyWO1lBE63Rd9PGajNWPY5lR2upNPS2xwymsgjsZXfOuEelZp1iksJktra2jd/up7GFkHe5cthqsyIjPV4dbIrQ2U+dKy/Z49PpIXXKtHvRJCbWo6R5WmNIg4wRCu1INBi0gNpZTqHcLyS4SbEMSwC4UbQUoUcE2dXnCQEXJ0mOFuk3K0o5U/Y4yERhCRlnzDlHAby1JVwGGBZVsgJvBkGIcMeMGokdV2IkCVEnsDz1FKa6Hpdj6wMuzXc0rkPToGRrNJTiw7NZJXSJbAXxLmO6KpwsUv7m37WWnKFZbpZ0TVR8g6kSwsGCMz4n3gnjh6GCw8ebBkxASGyJiaiB1g0UxFWJB72WcRwsmCKXARBsbcr1NmVT2svmokqisGxxMguOw0A7hKMsF9m8pGMjEfcwpe8XUbnHg6ERVrhDSG+1kksmAiRoTNUkRxqYnXJo5oRNsuJSXBUewIxAi3zEWPpUgQQo8aEZ08IzqniQmagdyi6QVW3FqFX5Ckc9XirHCETr6pKHntir1XCXkkEWdKK99+rn0mn+wDbqcHyHQSzLevRqrIKwmPTil/CNIj6PAPr9ShcZEyI/HdO9oBTA0oZ4oXfdPac9qbJxJY20Bzzhs05YuafTU52OrpgMlgmhbUtFZWMKzrmsfJqVwsivehpULqiyY1a2sk3MlLI9xGdYT5A26Rqm3jrHTVdDFOoI6spTjiq+9rXBJZxlWFdBBLW1tPElT7HeRbI5EdtGP9pYcUs4NjDe+bLiHw7AkxJDIzb9zXQtKQI8akPeRlYaRD3sqwR4Wm5VdX1nrsNcNbBcsi1iqw1pHesqdHIjmo6NPanrEJyobyCtCGQXonPc59o5eVn7Wgfcc32jaMVeuqajo8w5EKx7uWpXKs3TbGrCo2p41sm59QNTppTPdA1a5VTTYBrXV8cTyFhR9rJqNNOanRpZVbiSCq+vXfVYk+TZBGqy3KqlT6spHc+buuZ+2oiJSmXc0hVbNjsaqNExUkMaizFVqUCcsAAa48TMKNuSF4O/02TdZL3JD7iJPt2NzRPssNPrOSkXT7l9Qv2N6huVtlGRMexu72phmN2037zKzEcpC6p94X+mSbiuvnWsZETNIoi3h4oVFPjiY6R++xURQSmo4Fv8AuzfsjfbmTe0iEcIMyQVzZC7GkuXuVqOyj+YiRQ+AcTOZvhbohqONAjiQcv7LijjSGNzUTUTP/8QAOBEAAgIBBAEDAwMDAwQCAQUAAAECEQMEEiExQRMiMhAzUSAjYRRCcTA0UgVAQ4EkRFBikaGx0f/aAAgBAwEBPwFxvyTpoxKspKa8ix/gVIfY5WZK2EFJYuilPtFUNMn2Sk3i2i4VszO+TCqxpEsbZCFeBwMq4MNLGhxxKXPkhjx1cENx8oZpUvVJbH4JrH1dGyDXyIxUVVlL8nFHky/Iht2JUT2LlnBS/JSXkZmNLzA2xiVGyl5JRXgzGiUVj3SGsfS4IqFUh0WVecnibPSyJ9npzPS/glF+TUo0dUShGqFLEmxRjV2Ul5GnfZl+4Y4/tjhLwRxyRLE+xwl+BQ/JVZyHwRIilLJ7jbFFxRwJ/ktGn20ySxoXt6Q3G+SXaOV0Zm4Mg21yJs+Q40xxjabZJeUYGt/I4qXgeaC7IzhJcFj2MzfHgxy9ibHllfxN3HRKVk+WV7UUqM5gdY0Zptxsx32NtGV+001vEkjLUOI9kM68I+asmqiYPuo22hpI2q+iEuBEkNGTsh9tGpitq3EHx9JJD4MxpPiajijE0+DgkqZlNEnKBqYpQe4hnUeCMlkQ4kfvGRvbwe/elJmTL/ahfuL2km0zUcmi6M2Pc7IrZZ6i/A1aJcE/uGL7aZncoq2RyWkz1LdEofgk2LnKY2thI/8AIUOkze6O0S4NJFyXBliodibUKoyKyXyihVRmSlC49nPBBtsukb1Y2SftMP3DxYv4PdfBDnslEycRMEVLEZZSjOkY3L8k15JDT2WU0uTL0adXBGoiosxcM4qjJ0aR1iRq37oivyR+PBJtxo09eqrG0ZDoh/AhkifZhftSNZ0QfFCl+Rj4Mxo29vBqX+THX4ESMzP+nS2Js1clKN0Y5VJkOhy8EPvCpIy8ZbEkmQ4ROjUGiM1rtEpcUy/DL4Jk/maf7aNT82jDfppSIcvsryTpkF+4RXtGx9jkiV7yDtngk2aGW2zUckO3RLoyP9yLIpUTcY8SHFfKJiT8kZJcDpdm132TZg+6S4RkfuKrkTp0PozfEwL9tGWV5HRj47MiJE5fsxIszmkV4zUR9lxMdNkuODJwjROKx8moV82Q9z/grbHgm1t4NP8AeRJrwZORwlFcMhzwJcV9JMn2YmlA1fMSKpC+jkjMaTiJqHwjGne5C/LJPngyn/TnSao1fVNcELUrFwidIh943Rr3GopS7LcZLgUaMjNR2aQzSXTNm5WRg/J8UTdkvmYHWNGrcZQ3IhG/cuzFGT+ZwkTkQ+4KX7Z2iXZwS4lQvl0S6JS4NDSbbM9TYo8kybTnElNUZPcY78nKOXyO75HH+SSoxfcPUQ6l0KkbkbzK/aY57cfBlj6jtEPaOVkyac8dIcdhm5RpeMZldcIxxbtyJcsy9Gmr07HKPTYqSqJNvo7iYvuonJ0XL+4lF1yyHEei3+D3Mpk+yO7aqJqV8o9wmx39Mppr9Pgbk1TRG14o3P6ZjSuoGRucaiyMeORykO2YvvGSSl7ZEowl2xP+TcNs1Jo0S58Cuy2+R3XP0l8yF+mnRkivwKTrsUmyTs5IfcIv20RdxRP8kpoat2U/BJSKNL00P/lZHJftRNS8kvki4rtEs+NeCOWL6iSa/A2kujdH8Dit1k1Rp63M9su0NQXk2pLhlodMzL2ix+yrHhdJIeMlGiZacUNpGblGnV4yUYrlkZY5K4lrozL2mn+0iWzpijDwiSj5R7a4MDSyl2OSo9ZdbTcblRu4HJMn8hS9pkm0rNzOWSstGY0nwJScbFkcjbxZZnNGoLFySjjX8EUhyobsg/3yUtq5JZsafMROH/E9n4JOBquzSDntFmkzcyUn5JND+RjbUEZNS4dIhKczn8EmvKG0Q5mJewT9vB/dySp9obRY39ME1yZJIV9olk/JJ1yOG+jNCiTljSojKUuzbZND5JfE0/3H9JqK8EOfBElGjL8THexJGWVO9wnfTJNkxxfp2Rj7eTPwjSP9slDcRiqJIy/E0t+lwS4+ItQ76L3xtjjXJj+4iuCfCslkvhMjdERko0T+RCNmpXs4Ru2q2J/RxMxo47sZne3hEJ1JC7Y42Z+zSxfoqjNj3QMc1DiJxOPJJUQ5zGzciT91NG+U/aiD3R5Jppmfs0RKFk1tkKTfJ2jJHaf3GKO/Gax7XSMblFW2XLcvwTiShRH5EfgJVFIlwOLfRKVOjePkcaNJy2ZlRFko2TXvSZGTS6M0pJWSk5wsx/yeOB7iUbk2iTMHGQrgmrMcXutkSRm6MXxMsYKashEmTLfokXaSNRZoUq5Jz4sg4+C/LMvRoZP0jUy9hF9cCpRpEp3Ex/dQ7JptUSgnOmQ6EMkT7MXRqvibPbyxRsokZjRK4GWNoapqRGLKszmiltxI1G3bJsx8dEPiSk6oxfdLdcGZbp35MUfcY+jIZ+zRHK/wZI+URi0uRdGWz+4wfBUaz5poSbi+CCJIyXVEPmL4Hgm+Rz44NQ9pB0l9HLwaPhszSTtiRftJu5JiaSNQ93CMS9hiW1URdOiTSZLvhk+OTB9xlmXI0yFyW7yIlPcZfiRfsMsfdyQXkmSIyXooXBqHaNH8aHB0Y4++iaVGXo0P22amEpxMeNxOKJ1Rj+6iydbSTXBDr6SY+iXZDozXKL3EejronIcmzKaV+zgeR9MTU2OVG6zOaOUVjW41fMW0Yot06OiVNGL75LIopbiG2V2iMZb0xcLkk7ZqOzR9snmUeJdHDh7TFGhukZZWj+4xzlGHBklGeTczHKUlyQTgSkZJWiPyIXKCE/ZRkVEWqM0Ny5PSfgapDquTR/ORqaoSkv8ABLrgny0NccGo9pjargVlNkoux/gmrRgf7g3XZKKk3YoJKiuRpJ2jO7jybfYiUff9J0SIxrEiKM6VGjftY34Rj4yNEnZk+Jo/gSl6b7Iz3c0Sbrgp+SDrKiUl2OmuT+4ss3Jk3wS7IJ7CbN1cG4UrJdGU0LSx8mfKvwQdqzdRcTMaZOWNGogkqkYY8cErZRj+8Tw32z3btpGVcdG1M2PwzUdmh5lRnxI2TUuDrizaZY0mL5EIxeNWZF7+FwQ21ZaGoMnFbSPzFOoEeODI7Z4MsmRn/BPJ+D/Jp4+6RO+jcSk2PwW6M03W1kG1FI/wKz3DHHjsw42p2zaTw7iOJxEuD0+DPB1SI7nBI2O7somuCSZH4Lgiti6M/RpG6ZKVcsio+BwaMi4NCm4seNS4Fjp9FHJBXmRJKQ4Uzcm6v6UUT+I++SNqKM6T8lFcFMZlNFxjMkVLwYlUKY4jqujKaZ1iJvd8iHBbLZj+8ZJcdE4uU1JEY0vpx+DP8maD7hlly1RJt8Cki/4Mr9vQvkR+yqXJlx5ZrrsxYXGO02tcUck37XwR+RHlUIl+RVtQ+HweBmwxfJocUhpjj+CSoeRVVk47+aIRs2igzYxP6QXH1v6Mv8kluIx2m5S+iiijjoai/AoRPTg/A8a8DjsJJTFHZ0Ld+Tc12bmNNnoxTujk2t9s2I2DiclM9CJvn0PcymS3CLaJYlPsxSlijtih5JPtEXt6PUbN1jwQkQfpKkKVllfRaeCluHUlTHFMXBRyS08JdohhWOW6Jul5Nquyl+BRRLGpcH9NjXgUmuCxUM8ElYtLH8EcKXRHBGuj0YpdGz8Hp/kWOKPTh+DbESS8FJ9lI4KQ4oooZB7l9KLZF8DE/pwxlFHJtXdCTK+ijRRX6HjT5KZRRVmw2nXZ2bTaykUvpQ0UNFG05QmvJ7GVfRtY4iivJt/BTK/JtNrPcjebzcbizczcyxNCkjcjc7NyLNxZYy67OCziy+DcN2qFSN1G4v6Wcs5RZZf0TPN/T1T1BZUeqj1keqeqeqj1RZUerE9WJ6qPVierE9SJvib4m6J6iPUib4lr8lxLiXH8l/yWvyWn5OPyWvyb0b0y0WbjcWn+ng4KOV5N0h8n/stots/9l/VocUbEbEUe4uRbNzN4p/wbz1D1Eeqj1keqj1Eb0eqj1Y2eqiOSJ6iN6N8fybl+TcvyepH8m9fk9RHqxPVietE9eB60T1ofk9aJ66P/AEL9HJz9LLNxuN5vNxuNxZZaOC19bNxuNxuNxuNyN5uNxuNxuLLNxuNxuNxuN5vNxuNxZuNxuNxbLZuZuZuZuZZZbLZbLZZZbLZuZbNxhh6j5FBRdGWKZZYmWWcnJyclMplDTNpRQps9Q9Q9Q9Q9Q9Q9U9Q9Q3m5Fo3CkWWWbizcbiyy/pZZf6rLLLL+llll/SyyyyzcbiyzcWWbjcWWbjcWbjcbjcbjcbi/pZZpuifY+i+Tcbjcbjcbjebjcbjcbzebzd/p9/ossTLLLLZZZuZuZuZuLLNxZZZZZuNxuNxuNxZZZf0X1sssv9Fl/Syyyyyyyyy/rf6NN0JckkPv639LLLLLL/TY/wDSwR3W/wDSv/uLL/77Trg6ZkXI/wDtbLLL+mkj7Gyfy/8AwS/71Gm6JfIkN8llll/6r/Rf6LMS2YlY5clllllll/qv/Wsssssv/Wv9V/pssssv6R7NKSXuJ9Euy/02WX/oP/RgtzM/txv/AEbF+h/ov6X+qyzg4OB/Wv0L9HfCFCTFgmz0JjxTXg/h/Sy/p/n6dF/Tj6P9MOzTcoZLol3/AKa/T3+i/wBFWaSF5L/BrHUP1WX9b/XZf+msU34PQmejP8DTXZ5oUWKMvwbJrwckI7pKJHQx8yP6PFRLSL+1mLF6eShs9Q3DkSW/KkR0kOz0IjwQ8olpsZk0/iItLMemmiWnyVf6O/rhxepbsWnxo9KMTTKhjJ/L9e2XhG1/TFieV0iGiiuZMWlxLs/pcXY9NifSHo4Pp/R/rjBbOET9nRqp70v+8j2jmujkluRlvbyY1c0jbFdkdjfQ4x7PbIpeskSi7IqW27PdIj903xfDN1dHCfA3Q/vWKNo2o2jiKPvonFRT5Ix49xkSUTFhxuO5mzHL4ksOOuhQjGHBFX4FGNco0+Pa2jZG3IyRRp37qGkSMnyf6tFhWzf5L91E1tMuJZI8dmkht4OJElFDZdonL8HpS/BNND+lP9ClLhRZkk6pmS/04sDyq0f0rXY9J+GTxyh3/oYYLJPbIeCK4SMmNRjx+jFD1JVZPTqMuGPEh6fi0zz9IfJEt3hi/knFPoy3tMHOVDm1wJMceORv8o/8yHqJepRuldjm+y08x6dy9otmJ8jlCfBJUP7qJOl2Y45JO26R6ddSPcuyEnviZMrUqFKaXKMkrVUaZL0bqy68E+VTFa6IuVcjbox9ii+ScTB9waJkoOc2kf00l2f00vyLSP8AI9LJeR4pxfJp3sxcCybpcIm/4Ju0abtkp7fBHI5f2j45oWQ3DszJmnxQcU5I9OCXQlD8GyH4MsINVQ1tdDlHEotolUo7iS4LIwc+mf0uSyWDJFdGj4i0Nz8ITn5RlftZDDBRtoljx10Q03qN8i0a/JLS40j0In9NCuzFHbmUWST8GSG/2+R6WvJ/TryPTrwzDhakTcVxZcRO5GTiT+kPkh9Gyp8C7M1bDT/cRSMknHo3klYucyI4knuZ/ULmkKskbiVWYi+DPzPkxK2mT6H95CxRfuZqehY2vI1wQj+7E1Kli90DHOVWyceGzFklDClEhkyyfJOUuDHHciWScZVZBt/IxXdkp+YnZgf7ozJ5MX3WNTZtNo4mXowRuAsjg68G7cjLUI2aZtpsUXJ8mSexNoWSU0beCVjSZm4MLrGhSUvI6XbIu0TXBNWZPhEV7CKe3glBojLZKxN5OUuCXC5MCuTiZMyxVAx51M1EfaQlcVBGThcmlSt2Zdv5IuP9rFQ0kJXmRs/5Cj7xwNo4mN7Se0ai+jHViw45K5dixwRPDC00RjxY4P1EyjP8TB91C4MpCJPrgiv3zc4r3i46MTW2kPnN/wCjfHoyR2NyMceOCbQ/vITVUZt26vBF/wDEdtckOM8Uapr1FHyY+I20ZeiGNPCpMjz2UmjF5Mi93BEx8ukNUUadfvk/Jk8mPjI/pGCRtS5GZH7TA/YqMjSmQ6NS/azSfEjuJquGU6I8xskKzU8GL4JI2pLcx5sbXKIxT5iTRMtUotE3UaMUqiTcJ+OTa3KiDhCJLJ7jTv8Aeo1XzRDaaj4m6OLDHJXIp7+0aeKW49Pc+R52ntog9y5RJUYXeclll6jVl20NzcntN0I8Nm5PmJFWycq48lOt0iPJ6qjFcEHKXLRMc6SsrdyPgzu4M0/3EOSHdEI7FTJNIx/fsct8vcenK/aRUcZF3mJ4sl3Rtl5HY4Mf3zI66I53LiaI7Y8ocmzG6zRZqHDLx5MWPYuTJk4owRrDZw1YjFw2hxc40LhGF1NkMt8Dn+DTffJ9syGPnK/o42R4GZ/iaWliVk8WxuUSEaVM1fwNJHiyWXY6aL3G03KJJ2KzUmH4Im6gJR6Rj+NGQkrlRdGQj0RfkSSZHDGcVJdm1p8mJ1nMyfzgY4yXDM79nBL7MUYuTTf3f5JSpWzdzwYXwTZh/wBwZYfu7kJe5Ixz3R5RVytmLizdTHK2cOkRXuIYt2JTXYt/5JrjkltXDE4LodWZq2mn+4h7PyKvA5IogqzEX7vieDtkI1maJQi+2VG/kbIvpkoDjeaJkjJdUW3dxF1ybmQjunFmaF+76SVofEFyRbkuS/7TmnRynVlsxx7FilfA8bRg9uUZk5MXOVlG7jkVjNRxjMKfpJoSkv8AA26NRagaVXAy41LtkPbGtwn7ttiibExVyakhNLGrJw9SJtnu/ghHauTJJEuJWSultJv29GOPttk4LHjsft//AGMGTfGkib91Efvkmi7RlXtZHJ7IwLUODT/3f5Jy9WNHpzXRGEY8k5GL7wuGK96N8ZJ4ehrY0mRtCW7onGnwW2iCoi9uCze/BPlDddIc5/gZmXsNL8yS/IoxscYlIg7zEJTunI56sZjf7zJNR5aGk/7T49I4E61CHvb64Pf0x2U/JB3l2k04cJHi6MnCtCgpQIwUR0PIon9Rzwh578GmbySOYurJXXZiv1bYyZDjMx8kThEmZ3+2afb6SbP25Su//wCRtGprY2aN1Als3cn7f4N8U7RwxtItmoIrdGhSjF3Y8sL5Y+ScWT+RKGPt9k1HbwYEpYeRycPZXDFjj2b97pdDX4MfOUlD8s20uGZI0mRg3FcleGzB1IytcmOaXFm5MkjD98/bbqxcSSsyQlKfLIrw+RmOW0mpNjjIinRjl+2kNO7Rl6GuBR5GvJnvYaPnITUrHbXH0ZhW7PTPRimekj0tvKMb25mz1InqI3xGx/7hEo+2hwdUbG5pnBji3qlRnxvnk2OqMiqLMaXoxtXZFRXEY0PvoyFy8fTSVupmxXaHCKIr91j8E+iK/cbNs/BGEjaypeTP8OTDXoIVLhfTVqoGi6MgnJ7kRcv7hWS4EopMzcMx/EdeRbSvwOjL8x5IKHJNx2GnW2BNt/ii5yb4NLHJGTckZJflEF+6Sb/H0y/EhPbBWS5NL8WSlH8Fx/4sjtkTowK9RwSlz2N7Zpkp4vIsuJm/E/JF30ZLjwbXRykJVBCskuCW6jzRyalvYaT7hKb8ikOQ5cGn/wBwTb8EVO+TxyY/vMUI9IcYlRGf/YRkWSolTqhrJuOTC36/HdGRTrkqZkTptmPPCOCKFLyORlb52nLKZoleTk+Uv8CjtVEPvMZLoh9wfImWSNR8DSc4Strch8ms+2aThWPIPJ2Rm2Jy4TJOyzUv8FNY1QmxOf8AcXLka45J9ktsUmZa2OiDl6W4d1+CpRfy6Me6RkVGH75OVl0aj4nLhFbTx0aS6lROE7NsimT4iaf76oyRuRnvgdG6JcTT8cE4c3Y+iXxZHdtTQt3ky8Uxy4G65FktGolcKNJ8yWRXTHIsbRp/vjy+/jwes2z1N3BiX70hyinwLYo1ZUX0cC/3CMkpKXHQ/UZ7qHZgdagySk30XJ+DLe1mKcY4I8CkuyUjL2Ubf5NBanwXLc1Q2zF98ycEujFXrEhOhOx9GpXBpXtwWSlFuyVI1fMDR1VslJdkMu4ssbLZqmRUnBG2RcoFyZJsmvcTtutpkT29Gmitty6LwyvgWzbdcCnBcRMjswcZmzI0RmujO7ge/amuiKlXJoP7jIxbq+mQ07rMh/4MjLXYttHsNKT9OXbGo0TXtZGlBWJJdMyKqHKlyKpPs5M/wNH8hv8AgtHfgdGK/UbI1ffJta5s3Pow/dZJT/tP3PJ7iW4jC8yZklTps3fiQ5ui3XZhtZ7M2af9pGc5RtoytuLMeXbhjEjJ2Nko7rFi5HgNNj2yNzfBNuJiv1rMjtsl0Y/vEhL8iaJGq6MLTwJNCVyY2ujU/bNFShbJyX4I/mvp7h7jzwanlltRRKUqVIc/c0KTG+B/MyShGrJtV2aBKcJRkSSh8UOUF/bZFQtKuTIqMK/dkZFfRCMvJqF7CTThGJFquDSNqEjLKXgX8s5SJGnv1uBuTZk7GoxYkjZE0/HRL02KUSbW1nHpxEokqi40TyRj2KWN9Emn2Zvg6NF2ybiuyGzqLNv8lUYX+5KiOVuW1IakyT55MMrysnOUuIshGa+bHvS4Y5yMc/3zJlikLNjfFC2PoaiY5JZNpllBKmQyRkrok12boemnIjLH4HSE76HKCl0L3GKVTFnT4JNfgi6y0NEumRdZCXHNnqR6LTHyap+1Gn+0j2p1uJPg1H22aV1j6G4Sdm7F+TfjTLj2SlY78mXlqiMXtXJ7l2NOT6NoyS/cEmnbMqu2f9OdQlRcoyVxRkbjzRgy7l7EZVL+4wfKSHtT5ZUfDMy9nZ/arGaaPtJ4pno/wbXRI07/AHhZce7gkt7SRPTe4/pq8i06MUNnBK7Nw0nFnqRWNKRGUJdGV9I2X2JUySTRnTUTRcyJ4txjil4JJMkmjSpSyNMlGOJbkhan2q0cZI7jSqssycIqW6Jkct9JkZNPklGzH/uCWGcnXge3T8JEcynLbRLGQX/yUZUou5I9WM+0TjUHRDC8uBUR24ntiiSMS3OVEskV2KSl0Yopzpi242yTjPoSrKPwT6Z/5CUU+jbXYqHXgz8wMSk8So2Lf72bYV7TUfA0rezgcL8EUocs3ws2Jlcm1Mz+xoi3tRJy8Cc77LaJTsk7mapcxHXptmkyRWLg9l2jJCK7MUI440T/AIZhTeVmVwT5I5IPoz/EvLJLYS3Je40/27N89z5PUj/zLlV2Skab3ahEYLGtqOYZETyQuiOSL8HCL54MsqfBfiR/bQ4bkqZ6brkyUmN8G/mhyZqX7DRfIm9ro3oU7Vknwab5uifvjyLlt0dY6RpfuSJVEyp3ZjjXJNcGP/cD5RqkY42yTZilWpNXXDZjjwZr9M0kv2KJvbLj6af5SMy9/JGG0x/cMu7tiFzlJ8NEuhfdJKy0uBJMlGjUfE00tuNWTX7hFcGqftNJ8ByJ1KJCEfAuES5ZGb7NT2RXsTMsqRFS4bIdEoj+Zmx7qrsyxUcdI0cd2FozRliW7wLU741Q8LS3eB8I0nOaRq0r5MeNWtpqPiZJwwbXXIprKrNMl6XJnVp0iMY3VmGO2BM0f+4SE36zTH80SwPlsjkiukNccEfkTpEuVyX7GfOFN0RUP+Rk8f5GJcj6NX9s0HyMgoIqh9Gk4lJkckZHCzbUTqKo0/3J0PK4OmS/djUWL2LklMx/7glnSqDMitGJOuSUvBg41NmVwz2YV6i93gyyWxow5Y48C3E9s2mvJIwfKRkiuxdGGvUtjlHL8StioT/dMjuiQvvIkrHSkR7JGo+BpoXiTMsLdi6s1a9ppXUCfQoqUeCFfSTVmOPg1HzP7UZU5RoVJKhMl0P5jltl0ZbaNJJxhaNV74JtcmGDqyFrH7CXPZpPuyNQkzDykzO+DWJuEGjGvY2aZ/tqyavhEY1NquSuCZo3WdEsa9VtdDdZF/ge54/eRXLtHSEvcZPZLkc3PoqsZkj+1EhBX2ZVxH/Jkb7RGd9olPwah+00RPJKL9qFO+Ry4JNs0qdyaIQuXZK2+GPdZpr3SMuKPlWRxw7oqPZ7WY1/8gywc+KMaywVDcuqKMSf9RaM0HvckJScScXtdCUlhXBigq9pKLMfDlZvirUUblRh5kxRd9kk/IlUz8E/JH7yJ8EZWrEr5JGo5gYW1gsU/BdKjUN7DTfAm/wKdFobLLSM73NM7SE/AmocIuiTP/IiVJ2ZWqNNG8VnrqS9PMYYctZI8H9Rufs6JGD7kjLKzGzKvaSmppRZKVKkYWliQss4PhDyc/EcnQzTq8xHizn1EPPctsh3GXC4HSIfIyO+BPwS+DJK8KMf/FEuXFMlBMiq8/TU3sNElySw3dPkeOW7scGKzB7ZSFnldKJy10ORp3bkTztfDohPI17kPJXyJZF+DFP/AOQT2+RRh4Gm+mbX+TFP9zaZs23ohPi2ib4Mc36dkct+BzItSs2rw/phfuoWfmiTtWXeRIaJ+R/dQ3wJ8EXx0SkzNzjNN9lWcX2Paajb6bRp69M4rsteJG7+RyP/AGSjRk5kkbbVDw2uzYl5+ng/8ootTbNQntbNJifo8ksUueP/AOh7ZOvwaeSnzIy7fBp1cpEoL+4UVXDMnxJ3wTXHZiUXjRKMapmyC8m2ibNM9uVnHPB3PglDG3+CLVdjiyEWnyStM5/uG/YSltojJ90NconG2KMYjj5Rn+BoPJKE5Phj/lnjgba4NEt0pWSjs5SP6ryP3KzSK3IjhUTJllGe0hKUuGSgYeNQZcbySpGPHHH8uxxjLocdpp4ueqM0VgW5q2eq8ngzKoNmDBv06Yva9qJKzFw5UUq54NqaNOv3aPSjjm15JxTQo1lJEz/yontlH3C2VwLalSG0ZGlBmFv0FQsc1Ll8E4/g1PwNK7hRLGpOjbtESgI4ZnW2QnSOuWepCXSEr6GR+4jNPIpVHoyOUsTs02SfoonlyOVG1x91EM0fwTe5GnV5JUZPTXzIelVRMyaJ7pNJOjLwjTv9pWOC7yC9E28WmSNEt2bkcNvCG9mQc42WmN0J8k5c0h1GPJdKzJKFbpEHBrglPlD5Qou9zIRSNW1so/6fxbMkuD+6yHkydGl4UqM79lSOS/aaXjdIk6Vj9y3rgh7ZcmTo0/OpJwilSM0bmvBCPuTJNGmdaqzXW2uTG6bs1P2zSSrTkWu/H003GSVmo92WomOPFmP7qJ5N5fkj9wn0TGv3EP8Ak3JcEJJmSJl+2aKnp0ibqdC5NV8aNIqiSbR30JjpkiJqPkjjaiS4Pb0iPRIirypfyZ8cnJGaLjiZoo3h4NXj9ONt8sinHmx4lXtJLg0P3JGanOmYopM1HSNRleNpRXJKW6Ds0tRxJs1XuhSFGNcEeiZovumNtzdk/uV/A8DXMhZY9JHElaF8hy91I56GqgOTww3Pkw6nfaoyqnEnF7faL/8AV2JM1XCNCZYtKkcLhkYmZUaBJ7rM0IzVCjLfyUkqNLfuaFnviRkxOTVdCSjzLsnM0/8AuTI0+jy2zHbfBJGmr+odmrxKctyMScr3GaS9NxMWRw0/C4FX/jHKjSu8kin6j3CujF91EnfRVLka/dVEukTG/wBxEuTaQ6Jsz/Bmlt4UO22yNmqXts0fRkXJzdlWNWiqEueTUfI3LakS5XAlzZDqjeQf7q/ySy7pGolcKNDFvFw6Ne3BqBClck/JzOCd0T+PBovnMyWpWRUuGjNzVfk1a9yY17GaVr01ZqMTm1I90rX5IRajyTNC6zcmz3uUeibrNx+Byl6fuZFIXRH5k1UrLm+x/A1FejExVyaj5RHkrhlqfJKSRqZXE0Pknm55E0xtIyStGkXsYvUg6StClL8DvyaRXGRPGm/kRi10+iSscbMK/fM05RacSM1Ps3qPRKVmD77JKSm3jN0vwT6ZjxtYkRx/wSh+TF+22ZJRTd+RSTXBi5yKySe64kt3k53on0iZL7iJnmyPRIzfbZp5NafgWVPgtRVGpdwNJ8LMjr6Wl5HMtDnRm5ZVo3c8fRIpiX7qNm6XZnj7WaV/sE8rnFwyIw4vRVicr9xLo03ykSasUtpNdMcvd7nwZZe1mL7aRunFU1YpfwMfRpU3kdEXJXGhRvMrJ5Yyfp5CnHhHCIv3E7crOfI/gZIqWJV2Y4Sivd2ZfdOCRkhJeLIQ2+BxiaiK2cGhjujZLDz0LE0uhxoceDSUoux+knZcPBx2aSSUW0S1OM/qMb6QpRJbTCrzMnjb9wscq5RsNlGGlN0ZNi7FKL6JVtZHJWGyOVzlwSlIxtNvcelTu/phlU+UShBskxySlRk6RIyfNDnwcHRLd+DL8GjSw34Vyf02OLJQiZsacDT7XjHCJSXk4Gh8HgfyX0SVkuyQx/dR4M322aT7JniridZDato/iaftmVD6H8UZktxP4GFL0zPJqPAu1/gpUZOzRfNkviR+4T+Zgb2j6IdkuyPQ/tiJEvmhfXP0zRfEf08kjB8JGJXPkkl9NJ0zN0iPCRkJeDT/AHn9WM0/3Wan/wDwlxRP4yP/AK5DjGqGYle4yNp8C+Bi+4jM+WS+JL5xMngkS+4iSt8iS3/SXRP4mm+2i3YzN8WaX7Zl7Y+xDEf/xAA0EQACAgEDAwMDAwIGAwEBAAAAAQIRAxIhMRMiQQQyURAjMyBCYRRSMEBDYnGBNERQcoL/2gAIAQIBAT8B1qK3I2+CabxkcWW9URZ5pVKJlubToeb+Cc5s9P7jJjjOb3Ix0KozGtS3kKC8C4OpplT4NcYKomDe2ZEnIjV8EqvYr/aYaUqJy3tsWbekPW+Uaqe4lq4ZlvRSIuUVeoU/KZf8EpKe/k2T5KT8iTI8EnKLtyNd8C+aE0za9md3/JjMzoeX+RM4F/tZjMzqR/UVua9W9Grbg1J8CvpbiUeXE7PES47lJ+BRVcHpzP8AJ1VHydTUhTRqXyaiPtJ7yvSWjUvBch7ii14HbxD/ACMe7IWoWPJpVWLJq7bFH+DbyJLwzJa9zOouEb+RNLYiSlJuiGJp2zN08fKNeOT4JLuSiOMkLLhUXCytL7eDIm4qhTjj5Zd8DnW1l7CcvkxbS4MmiMtyC1q4olcOURnGRHgfNtGxhMsmp0iEZyexkhftZbVmDeW5nTlkaRjUcSbW4/VSfgpTVkU4yVmb2MhjeSVtkccUeoy9KtiOZ5JU4miPwTxKX8EbiyHBm7sjSPTYVDc9VOUI3EhnyN00OCY4TxmLdHqr1Uj03pl7pcnqM2aEtMeDDknlTUyeLS7R6d9h6z3JIw4kncjJ6qvBF9WO4sdD9g9TZDAoxbmavTrdocIZI3jI64e4wnquDFg1vfgzzWGFpH9Xb9pPEpr4FFxILtM8nfJ6fA5d0z1HSw8ox5sLlVE8d+xkJZLoltjJb5WS5MX4jpuciKjig3E/qm/Apa1uinGRnW9EIqO5L1UnwiPerZj8kXCPJjyRlLSj1FXTNoyvgb09xGcGtzp278Mvt2Mn4yGDW9xYoxRNTvZnp4txeonirgwe40rqMy6/2GOWVyqZKKiyPA1u3Pg042/tnp73szRuYprGqHJRepHbNOR6fkzPTkbRjuWN2iMG72KUY9pFvUrMnsZBfBAzNOXaRatWc/SXuILYusj2MSPUyt6UhfMvpL+TBwZ/eiLdWZk33cGH3V5J7LYw+09RtNMwvXZKDsxxpDd7EvxmJq6Mkqxs0pw3RjvTuTowcHqeDA5fuPVNe03E04k74aI+0m9OQx8HrWpNIhpTTSr6T0+CX4x/kJruMPtFl0clXjtEd5PYhHYbd00ZtmmY5a03Q9UiC0xIcMgoPZ8m0EZYtrWhY3PaQ3FPScGvE+/ydXVsjJ+Mwom3ptEnbVmFtPSkSVGD3iT6jZJtxsvTJeTInaFwSb3Rj9yswcszvvpkayLc6Mpdt7DpbHp+TNJLI7MflkIS6jtEubNXcjL+NmLikRMuPUtiGGl3/Rmq5EeB5XCbRgnGe6Zmgsi25MeBRtS+jkrow8HqJ6JGH1UJS0nqMPUKhjHnt7GH22ZveY1KzLDv2RLbgdeSX4zHljB0PGs0KNMtdf8ARjx9Im4swe09S+0xepUXUzLGOVakYvTy/eNxxI6msj7SctM7MGWM+D1OJq5x5MeFvtkPtLUuCf4zTeYyrRIwe0g4+SCekcGsvGx/wSkvJmdNGGW5OLU7XBZHdSOlkluiEZSacic8l7Mcsr8olFye7Hjl5Z2URMibxihlvtFkkvcjLFZJaqNWlcEnOXJ6e9ZknpyEcqku5CnDFwhTcnuIcnGTsUtqij09+TPbnsRxTMyk9oig1yen5ozwcp7GKOTHuPK+WTuYo0zJvjaIYpXydy21F77SJavkv5ZLu8kYbi4JQxyluRhCPtO2x0bfJo0vYx8GeMW9xRxJ0icYIax/2miDMNVR6m3Mxzlj5HnROTfBTvcf4x4ZyMcMmJbSPvPeyfUkqsUZx3MPBnSex0Md8mmK8mn+SWKL8kYJPYXBkinK2yOOPKZOK8sVJ1qJRvyQjXkn7D/UszqpGHgljk+DHLLBUdVvklK+GaTOtkLHNPY1yrcdyfJBOmSmuLIO9kOLN73RqS8HUR1cNaDRpdozqUkkhdn7hZPljl5bFL/cJ/yYnLXuhyk3aQpS/cNzYr+BcDlpdtmqLZi5uyb7nua48WTkk6Zqj8mL3WZlpk3Jkcl7RHGf9pxyitbpE03jHOMRRm1cUPFJb2U/B05jahzyY3GQuCc9MjCp5v4ROOl90hO1szuSFOL2Ma2ozy0yFOeSVJDlp2czU+Y7iyfJirTsZpVI/qU9hzfwa/Bs+GU+jTNcE+CF5F2oqXGklPTzEU72MPBn2Os14IQyS34NE/knKeP3EZahcE5xTpGFPK+B45x4Kn4Q5afeiEoyJewv7pl9xiXbsSlp9zITc32oUH/aNafAqkZI8WzqGidbo1U+CPdwRxOTI409jJKce0jPJqp8Dx3K2PCp8EMTU6JWomT8QsLyyHiWODceSeuRgxqUNycZR8npvdRk1Sk1EjLFFVLdicJ/jZjlJOmLg0R1OU+CcsOV1EwR0yaPVLuIQ17k445ul4Om4mDk9RHVkoxxWOL08k/Uy+CPfG5ChpkZNsbMOPyyKM+FzkQjUlv9JJS5I49EthcCxqcnZjSPVxuW5CK1oROHdsYuDPDXkow44wXaZcScm7PSRq6MkE3Zh9qPVbzow4tHdLkn6xfAmpxsUaJ7YyGHXu+Cb6UO0WbInuR74dxLFodmBdp6pbGPGr1M9TJqPaXlu2xJSVGnS9jwaNcnZjikqR62c1UYMxPLe72GrVHT0u0S9o190y+8xCx6mY8ajB6CfqMl7Ixtyjchwp2jPdJGOMYuyXqZfAt1bIrkjKXEUYOp+4yrdCjuS1V2kXk+Dr43U/KHmc2ZNsZisq0TVzMa7UiVtbI9N7myL7mZlLwYIVLZE9ppCMi1KVmKNyWxg1a3Zm06tyctCsmkpaiM7VmBpvYzvTMhJzhuSTvYx1poU9Rk9jMV13CMzcFqIRtp0bD5H7rQuBaeo9zHyeqV9zMS1VItEudiGyM0dWTkjsZY6clfJji4E1q5MXtM7rIY5at+Cf8AwY/bRqJ/jMGpv+Ca7Ge5bsS2oytrYxcHqeDApGaOqBjgrv6K73PAlqm6Mbo9ZG6owx4YyTbdEvaSf3TJ7jDwLJoIVotj2a0mL+0ct6RmdJMhkUl3IfNJEWq2Iy5shmjHZnVUVt5GpSjQouKpjyNScWdWMRww+w6UYboy/jFKUXcTFk1Lgy/l1WPLGhzlI9Ly2QyKEqZmlFLUmLTDus1JyQjWtTgyoYUzC7lZmScjTGSSaJY23uOuDEqnsZa6m5D/AHcE8T12NaeDZOjJ+NmOU09iMn8Em5xpxL0LQompvwTnPwRu9xcE4uTdGBzWzJty2aFceImuXwXMhweqtTdGHNOPO5NxlvKI/UXtFFyvcxe1GVqORtmOpmXFJS28ChoWw6Mn4mQzKPJrU12nSqbkSdbslk17RMXtPVe0x5/DLUlcfJHF0nyZJqIp6pHgnklCWxhzrIjMlJOKZjh0o1ZKSQpamNdpPtymRd1mBbEGr3Me/JlwapXE00qiNr9xlftIVPbwZcU7Eq2FW9HRb4MOORPFmu7Hiy/I8WTyLG/gXpoPe9ioNVEy/jMSX7ic2o9pqm5X5IS27mS4MG8mPHGUnZHFj0mjE9hRinsInji5NnSinyYElLY9U90RcoGXK9KHb8mD3Hq+SGSUH2jyvyiWWT4FFtkl2MvSthZMl7EXKu4nfgnLJrIan7h8r6QluyTm/BHqsl1PBFyRL5MZlkozdn9Rv2iy3yiWZ+BZIyRj4M6ubMb0yslmk/BJykU0TV4hYY8yYsMYq1IcUleseOMt3I0JGL2nqVcSGCKdtihBeSUFfJLEr5I49MluP2jhC7kRWKJNY0NY0OMDSoj9pKH3DLuYdtiSbMOSeP3cDzIeUp8sz76S5RdxNTa3GpSZjTRBTa2MUZ+WZo5L2ZCM/wDglfgi5mhfIoK7RPJBxpsSxEcmOKoebHPwdjKh8mFpPkt6tmPX8nd8i1MTNUtWw5TkYl37nqnuiL2Jy3o1o9NR6rkVjS4NBj2fJN/bFNrhGuX9p9wes7xufwJ2zwKM72IKS5Y1L5O4pjvyY/aZffsaHe6JynF7Idz5Q69tGPZIy3rdEZTsUZ2UzfyS/GL402XlSrSN5OKRcl7ojl/Bi9pn9hGV/tFq8RJOT8D/AOCNWjai3q2RHJNconPI+DVk+BvJ5QnY+CVajKr7UQ2Y3pKvwVT2Q0zT8mVJpFKhbfSPPIoSfkjFLlj0/I9J2fJ2/P1k/wBVCekcmypJDtGpmplyNUhyb5+mojT4ItxHLUWkUufpZ1G9mazqM1y+TqSNbY5Gtn9RIUzqHUFMcqHIWWS2JTbZrY8kn5NTLZ15olKU39NRqOoz+onVH9RNH9TMfqJnWkdaQvVTXkfqZPZnXl4P6jJ8nXn8nXn8n9RNOz+qyfJ1pnWmPNkfkWWfydWV8iyMfqZDzNjzyfI8svDFnkPPL5OtI6szqSHKXya5cmpvyWy2Kcvktllk7i9i2Iol+jj6WWbGobL+mr6X+hTNRZZZqNRaf0bLLNX0sTLFI1GstD34N0Wa0aht+C/ktGo1FlI0mg0mk0mlDiaSiiilX0V/pe/H0ZuhEkLZ2clWUUP6JotfSv0bjOiPGdJnSY8TOmzpM6bOmzps6cjps6bOmzps0M0lFM0GhmllMpm5ubm5v8F/wbso0MoRpKKOP0Ibf0pGmP05KRsjb62WKRrZqLNhpGlGlDxnTZoOmzps6bOnI6TR0mLGx4pHSkRw1ySxyOnL4Om/g0P4NL5o0v4NEvg6cn4OlL4OjI6MjozOhM6EjoT+D+mmf08hfp1FlIpGk0mlGg0Gg0Gg0Gk00aWUzf6UUaTSaWaDQaWaTQaDQaSvpRpKNJpZTNLNJpKKNJpNJpNKNKNJpNJpNKNJpRRRRSKK+tIopCRnnoSMk3KBjlT3H9K+ljaLRaLRaNSNSNSLNRZoNKNCNBoOmdM6Z0zQaGaWUaTSaTSaTSaTSaTSaTSaTSaSqK/Q0KJpNJpKNJRRRRX0ooooooor619aKKKKKKNJRRpKKKNJR6rweCO00UaTSaDpo0Gg0Gg0Gk0mk0mkr/KUUV9KRpRpRpNJpRpRRRpNJpNJpNJpRpNJRpNJRRQ0UUUUUUUUUUUiiivpRRX0or9fqiftTFyv1UUV9KKK+tFC/XX1lt/8Kv8AOV9fUsl7EQPH+QX6H+mifP0r9Ff5tfR/Sv8AL0V9Weq4P9NC5oS2/RX63+mP+DRLeQkUV/j1/wDMoZLg9XwL2JH7kR4/RRX1r/AX+CyK7v8A5V0WPJGPJriWjn/IMmep4HtFD5iR4/yC/wAGeyMfP66KK/xa+tfotFo1L9Dkkao/P0k9KsfqZtWkR9RkfKI5peSeXt1D9S1ydZrehZnLwLNvRGWnG5HVnIUmdRnUmiPqH+86sTWdRef1ylTpDciW56rdH7B+CPH6mWi19MuVYuR58j9pKebwyMp/3DyzXEiXqXEX1f6epTOpvwY1/l3+mXkU34Q9fwWyMu4eyFOK3bHJMuIp/Bf22ZIzUNQlNqyEsjJO8dnUT7ZI6jXB1FH2kpLkx74jTZpoeM0/yfJrurG1+1iu+Rzp8nUrdiy77Mnl7tyU/I8smzV1KbLj5Yqvk9T7C+0+CHtX6vU5Xr0eB6VC6MbhIhk6eQ9XK6FGMlsaFHdkHH4MmKNWkdNUWkyMr+jL/RqcpONlyi9LZB/plkUWomtHVQpp/wCBkk4xbRHNGhZLlX6MuTpx1EPU2t0dc/qVdNC33X0lwxa58HThFd0jp7djMTeqmZOByf7RRyCUxzldMv7LaNbjudR3Zrd7E3eGxQlPkvHj2ZrxZNjQ4S3MX4iTfgStbkkpKomrJF0yHsbYsk/gySnHkhkd0ZGtfBqfwKNz1Ep1Imsl7FO7ZquGxH06e8x4XDeJn/EJ9onwQkkkLIpGujqHVQskXwZZ1K6IznKOxqePlEJKTPV+LI5FFUanLeJG48RJZadSJbsUlfJibsy5Ja3uOS+WWl5Hk/kwyk3eoTvcclB3RCUcr7SPJpY9jWjXH5M8knZqlXBrl8GOalIeY6vkeWqOoKcm9zUPJJeCcupisftWgU1B6n4I+pvwSzS8IWZ+UZsylAqXwaZjToxexfSXDMLtGbFbPTw0vk2czJ7SCjyeplOPtZHJlsq+Rr7LOktFks6j4IrqLVQ/wkXaszRjKW5ijFZOwnwY/wAJCBmVpI0d1+CWlrcguySQ04bRNU7ocDNNxy7F5WrRHJNck1ckyXchJz95q6cf+zJmlS0GOcn7z1H4kxLtI+BexG9bjX8lP5O8x++iaUsm5knHDG2R9QpuqIJatj1dWkyHp9t+Cd449p1cqqzJHWt+Rxo0QXCMXLJ+52OuLNX8jp/BwyL2MqswqhyUGjVaOVsOenlEpeTJFTSPatPwdTfTRiilMerqNJlNcsySpJizRW1inHncco82dRftYvwmPEtO5JShqsWR/Jqvlmr4ZKN8kW/DNUltZNyqmQyKKpkpp8MjKW56eNdzPUJcsxqhfkMntMCfJ6hNxMcbdsf8E/wbDf2u4l4Rj9o/wmOaexkj0/8AsjB5O8lKK2Mf4SDRO2/4Iu/acrcS+3KhvwTaTTY/B04yyOzLBuXJije0iapol/JCO9jhr2/kzw0xoxxfk9T+Ei+wj4MjaxqiEJ5CUIrZsULWzGskT08m5E3LrOjK9SIVaZid5T1fKMOuv4M07elItotyjY3vuRlPVvIxcmbvdCwrHvI1479o8Sl3RIrTyR4FPVPQ0OajLQZYpyTZBxjI1LTZmyQlO2ioyj2kl2ovemPlEK1onUZOVCyLLKmjPTUUyHp73Hn032kPvxtocHAS+0ZJT/aTb6ds0L9x2/A4vlGNujFjlN34F059sHuNtT0sTWvTRO06oj/wQzaXTMmOHqFyLTBUQlqyGX2sx5knpJrVF6THDRGmN6TK/s2LJHJHTkJ456rQlHHwSWrCKEns2KM0qHCbVHSkY1WGjf4FO1pmbY+CWRye5CulIjKM1XkWKMN5Eclsr7jZk33kY71fwZXVUZMblpaMklHejX9vUiPqE9pHUXCPVW8BD2EfBtoViXweojqyNo9PDTJ2Oq3MFdQk4rI2Z4PTqiQxOu4xL7h6xmLKmqZPHqMfp2nqZlmo7eSctfJDDJSMOzLWom6G9/4F7STI7Qs0KT1JmhOS3J8jxLlmudcjhqQu2SQ66ZoW8kLG2qkYpKU1RmvejDuzPzEjJ6dUiSp7GNrgk22cYjIntpM/biZBbFKqZDiiK1SofUF2u0anOm0OHc2hvOR+WdPG/caILZGmL8mKKTMu8R+ni+WLGo7KRp/k6VeSVdLSx48aGkpDxJO7P9JUar5kV/JsvIqfk1aMT1EckX4L22QpX+0dfBrWlxZHGpukx4/EmKKjLkyP7rHOT96E2SjF1qY4xrYlFfJjqHaNx/tHzweod4qEu0iuCtUFYvbSMtxXetzDGXMeDkwr7pmxylN0Q6kESc5cIwRksm56mOp8kccEzePDNbSuycVeps7fklsjC02NqMhpSFFvYUFjWxrvYjvE1OyLla1Iz+5UOTr5OSnpEnrRKN4xauEfc8mGEoztmu8jgSax7IzveLMU45O2Rmxd3aaY49yUk/BP8JjnKMaaJ3olZHuimNvUfj5Iz7jDni4acgljg75HPXKhyqTOpctItyMZeEaXe6KfwY+TOrjQ6vY2LhR2SJrTiJQ2VSND+Raia+0hRV8HTiuEaV8C/gilLDuVaGpfJ3cGuUhx1x1PwKD5HrQlbponLTIctXBEcGzoyrlChPwO4mlv9xUq9xn/ABEH2i/aZbWJUYvUSW0kZMuKQpwiqHKU2em95kjPqXZKNqrOnp9rMCnGa3PUwudyEo8I3+B49Sqh1W8TTF+Co+D06onG26ZBSx+T7iRJOfkil8kfaVCyldo9U+9GLJpdmpXqsnlbMbuRNXA7Y+STg3yQXciULk2maf7mZYRlW5jwRXklH+SeO3vI6TJ/iFPSiVTgzFiaVjU0dGd8ix1tIhjhp3KgOMdSo1/c0jxJPVYmmyMHLydHhseNkE9Zm9hGMjRLclfgt+TMvtJDxxcaJRVbCxk/xoclyWaiyH4Rb7DhtQ13WRjpRf26I40xwXBGNNbmStRNv9yP+jZ0aIDVdqZNJoUY1aOmvBl2xkeGfAn9tOjUkiTvg7hSl4Mcpa0ZK6hpvlCW3tPT+4z7yRuuDJfJTZv5JmnGuEYeHQ4Rj7hKKew5Fx+DRGWyMO0KYpxLXgyNOVGmF+0rHXBmWOS2Fs9iT+2i78HHgxbzMsmpNEJSfkyqCdsXdwiSae52/BGiX4jUSjcGxLIlshvJ+5CUuWh8Mx4Zyjeo6c4vk31pM7HJktFmOvBDWOGTwyeq9jH79zN7RSl4HkknQ5NRT+TVaJ+xE42tjuREmrxpGzHT3O1Doj+AUZPgcWOMipi/GJSfDHGfyRTT3G/uMlNM6n8EUm9z7cUaoa+CXHaSx66McdOxn9hDezyh/jEoNahxh4Q1HYSjaVHp3c2V9xjlp2FK2Y/eeodTTFKVjbXApSbobe1mvUar5Rh3JxbYoyQlISdOxcEPaJxQnGT2JJaqRK09mNrgd/ItpckvahZUlZObi0Q/KTfdwLbwZbtEYy+SUPhmiVC2iZPxGnbY9qdi1tDjlXA+oZVdtmKMVFNscY3aZVZIju3RXwyN+RSaHOVbHUZidzsz7RFOkPJXJrG03RP2InJxgxyfBF2ZNsaIyiuRtFxsdO6YvwEL8FOx2i5H+mQb+CUpeCLfkltNk5/wav4NlydRNcHUj5Rl9vad9DeQz30tzHwfAvxkYom0paaKUiKRgpZGjVUm2a1THS3MXuM/5ERmmZG0a3wiUvBqZc/KMRTcha9iKkNSO5Ij7RN/2kW2+DLJRmn9G0Sa5FvkJ7YyE0kPIjHvkH1NT0ndVsybtEeDQ0t/pPgyfjGrjYt4lTW6Gs1j6iPUttvUY9Gkeg26qoqLkxKEeCCFGVdpJzrktmL3bmdbUVL4O7+0t/2nPgyVpSbJJtbS2OfJpkv3EvxoT8US/wCDcVrwKS6TTFG+JFfyL/8AR/8A0baKI67HKUeSE9Q76jZJz8ik14G2qo6kq5OoTlGS3Y4RS5FX9x6j8dGPaJ8EfYiMkT03ZcUKSMX5GOLU3RVR4P8Aow1q2M8blZ1K/aPM34Nc/Brkblt8sxOy92JyrcWppseqxcbi3iKTV0Y2eo96FKK2NUfgbS2Fp1k94IjJp+0nJ+ImK9dscop7ia4MvuFFv9xpS4YnvyeOTLtjNTIytOzHkyNWkSnNcHVle6Mrcm2QyRSqhzg3uhU8qoqCfcS0mm1sNqJq1LyaoIxJSdnqVJpJDdeRyV7sv4Z3P2syvTBajvfBocTqvzEytxxJoXUOm35JY5LhinO9yUOpiTZ9tcE+3wXFftE8ZLEq12RyQ8DlBPcjpmTkoSoeZN7kckJk6jyaXp2ZqTLjp1I11+06y4oyU8RDhnlEX9sjNJaUOrvSal8C0swe9scZ9Vysepji3+4xLIsiZng3kbFpW1mjyhJbj0GiHyLR+0xdqZKSbsuDViUassU1wQerHsY1pe4otz1eD1KlqTRpnQlJmWGRGO3LcyxuKO1fuO2+TEu7keNN22KKT5MzV8WKUa9o5peDtv2ia+DN3Y+S+xWy0k3ZDNKuR5Ju9zrZI8kpatyOmhxtnGRCcbdkp41sRaa2MeFcyK7aRLGnyYouMz1HtMeK95GhJUiWOLNLgzOk4xsfbGkS9S74Irqco9R+KJj2iZ9b9rMevVuycUf+uQxWZJrDtRHP1NpIeGntwc+nI/YWqRLPHI0mQjUkTx3mbZk9RpdURjq7oozr2WPJoikx5epsQj2OyTjijuXD1HBPbGQ9rPgV9MTcdpH/AGf9icvkwuSkZV9yiOPHijchxhJ9rPTxaker5IYHP/gySx4FpP6jG3RPCn3REqJQRij26WZJafaRlKTF1OVROUsfIskXyQilHYnvsjCZIvXbY8vhkc9E8qm7YlbuJm3xo6mOK3R1cc3wenTU9yM3OTQnJPc9TKSnUSCnPkaSZLWnsQn4Mm+OiqjRKCjjdil8DlOKOrYqcWzHilPngUEreJ2YpPqbkZS8ocp+COp8kcjOs+KHPcxvvPUPYUt6HkSNSasu90eo3UaJqoFfwJVEz/jiQW1GZdxjilKyStH+gQ2PULjYgiTrZEtsNk1cbNLW6RdOKL+60ZI99UYfJ6j9hNaUJbkl2s9Sm8UbMCatmR3j3Me8T4H+Iw4XN6pcGXLhxvTRCeLJwiWNrdM9Ldk5acp6mN1ZgglLYxu8h6i9aMUtWx6uOyciMFzQ9kPcx5JNrcxeSONTlueojfBpS8jSqh464I+wcNapEUrR6z3JEIeWZLhwzJGzDV7GT2InG5WyHu4IfkNUY7kZrJuZ/wAiIbR7Scf7kR43Q4q9ia7DLDyZPwsjxZPLJciWvwR/GxTeRaeDG+k+0jUsyaFKsncxqD/cYm9yHAzzZD3nqOCLT3GkUhquD1EtGlkppws0NZP4LS2PUeyJjzUS0zXJqjCNMeVyP/XIZF5MtSVowrt3JTS2G/sIUozVMjFb2dRSmkic6ytGanK8fIpLGZ5LtZl/HqQt0mN0m2NrLGhJYlROnjZBdrPgTrHuQknwepSWTcxY6lxRaS3MDubJq8256iKq2Y1xIxqsh6j3owyjVRM6ckYvuDHTMWOnbMfkxruMibWxjjq4Q0TSsj7CDlBt0Yk+pbR6l96FdbmV2zetjDevcybRRLZaiMdrRCSc9jaNtmOO1mank3MdaaRNtz0jVKmbalRP2koOdNcHqPxMgu0d8IhtuJ1BkFHPGlsyHp44t58kO7NZONp2KEXuyGyI9SD7ULLKt4jyy+D07eu2ep3VIx9XG+Drbboef4FNyZ6imkmyUK4YtVVqNBl06YpkNF0iWizRCzTBnOCkRwfuYrx+1knOZHFJEl9nSyOPbuZPXxIhHuTZkxxllb1EoVLdnTS4Z6mLaioiclBR0krl4Iw1QaZ062Ujp/7iddOiPDFtRGumYmnweshp7kR41F7WzC08mxntTtCm5JKa2HPSqgjA25bnqU2xPLHeIs83HuidWuIk3KQrJZIvgwu02S1J2hZdUamQlCG6J5ZS9goPyL2Ual4MdOWx6uVSIZNRXdqZORidzszexEJNKtJOT+DFGpmP7jpnD0LgzwlPJsjFjyxNL1atJOOWb7iMXa2MyvGXJR06TJawOzFVWx1Y5pbIS1RZjxTjuSxSvUzBFrIR3teSEf2/B47RSkhytcnd8mJPUj1GrZRNeRbM1y4E5EnLmjLKlFyQpa/ahtxW8RZIS5RmrHBEcg4z8Dk48oWS/BKN4lRpXFkqfkUY8WUPEox1yISUtqJS0vuRDTNmdqEqQnKRHLHgn200XJrc0fLKSWqRrUV7TqpP2ko1jckR4FwmVqwsxrJCWpEs18Ic38EoTmzBFqZljklkekjjnXIoTXkxLKsi+CWvqtlvyxyiy18n/YlYnFu2Y32WhdRuzqy8mr+R2/Io5Pkjejcx49DshB9TUZ+nOW5DHiXDOhFdxmwxhuiOzMq2QlXkaT8mNb2KMXuRgk7J6tfInO+Tve9jb1XqI6zK/tpsvZMnpliZGGmI4+BQjfJtGPIssK3Z1Ivgh+TYinGdouS4QuGQxSybyPtpUx41PeB6e9dM9U2lsQhOb5HDEuWaL9jIOUX3GeOpxQ3047EvVX4OnfcepXbFGKGky5ckZOjDlnldSRLHW8Sf/jmNTvY7Ma3Y+nPaxwcCfd6Yj9qNiz63wQx6ZKjNj1ZmyebItoojHqR1M9TemCI6YKpMej9pDuxtGOGiJJRkTVY2iHtF7SK+2alB7MklfJUfkjKMdrILutGVN5diOKOm5cko37WemvVTPU7MhBt7EpY8W0jq4Zk8VbxEqHJS2RhVRcTIm3SFiUFqyGrFe8SWK1cNha4vcX4yeSUXSMDbrUZtMZbikN5KJZZLkxyUzN7ELQjskzD7jHc21ZByjKmepX3GYoKPcx5cbJ4qepGNyvkyxuFM2UaJRjHGzqJIT+Uao+DZxsxYbWrJsjtyzehmKL11Igku1ElG9yKjpbRhlqiZMal5PTw0EH9w9W6VmN+SePVJtnpoqNodbHqL1RoySpUPl7Gvs2M/ERS0xsk73MTqe/JPjYf4DH/BnjGT3MONKWxKib04EWnGmN7kfciX5mjL/tIOu2tz1XsiPGtNyIxqRxBkrlhR6fZ2S/GzHwLgW+NoxYNT1S4M2WGJ7oj6jHN1RLDF7owLTKmTlpymda+GYYKMuTH+Q9R7kY3GSpGfGpSSkRwwW6Q6W5ZjhUkYuCDuRlfbRtw0Q4snJC9hki+TFFxas9SvuGnyiWpslGzDyZeEThrZGOh7Ij7jU47oxPVuzK6ysu4jSvSN1FNlpzVGX27GSNyuzM/sGNLSTzPezSRfZv8AJ3Jd4kuUYpOWWxJwbkZMul8EF2shDTHYytRdMx3f8GJfcPVq1Qo9lRJ9jWrkxqS/4H7kZ2lOLY9MiOGV7jglHSeo20kMsV7jJiU7aEowVseXbYk/sGKmeoi8aIqUqa2JRVE66SI6WtSIxlP3ClHVGKMk9OZomlPZCmo8cnq/ZAy7YrYlb7SuyQ1GcNmQgoK2ZPYzFwxcGP8AHZjle56mnPcxUpL6Y5ashmjqy0ZItLvIW94GPadmf3Iw0kZ4uDcyGqaopPYYsOj3GIjJJksayCTnOjQoIlli9kf6ZjlqIZFKek9Sry7HdVktS4JRZg2Zn4RvFbkYue6F7tiUe22Yk2ZdsrZVoitb2NKjGmRrWqMrqI4uVNcHqFeF18kFSok3IxvwcQMeSOWOmZHHhx7p2Ym5ZbLV0TV8ifazHmr3Eo4pqxzjEwS1TtnqW4q0YvUadpEljnuxyjFCnb2PVRbaoh1USnPwipy9xnjbSFiiluUvkeNPyLGZNsJGdP8Ak60ZKpjyxSpCk58k4XhVEVkiTnOS0vYxJuaMixynbJKB2vweoucYqJFOWNQaKrZIhjl02hY5RHGbGqxsw8MRi/GzHp8GfC4pyRjw32stQW5jac9jNJxyWa45dpFxx8GKWqZ6raSIZZQ9osyku46kVwiU5S/4+nVUtjBvFkoSb5MeqB1X4Mly9woIVdMqME2YktaPVushCenZmpXqMuTUYTOrii5NVR3fBBO2Ysn9zIy7+0zxm8jpGHqR8Gp+IEupLdox6tSs9RvCjuUdJO44H/yY1cLHGTlZai6iQWuFEcEdNWdJVsYlpyCcXKvI4tv+CMlGLbF0ieSHhDavgwySkeolXKFL+B6b4LXFEdK8GdvVdim3tZq+SNfJnpVqE4Vyao+DXAi4snJ44JLyLI1s0SyPwjXP4FOb8EtU18URkl5Go3ZCPlMyycZ6Ine+COR8NE72aHkm1wd3klCbVpi25ZFRXkcHTkYVszwYk+m6McJp2mSyTOrJkoSk7Zhi1NGfJLraaG7W5b5USGWpLYyOfU2Fqe7JSO4UZCUiRH2MRew+BCMfsPAuT1HJh4JJaRpGHg9R4G9hvdmLgglTMfJP3EeRvZkWzyep4Q+DL/47PT/jM21i9xD2f9kPafuF+ZGH8pLyQ4/RDkyc/RD+nrOYmLlGfgxnquV9K4PUcIgS/Gvp5I8fTL+M9PvJHqtmen96M3/kIRkM77YFuhN6hfiYxe4X4mYfJ4IfiZDgysj4MPI/eNdzELk/cjPyJsXP0i2QP//EAEwQAAEDAwEFAwYLBAgGAgMBAAEAAhEDEiExBBMiQVEyYXEjQoGRobEFEBQzUmJywdHh8CQ0gpIVIDBAc6Ky8SU1Q1Nj0kTCUGCDk//aAAgBAQAGPwL/AJExzXN658Ud7s9SnnSMKQeHKdJDhgyToofVGmDKJbWpVQ/WdYQtqs0RtIfU6vRmInkqIY2x3JzsBVQ1uzme0d4ITXCjTu5EOUljfRqiqO0FzjDcg9IhNB4WU5ycXehAKnvau7cQHcIkoBlbbdZ4cIBlbbnN/wDIQtag+0m1WkPph0SmU9g2feU4EOTYFGkxrtX5hTX2+gHWxhunsTX79lSNDanGsxtrtSMqpVqnhbkAc1Gy7JdPUIH+j6ThEC+IQqH4M2SR3hP3mxUIPJrmhVv+Ftl+kHRcewW45BW1KDqbo84IxoqLPg7YcNbFzhJKLKe7DfrwnDe0Sriyg7EQgX7AwtA5FRU2d1LvClhkFN3dLfVjOOiFWnSoBo0B5KyodmYPsxCc6aD51grymy8PWmU10Q7QyvJtc+oXZDUyzYaRxw75oTr6GyMgWwGjC4hs/oQ3+ziOrChuoYxzgfBFgqOf0IE/cjPy9ojzEWCptxn9BPtr145XUwoNfwvbCDw4Pa7QhHd0t5XJ4f16lc3Z6IP14QJOzMbnEJ7XU9nffqjdstHphEVNnsEcsp9ukqmKjnVH9qxvJfu+01XT2d4QPeqh/o7aG8OBMwU2/Zq7YImE6G1mt5XZRDrx6IVNtN97C8EFH7aOIwqm9IDBVnxgIHZ9jdVYDqWahB/yTZtmp/XeAn3Vtnbcrmmg+By6Ly1ER3Jzdj2beVXOnwTyalOkO0bggam3SQO1Yg47QCIxcE2lWAkuw8JlSrSGG3OqETCvpUabWtxFuSns2Z1jRzLlJ2lvLUo1dpqOzO7bPaQNvoiULdkgmIMD9ck9tWmGVRhwVWad9TzEG7JTpMA83r4hQdmpWfRc059ieanwfQM9BCmp8HUrYgi8etTV2JzG9Wp9lRwc3Nruapn5SaLTGAqhrfCr72iXNIH4otpbY51ToWwrt57Ue8oU6Gy1Np4Y4WynX7FtFJvIPCmkCG96a5zN4/TPiqVF9CkHvzhgce9PD6AZTYeGpuwJV9IMc0zy6Qi1gtBdB71stV5tw4TE+cU/fC2nHk2P5hO3u1C9x0xpy5o0mP3rQBeW6KsRMZ96pNOQeSDKdNo2jk76IRN7nucefVHygpuDemiNUbQCPBdorPlG/Rci9rQBGiKplzhSBHbOuvJVRT8m3zY1KLK4I5m3T0qo9tRzQ0drUa6+pODHEt+sNVAZa7o04TgNFUe7DW5mFtDKM8Ai7S5HflxBiB9LCpO2d75LZBGnjKAeGzPrT7dFtBOgI4uiG7HDzc7RxTi00mBytbUDqg5dFx6nVpQ+2uOkN2M3lVauztDWDhuJzKc+vcS4DN2hW72pt3MjnCD2iR4K0aJkdCi0O3tXnI0j71SAqDe1eZ1lPDdp4mA68lUscK1KYg6EJjmxxdE/xTXuph7iOfimtpsm4wSNIVbZ6T23dDrHJPe+qyMTMjCiuwPYeY1W9bBxyCpf4icCfOKOFtFSII2tseoIeaHeaOacxz92/EYxCh+0EQW4xpzW7Y8PfztVrncYwQVvLiCHYIRp3BlGL+M4ce8qa+2tbJHALcdeafTY/eRrjRbK76+qp0wH1abYAtCFCuC2hWdZ6VtJbe4HArO5Ko2DVDgBuhrPX9dFaO10OE0BvPkg51Y0SABGsdyr7xsSZtXrQbDajjy5DvTXvebtQg6tRNzg6erfSmfJGvYx3FfJAPcAnX0272NeqlojMLZ2jhlmoRqbQyXDEEnPPCe+hSIe15BDDEE9U1h1A1+KmGs3sNBcByCq1atD9n+l0QjmqcSXydMx3r5RBBp61G5lWQGDMuaJj0JzMYbiOapytha95DeJvhxLa7Xb+3DZ5qkG1t4Xtb83wzqfuXNrIA8RyVQtMyFSjXKdd2ivVquKym2PpTKrNHGTiD9yKCkHQI+K2U71rQGjgPNPgSbcgqvVPk6eZF2vrTdzG+FBgDX6QiDgjBRsx6U+dVWuNrcZRa18NuPFp0UuOQ1x6RhUXMcHbO2AANWkj26JrS+xVOa2hswL2/ehTdUkOZe2PwQILWni4R4gc0AHOtZ2XO1/X4JlQuD+9N+2m1iRu9YJhGn84ypVbwsOYzKL2VY7EC7TK2naLXNlwHF6fwUtmCU5N8CqtjuPzmFsBuiu8ym7dh58eSplhJgOcyZAdpzlPYWbs/QPJNdeCebRyTk0NNr+pMDmqJe6bOn2lXqUAWXCw1SdMSf13Jzc1GuY0Gm08+qgiDpC+pklU/8AERn6SPRbaem1U/cuBwBOjXeGVc5oe7AaevcmObVvMZFPBMuJ+5Bx5Dh8FIfLpynjncPvT2728hl4Y0exUOKoDGGM4POzlPcHQw9knotnH/klU3C9tI9DhM2miN5Ua8FfJdoaKTbo3rXdidU2vRGc0ocdC3Qo7TdvC53HGo70IlxTKHDvYtuuEePVPL3hz9ZDl60IZu0HOd6IVUBheW03HTEdEK8lmltJ3thePRCM8WCtlHVqpCd5fEenotpbTduQ1zi+6bTpzKd1IRRdJHk2zaqzWAkAi+7HPHvVKO9B7TFQHHd3rd1XugtzLeyRpHoTXc4MSNU6o28VM8XJU5gE6gLZt20vEuwPFcNMmpBDh6Vu3RvgAbSNNYj9c059bjJ6mIVUvmN2TlUozlcc+lVGW3YHoRbUoxSZDZj9dybXZwVamHdfyRXei7THxbLDrX2AZ00Tm1WAODeZV2rHRewHDk2pS4KkOaXQOzOPivHCOpKeqmuoiOWqc+8OokazCosfc7Ik/URHG/Jtb0TDUNrvohVGzMdVtDg62agCqvDzvBmDzCezRmtk+mfYuI40x0UA8CZ9tAtbeG8uaphoB4iJ7o0VWX7t7nOcRf2beXuVhaGsblrQg6DbPVPTPSnVaV1VxPE12vrT2tNpdAcHZQ+TBk0iG05bPDHP0ynO4qjzqVddceaKYy8MBH3rc1WOOIxzC3VUhuz1Kh68InOipVNlgvzT7RMBp4SnYl5dK8W5HRMP11bz3hVukAStvZy+VUz7ETDt0AMjoqhp3WujBMqpfWaXgcLSNLeXtVzsqWtNl2qrtYQDI1RL6bg5zTk85VVtR721M7q7OBy9Mp+JJGi2a/6aphzmOFmlTQp43bgJ0pNJCe7dbTcc9jl6kLqFeCccJTg2lVseIII1QFOkWgLdn4Iq3a73KdfTr0weRRIm20pzHQ7oiN8Y6F2JRdTr0oc4OIjonTWYJKNvb+kcpp53clQFQgEtAB5hVKW8FRnmu0jHRPufumQ0QSSHOCNj7rQQDPxUieF4aM/inOfVuHTl+abYPGEwuMZ56HKDqrpAFvE2cJraXlG0wQ0VGnhKcAbQ7SRATT5sqkJcLbtPFF42VzXEfOCcp1Q7y4jTdlF72F7x9IKq5rT82QSqR7yuLZhUAGrtUNxszrjnNQLyewtbmOJye2vQY2w5F3NFo2dot1NyBZTFzhPX9aJ0tm4cvio32022jUpzm/CFKnjsvaVdvaLsxcnlrqTwOawym5HhjEAJ/JXsfY2dSg7+kadMelAH4ToVTb5jZKMbSwiYTrnyNPFPLo4siE8moLnVMs6LeQ1v1eUqsaTaLd4I+d5I3kXDzQU7FozyTPtrfMpuuGS4Aog7DtLi/wA4UolA/JNopxNxLevpVxY50jAforBp4JyaWjSSg3e02eJQe/atkJOIJMhOG+2MxnXVbtgoiR5sLLbjyz8VLgAkQ2TCcRubed1UJ7Ts2zOs18pPNNt2KiRE8LkbdnaC7EtOUfJOATD9dXvz5RPaF8ICf/kUz7F2iGnknU6FGqJxwMMe1OAZVFpy0gDKlzXkxIBC8BpotpGZJ4fWhT+TPfnzgTK3jw5g1HD1z1TxaLgMyqJIkSm/J7Nnp64UVPhY0GnzQTCG/wDhipd6fxTR/TD8HvQDPhB9SNF+8E+hBo2INEyX25KqNc1rXtJ4QtrNalvauLG+9BlLYAafOVw/BdItPUpu8+DKZLe/VNu+DT0xlEu2Qt9CuYXNqtyWlMp/OR5sSuL4ODxEfRQLaL6QnzVq6/vRTdxsLHstiHYlOHyOi0OzqfZhQ6iKecQqDdmaxxs1UM2htOfNjROFba2vPPiHROy0jmgH093VB9ao0tiojDALzpIRrO2ulsrZzHVNe/4W4rccHJH9tNWfqq6pFRnnEIuYy6SbAu1u2noof8I1BEDybl/zCq+M9pEOr1+8yv32tK8jtb3gexC928a1E96pVNorPddGJhGmKRrVA2SLjj2otp/B5iJwXaetE1NlqMAI0J/FeTNSlPMlXNeXD62QU5zu1zVhqFtNvKYTTV3hkfTTt3sld4GkuPSVa6jV2dxyJcvJ1Xa9ZRDzc5uFT3FI1nHLoC4dgo1JGDVAwFxDZKTYjCuuoPHcUN9s3ANS1GtTYCC8kNhNd8sLBMwxuipj+lNoDyevd09as/pOq6Zx4R+K8nt95byjRZeHt7wuwGOGDC3bTbd0Qvdfj6SP7OX8PaJX7q6PFeQaWv8AouKcWPPDI1RTXV67mi2QA5XVjUd/ErmUn2+a4c8L5+vT1xKLdmr1DHep37njXiTXdXyiQJO81VXudC2vfNJpb5kx6Ufk1O0OzLjy8Apdt7GN5AUyUS/4Se4/4P59yAG3Eu7IlikvZWb4Qnt2RjW1navPRS7am0vBRV26rYY7IV7dsgHqrahD7jg96pwbqgbDW/iqji66RLriqrHtNo0PU93rTrKTt7ww3QnkjTYCHPm8k6hcyJ5oNNU3xo0clVkRLpAGicNdUOEXnzWGDPUovqPruxpTlAl1QNwS6+NP4kbHPg3QS6670J4FCyqG+ade9NLZiYgqhVrUw4kSSQiGfB9FgOG3x6/ep2nZKdhbM04xlF1NobAn4tnpbsuIbLwMp9enRt2YDs/rwTHtEOuhQPrYTGtAL77TcMctVtFc0xboMY0iVhpbUYI7tUMZ6oXlzQHkcJV1SG03dicgBTV2w3QODExCdSbV3ka2jEqq062qh9o+5bmi91p7TpQZrKaXUw21uZTmtZBi697cLRYNp7k+e3HxbO1g4jTGSNFXDn7sFmSqjKfE0Ah0cQbj8iqmd0AL95jWPfy+J1N5dZy7k896e9zbyXgALf1H87fBOimTDrbvQfwhUbvJkn5mfaoiRy6hVfFVHuwGu7REqxguYBgu5lS4U6bXaDJ5oMva9xzDOSeXEydWqn9tMYxt9Q46Ad6p1WvNeB2geZW8doDg+yNeqO5BpCJabpnvUPPH/qVTxQ8CtywCm0nMjJXGyWgg3EaTojRNEGo4WMaY6p0QLT5mnoVQkAOAzjX4qBAk24J0CpvqFznT95Qp7rybcNB5kpwbRbvsOa2Rkegoua4tM8lxYcc9xVP7aMY8oqx+svhL/Fp59ap7wkm1pDWanhRq1brhBt6BXVdodxNuEDv/AARpUnOfHUaLdVLg8FVnHsh+ibeLdncx0E9UBU2g6AxAEjJ96ewO3oHaxiVs8cqv3Jl9fcTHCGk+lFtN9WoJ06hU2uu4ngtbdz6rgYKY3cB5GWi2de+YQvus+qhZUcB1CoUg+beEPBxH6Ke5z5eNc6J3pWJPiqefUqQDbXQQS/iji6LePwSwcIEQjLi0dQqMG7Pa6qg6eGAPYjuWO3cACH8+aLazm1n3EU7XE2Ku92luPi2UnV9H0gwtrc0l0y2OWqp2jHVOFCb+odBCqU7alOi03EdIVj4gYnTkn02lz25LB3ePVC+JnzVaZxUOiNJtcVsg6YJ6KsC+Zc2ceHf1+9NrG1hcIDmc08EybZVDxPuXkwWt7011oqN6IkS10GGuMqq0kFzvNHVD4qoLM2ni+KgN0C2wcfTCrcG9dbgWXKoxjHNqPljQwRqOa2ii+X1DytwdMytE65gM805Oc6nvJfGdEzWDmAtpotJsaL38xlsQm7ppETk+MwneGQqp703iLW70z6lQpmoHRnhEwn5AFhjPZz3K/d7s9Z170033Tqqf21RLri8ARbpqrS6o5tR4tb0PX2KjFMS4B9j+Pq6I8U50iCMRyHRAzLtQFU8UMxgoWsc6vg3TiI6JrajcYEOOMH806zyVO4jh0Ikyfcifaqu7Dgz63xUS9m804ZhVGQeNstg/r6Sozu+1nOmNVaCKILByyOEenOQnKZk+Gip/bTiM8fJVbRzXwtjSpTz/ADKlL7JY3i5DCsm/NsqvcM7qXW8xKbU4TT7LbUam8BdK2hpMeUVFuK8svAafeqt0taGsmRJaA4p5JGcS3mqWZ8rqqb6ZFV0AhjdYV75Y4HQ6j1oQHenUqmWttIwemNFvaZy2bwVOGt6uTeB2PPRZ2W+cTlOPiorcstNMCVS8oZGmAqtJ1MGnU5h2dMe1CQAOsiAovFZ86nAVMRbnRUS2DbTHCqbew5vbuxAHX2J9BtNxf53uVWXNyNEVse0O4mFjRg5iFWZbNnCCNFxEXGpyVR1t5aYHcnPFRrrX8Tp7eVQgfODFpyi+8Avzqg5zbU+26N5mPBaEcnT1lVKbmzd3TPRN3rnWDpyVT6MFUZ+kgXOFN2ewE1oe1zT0dqqjd7c4c3ahcVZpjCEVAi6q+e4KoJhtuB8VG55wIg6IHZ6pY467uSnu35a9p1jKBdtDTAgDSFJfA+rlcAn7Wqf4ptxiHdJTamzOyJ8mThBza7WmS7LvQrqu0UwwnNkkqGNmebtVW+0VQ3GpqPnPKAm0qjHirJu8IVXfE2v4IBOGf7oF+GDEM6JuCGkqgwZmqi6nWuqg4YTlUCahewEOtt0PL2p9B+HM4rvrHT0YQtF2B7k29wGstVTxQB5gq/Zql9QcVpGYUVAWFzpdGo1Vm7a3dm0R0jRQymSq3lLsRA+KlcHSGASxbngqYcLm+A/BBzRcwWtie1qhVsLTEfr2IhgLu5cT5d9FU/tJwHKpzVRvKV8LNu86n/8AZUxxbosBHTReTvItEh3VVjUYSahgnujT1ptzja3A8E7cyttskuvjCM7zeR2e4p3yph3tRxa+Ro0ae1cXEG4A0wqeCPKSJ9KY17qYFuHdE+am98R+SsID3DnCl7Bno0omnLJkdlZq6dQhVtZcOSNSrw3jlEIzpmUdzUqWx5/3Ki1rSI1I5yi8kl2hu7RXk6dQdMYhC9z2gpsZBMyqb20RBbAc/Rb17g528xB5QhUmmbvrhcTGhvVvxbP5HeNtAMp5psa6mXSHNCLnNLYf70+3tTiEJADg70lbE97KsM5MbDlO5IqTrGitVXLRD54lloO0BuXNOe6QEHX0x/F+SLnvvPRk4T2sI0OFSjW9Q6oG9bim1DLCMh3VNNRmTxX9JRaXFw+kFjjGJ7kbHk90dyceTQfip5B4RhEtcHuGZ6J1znydd2FxuJPTRSPJGBHJFgdIGpCf4qiKYLyakW9VUuqGnULMEHRNpfKBw44kSal5g9koOD+EmAVU8VRBcRl2nNA7umC3z3ahPa6qCZza381cZd9pF2ucKmR/3E2nQ2W7OVvAxrzI4XNlM8nSqTTyA3slOa3ZxTecGzVG+THXVVfFA9MprTTaKdpbKYLWvf0PejGzttJ1sXYbb9VsBVJiSPiZ8naTDcwFVLnjfkYnktyXtaaeHXv16rhtlv1gvRmExmk800cw5VW8t4qg8PcvhIcsH3qkDVFHhbBPgnmnbxcrce1GmHMyYxyKl0FoPIpwpiB0C24Ex5QODlcA99h1sP3LDjAJ1COC530yMBD7Y19Kpurbx1QxIZEaIPpU+AGY1lOL2OBdzI+5ab4xozGPUiS1wZ0BXAXd63fycNnUSiNy0j0KpV+Su4tOIIx+zt8JX7S5zxGooSnvpscwyTw0ymWPqdzDTIRJ2N7/ABplfu1Vpu7O7KYHbFXqVoHKAgz+h8N61HL9yjweU62lUY6Igo8J9SofP1HNHZY3Ca52z1mRGC2AiADmpMu5YW0CCYM4Ep+62S4EaaKhVq02uPZDHO5+hEOoQJ6xlT48+9VTU0v5juW8pCtFtpO6MIZdnXg5ckAab3RjIRdaZ6kKnieJAEieeLkKZovP2GxKv+RVg2JE1Wrh2SozxcoIcOoXnepOIOI0PxNO7dUdA0xCc6jsDHYz5Up1+zUh4VZU/J48HoCyoCO9SXetVRrxFUt5V3bZJJAT272tUDgMW6+Cc7ePoY/6zLUSzai0+Cv328jvT/FUt4S1oaTqidnfSDwIvJHF60BW3HdGJRBaMcw45UjhjvwmHpUQL9p3d5OhTqD7ql47UJzuOlcABDIR3deSTzC4aoc7xVQ/WQ8EwO2xsOjAcrt9z5c062u4fwrh2m3xwiG1RUFvI/E0O2iyQOEZVDjc60z82dU/aBebjMRC4r+Jdt93S1RveFU/tJ1oLgKw4VUcOyvhI6S37180KuAWyRjCl1tDHYFWco/tDHzrxKDY5EBg7iFtVVrd468cNsq5mzbS46bw4HtRc6k9xOpu/NcdN6BDS2CMQrvkm8Eduo/RboNpM9MKam20ifojiVzKt/gxQ5s//wAyuHZ7v4Ciyc6wot9KHx9UNRC4fiHERHQpoyY6qoxsOezUdFlrZ8F2R6llrY7lnjnkVmi2J0c1HdtFOfohYcR4FSIDusLj4wpdSY4/WajuqYYT9DCneu8JVrnOj7Sy31rNNvqV7Nmph3WF2VlgWaM+lfNn1lYZ/mKPB/mK4qd38RX7qB/E78UGgYHeVmm70VHfiuy7wvd+KndujuqO/FcN4/8A6OUcf8yuNAyc/OlW0aTgO9yuaCwjot48F7+9ZYVDmH0EqTRcZ+u5MZubmt0DzohFKl/KFBayPBdiV81HgYQf8nMzPzjk0UwWx0Kw5wPXVeUuqHqShwH+Y/ivmQR9srOy567x34oVKVEsP2yfeotlWCWtXGyT9sr5ofzOUO2YehzvxWdib/O78VwUAI8Sptwj5ML5oYWKAlBpojj7yg4bK37UlFzGw+dZ1W8rN3jzzKI+S0zdrjVAblgA5Bfu7PUs0GH+EL5in/IF8yz+VSyixp7moEtEhHhCwxvqWW+xdj2LAhdorB9aaZzGQipXP4sLPxEH49fifDQHO1Kzz5dPjgSczkzH9Tr8U6LQFaQsfEYOq19a09S0+JsY641Wn9S3QnmB8WI9Pxd/ciss9Sw70FYPxDhQc90nnCkSuyVketfmtStJRwUJn0rUfFr8WnrWn9QQ4WToRla/FqpXX4hc653XT+ofiLTiehWnq/q8kTOvL4+X9SQcrmv3ep6wh5Gp7FBp1h4AL5vaPUPxWGV572hZoVPQtKrf4FrU/kK7b/5CvnXD+Ar50/yFdtx/gKBFf2FfvLfUV+8t9q/emL96pr97petY2ul/Mv3ml/Mv3ql/Mv3ml/OFI2il/OF8/SP8QXz9L+cI/tFP+cL94p/zBYr0v5gvnqf84Xz1P+ZfOsP8S7bP5go3jP5l84z1rtt9a7Q9a7TfWtQtVy+LK1HoK19ahuo6FYf61yd4LQLVYMrJPpWo+PRafFkLWP4lgyvy+LJDSuRQ4CstPitD8Wq1XaXaWq5etRLfWjLmj0okvwvnAJ6lfOt/mC+dZ/MvnWfzBfP0/wCYL94p/wA4X71S/nX71S//ANF+90v51+90/wCZfvVP1r95pr94afBfPj1H8F+8D+Q/gvnj/IV867//ADK7Ky2FrCw5a/Hofj0/ttFoFotF+S0HqWgWi7K09n9XVdpdormfi19q5+tan1rU+tfmtT61z9a5+tc/WvO9a871rtO9a7bvWu271rtu9a1XaPrWp9a19q7R9a1K1PrXaWq1+LX4+XxckyoYMidNFSmIDY01CosbDS7nC5LkuXqWvsXa9i1X5LVarX2LtLtexdpdtdtdv4+S0C0Wi5rmua0+PDv7fT+tr/fNP7aj1P4qlnLWLZPEf2Gq1Wvx6lc/7WAP7lqtVqtf7DVarX+/6rX4qE6ZTLh2mjK2LvKP9vr/AGdV3Rn/AOg7N/EtmmZAhbA7qnjv/vTjGXFEf/n2t6rZT3uWzme0IWwT5phVftH+9U29GyZ//QG+k+xbPOlxVHnEkLZftBVvtn3/AN5Y3qYVT/8AFWsaXOPIIFuzkA83EIDdMEicvCiwT4rNB3oRa4Fp6H+4u+wVs/2iqN3UhbHiP91X+273/wB40T6uW7ppcPHQKO/++jd7M8g89FxbPH8QXzJP2cqHsLT3j4uGm53gFw7LVP8AAVDtlqj+BcTHDxCp0QbbjrGiZvvhB20O5tpwE57KlUjSLl5LaarPthOp0am94IJj1pzd7Lm6hpEju1TQXhtVwgCo/wBHRFzqoA/XgnW/r2qnsrnbu90F3Rbs7F8sfzdcSiKXwIwT6UHO+DKNIHlCAfsJH+HUyqY2EvNdzrd05cRos55qBCalLPQo7u2vAngP9XDSsiE976ppsaY4WySjcNrc/wCsGhFzG1ROMwmBpvDXGCmx3rZB0P3raR/5He/+tgSe5YafUtD8Tw14Y1gkuKmrW2iuP/G2F/y7a6niVj4ErT1kwg2p8GVmu1lj+SIu2jZ45RP9jRc6q2gCzDGAY9ae9tT7X+yZ/fKf2gga9UXcwc+5QwOOOQP4LMeoqoGnGoVAPFzbxIQsrbinpw9E1h+Ei7EgD/YKPlDne9Fz33H6NTmtjBAZyJaI9KptJa0OcWgutzHoTaVQWDuhUw82l4kOOVVYztmnLfWhUond1xq8u7Sc6tVAr1OI1A7RW7S+8MBttOPFOoPIdRmQZzCGciBKsZTYIg3ehBzncpnKaw7stnmPzXzTGu6hNtlrriTHS1AP2MQOmJTmbPQLGx9JHyO7qN0c1Uo2FlZ5HE+qTlyB/o+kwHSCnF+yUojUDKDGUadKSSaj02NqZvCAeHRF79zWaMkFfszSXVJcabhiZjCp0tyWsA7NpThU2f8AylRpNUj2Jn2itmJ6/etp/wAR3v8A6zds4PlVRxtLxMNR3dSljskhv4KyrVY+/k1rfwVRhp0hXZxU3AAE90qvRba/Iu71BbTpDkLVumkXjzwmQ7ypkQYzlNpOqW2nrgKZLHTGmoWjD4OUVWFk/wBentG6NUlok3I1KNLdtzMvBU/1a1Zr2sbTMcXMrym3U6foXktupv8AEQnOsvY3VzDI/sGU687rJNq3jdhYxwx84rmU306ze+W/1BQdV3LYkuiVFPa6rgMEkBHy9Qx5wIhXs2oXfQeyE5jxDmmD8VL7YTXPpXEzrEkq2jQFugFslDe0WlscmovpttEJifUqmcXYRG5dU+uHEAp1rHNH671vKdU+grZZIMiPaQgbctE3hp9ap0XnjcRxc5Tr3GT2Tnhym0x/24keKbvKsvaI3Y1d+C3tOlayJgGO7Vb2xz6YmQTc3CcQAxwHG2faoH1U5jtnFW8Ng2zmEKVJjK1YnsxwhMu2emabcmGwr6LTbp2chUqTbhdOR0TajnQ0al5VRlKpbnzsSqlpdcBo7qqW7rCkDMi4ifUmk7VTe3xd+C3TKtKqOsnCuqOik2biNdVf5YS3k2FbTqOuP08KkKg3ZDeMu79FQ3O74m9E5tZlNjvp2rGm9PuQH11Q8QtoDGE8Z96a6/Z7XCfnRhfPU/Wo31NcNakfSm7xkU3G3eDITKYq2WuKeam0i3EAc0N3WuIjtIkPkk+pV2Mi8gQD4ryjxSdqJaodtLWuPRplbtm0WNHPdJ9VhNUXawPxTQWyVfTp0aY+iZaUwDzZ5ytlPyWnVquy51VstVPd0tgoDuohcT9mx02dcQ2N8/ToJtM7JsRYQRfTYo1CfQZXs2cNa5zSUNmNVr6fFaA1eSoveDzAX7o4A9SET8mOFljfWj+zl0CeHKqtLXWtfp3oiqeMHS0/+q4HcXS0/wDqnvAsa8eGEydl2aq9zZLq6ePk1HH/AG1tDg/c06bg0YuJJXlW7a5/VloCxS2ov8QuBlb+IhOufWa7kYDgqbG1N5za4c1WfttrXwPONumdFToU3Qyo61tR5nEolz9qqx/2qYj2lf8AyB/KjYa/qBQuJqUizUNjM6JpJpZ+v7Vxtpl3ZOdPzXk8cM2qt9r4qX2x70QTgi5pQvhz228Uak4HNdndEG2Htyc8lWM4TJ5mFu31SaYyB3KdopCzlnU9IUBpbUDWgAauynwI7jlbKbZOsKhYNz9o6BUmurQ97ZXyepVFSBo09nov4Fa6HHr6E/5NJe9/Fc3sieqq061Qs8od3jtjvKAbgzqqn2h7gmUmTTa1oBLdXK558i0XOb16Qi1lBl9SnczeGQOkyi4PLXu15StmedGsdMK3aXWU2HFNvZKfYHtaBJty6Oqe12QBg81Tq12vnzS3n3Ju8c++ZsaTd+SLqVaeQyjSY+AXOBx3pr61NzrYhrukfmmVdgbJi1zun5oB+RunaLd7W80SyI75OiaNnc57nS09Fu2ea/8A+qH2pVH7X3rabybZPZE81x7PWq/xwoZs2p5uK+Ya30p0sIPirmaF0QqT2tuvcRlNJN1R9wn9eCNS5gtPgqpOrIOOarVRl7RI7kN1TmqNH8h4Jja9SoC84tMEpxFeobWybTnXMdU51JzmgnE/eop8MdSgKlRyZrM5lbMymx1VwpC5oMLOxVJjFripfsm0nun8lwU9qazq7VOkux2TUHNEFAcNUuIG60PcVHzdpzT7+q4neTp+bMc1bZEHFrlbY6oOYDzlXAtLuk/mqsVA0jkCtoth1rw+Hd+vuVbaaZp02Zdb07kXuqMtE5cIEKsHWwAIgLZ9rs3hsEiSFULGFrxntLa2sbLt7OE0soUiAMF3+6awt2dkcihezZtPNR3tIDvaqc8nc+kJxoVQWwMDOea2IhwOeJv8JXBT3ePFdnJx2Vx05KZdMG6Z8MJkNcPOuNJXOeXA6gshHdEiBGidVZsVLaL/ADq8lAf0dsrcdntJn7M3ZtPmj7VSohglmp5o0WkciGxmMySmi4u6Z0/RVZsRBTPFUaYYd6ALnT3aKiauRddGkHqg5lMUeGGuiXDHXv0QD+zKoxyP3Km3Z2OfBEzoVvHVrXFjRa2eHPJB7qcNOC+ZDu9D7Ep1UxVpud2wqFI+SLPKPxjhVdp/aBX8oxtuOJCo1pie0dE6ccTfcr7cOV//AMlpkXfcqTdrtDXN4y5wgHWE8bPO5nztYVDkx1N+qdVL2ii9xAHPHejTouO/LG4PSP161VkS5q2OiA2m2qLiTjmpZSa99hc4u6DOqFRkCnUbNsCe+UZ1vJRFekXPsp84GunsTAWCn3NbbdI+5Nc8TbQMeKa1lTNXJfU0i1EDirMOXDRT1d/9VEdkqj4rahU0yYiZyE62iKrv+2QIb4oWbPRMfRpqmH0KTW6xZErDYrf9uE6McTcH0qgXy0Fk4zmSs8HDw1T7lU85kw1jfNxqjHMgFP8As9PFF7anlCAYAxohVBY1g4D381S3TuIsO7ugjX9epOpVImeIt5LgMskwSNUz9jDGZ7fL0/rVDlxKnXL2i0DJ9ybTomycS92VdewadoBbja6bSdZbbI9Sq2Dg5EFO8V8p3luBED0ao7SXt+yTkKuywP3hjiVSn5Ldaw1glbnc8ZxxJ1Glwtd5u7kj2KrS2hoiwlrt1GfGE7Ouqrlr3UnO1eTF3d+uq2hjmGsyeEN0bjUD8FtAiNPeqWxUqoDHUm8LjhVajK9ODAIZqVtbmtucamvTRRSqsfU859uG+C3ztoy+Yc6MnlqUW0dpFQHWn0HenkPN58yE6eQeP8pVN76Ln1HN0BJnvCoU2MsZdMHwKpmuKZgeY3id3K/ZaDqNMS4AcKLdv2Vod2G1XaEqjY0tLnkBrdOycLZ2Wh9UN+b6GVT2nadk3dA4sbjH3LfU9HHBVJ7NsrbPTPmsBI96d/xKrf1LDn2q7emq36RW9Y686lsIxwVdDOFcBMmeFVJKYt+XCtzI7k3eZYx2YMShVaLZbkDROawZ8VTBJBJ1GuipCk53CTh3Qqsx8FzzDtcQMJrXCyk3RvJXO0axcFB54YnPWfoq9tKrRqcjTdCvfQqVSOze/A9iuqU3tgdmMK7kXNVtSvS5cJ6cx7l+y7RTc7XLgC1WVCA0vvkuHgpYW1qnnOdj1LZgNTSdqgXHyBOYOD3JraL3X8YdbzynFxH2Qvg2j2WiHF8KnStulruJ0aQnufw7VFpaOXIyqjnO3bWl3JU68XnciIdzhVRRfu25czeKnRqtvApZDeaaaDSbW8yi+rwiNEOl2PUnGUxbS+kYORPNaAsIyVTp4qVXOEZ7A5eKpxayDDhqT0K4de5BzjJvBlUGMlzBMho05KhSrP3bHGHu7lvKFpdVbkTNmY+4Kq3zbwU/7OnrReyuZGs6wjFd4J1RNMuFvYI5CE5zQbG9ur0VrZdImXKlcX1ydWE+C0juVE3Ai0apnAXNGoReagneemOiqOaI5296c9r4b0Rpty9z7Qmh9RktbEEqsGA2wW5KeRHaVPZqTHVKrjxfkjV4nOc607wYaY/BbhrXbphgsqO448VXqtealOHZjQwdUQBJQ2DawKbGGDUkjGcIVKLQ11RskSeA/oKu2o0tPD70Hud/0Wts+kE5gG5MAOYXSTjC2gct/BB6YQp0X74HXlCqFz7fIRwtw0d2U11vkxwipOqkOZVyOzyVXH0/cU2nvd1YS60u7ZWzOJ1LiZ8EfKSNRnRMbSBeBTNs6uKpk1b3gWuZEWlUAfpyB6CqLmbTvtrrYmybeuOSO9otp0ycwLltFOnUuZEgTluuFQ2V7N5s1SmJ+kDOoKMuc/TmeWqZQpM7h1JlFrXU2uHKUbzTdb9eV2ILk4uyFTDcuTXU6Ig41kol+zM7yQjds4JHL9BZoWjuTn0wG2al2gQ/b9ns1i4yp+U0XcerTK7bY0mZW1moy99gDbURT2FtUdbJPuQ/4fB1ndFcdA/xUyuOkzwVBjPJVA0uqT3K2ttT94BkbzCYR8J4JPDhOjbCY0yuHaB4F35plagb3Umm7wUSxwPEbjCdu6TBBgxzT7W+VMwtnpmw2Nte1wk9IRbT2k8Td25tTk3uT67uF75c8vEKpZZa55zU0R4dgxjJT3hlFtmTaV8pqbRuSBHCcof8Sc93PX8Vb8on0pjqb77nc16fi2hzXQ6TBXjxJrdlcKdPtVMwQAOaqt2mKlZuGNaZI6Z6Ilsg9ydIg3M+9U73OHgEIeWv5q91TeNnkIVo1uGCn1RRfUEWgtbOVA+D3PjTki4/Bj7+oML/AJe6J/7iFP5MadP6EwpZSjGhKpCZhsKDgyoY0QG6RkqQwOnDmuVMBzt784Ydjw070LWBrWiGgJ5J3Y5ovaYcHSCr9pq7XvDkluirfJ61bInynNV3BhrYMsbrqnuY07OGibKZM+hMduSG78gVBPSJQFSodonME58CqwpM3ReMtPgVdE6pzt1VeX8mtRPG09JAVoa7GrlT2q+Iptho1T3F/EPNd4rbWXFk7RAc3kmPuuo6ipGPSiawpltU2uNujY/FNo6hujGj2pwLhPNoU97tVfTsZgCJ1718GOphupBjwQ2kgVQXThVjdYH+SpAtzOSefihSpUrqjcvrHEdyZTfl90+C3uyio8nzB4I0zTNCW2O5KtkucRJlbO0vtIpg+KqVi+GB4YCOuqZUa/iaZGNFFfaKwdObUf2jaHEamQuB9SR1Rh5d3OQqMAL7SGz1KYW7XRpxMdyj5bSiboTj8oYZzhquNsRGWrdVGEiJIZq4hUXfIH3uiZu5o27C7DoV26q045NCrG8mGzcc8k8DaCajDZa5oTfLufvH2tLQPWqjnVyGjsmW48VULKhqARy6ynWmLuAwmSKz3eK4aNUZjLlO6rNZ1XC6pP1lU2fZzbv6fbOYHNRW2/aJ7jhOFPato8ZVR1LaXPP0XhBgoOqtnjhpj1q7+jXUu5mFUd8lr0mZ6lce0bmm0kNDWyTz0TKu+2mq7u/2QDPlWdJCZIdWpfRdzKbZsDHSJu/QUv2Mt7v0Fe3hpXtAb4r0qVXGD2tchQ0i08jyTywWNeIIu1Cmo4F0akrt3Vep5eC1/wCqNPArYqFLZvlVbdgm1s5Q/wCF+T5+SyU/5RsL7OVtNbVFLdvHY7oXybZKO8rAlzpRPymnRnULj+EmznmiDttJ31Xr99bcp+WsdyTeHhjtVKZamOBmUwtouMjEA9E19TZnB8ajVC0VonAGk+tGKfF1cqjhT8bdU7xUNiwxqMYHP2Kq11MABrhEdxCrinbcXgcSFQVWUtqbjyehXycMse1oZdvBE9U6rUdTq1nDL36DvVbja4TPD6E4hge/vTDsuzNBHMI73ZrlU31KyWwqFN7Wkho1fCfDG0z1Bwto3VOSa0h04VMO2PeD6hB+5XP2CrTBPWFVjZi0TnmuGmDzxhcDRvDI4hMJtzadnQgrZA+i2b7uHuCb+yVm95E4V7bqOZI7KtFNlgPIppptAtOd5oU39soscBNqudtNO4+C2k3sebTjTkqW0GqabhRlvL2p9Gpf2DZnzpmUXkzMT60/hPNVeHB0lNa5k4iOQ1T4VL7QXEBcXCTE9fyVIuY1zPOkImOUweqbu38IEkXKrUb2mte4Kg9zQH6uPUqrAa3J0Hh+CaC0Wjp+u5bRTaJe9sD1LjgTjPXVWvcAYPZ9SaTDLpgORhzcjEFN+01Mnqn1Axzi76fecraKJY4y4w7ny/BMyeBgbBQqGlfSpUTf3Jp3TGwAHCNU6GCNB65T3WNkh2AgGVt1w3eKdvq7iaTBEHtKt+0B1vLqtosY57XuLXw62NOaJ+TU7zGLtI/QVHaHUKVjKhLXTGcfgqJps3bwJaOmip03QZHZjTK4yHTGgTjHnNJXpTfSqzn1d0J1UVNr255DcBvZ9yFlDaY84mTd+sL91rTzKh1Jw77FtRp3SCC3lz5qnY5rI/zHl96dZW4fNAIH3Kxm1bwQSXYOjZ96Id1EFbZ13Q96fMzqMql5RnH5t2niqz2WutgNF3rVXdjlwLSUxu+vgSQ6AgXAdqTC/YmhtPq9TNEcu0o39MCZ7azWpnrDkTVYKjedpT3twHZTAy60gWmcZVclzrYcTJ8U2ptO0272X2gwiWVHTHmvOqdZVrhw0RvqP3feqlzs8iwp/FbAJlPLdrfPBbY+CZBWdrqXQTxPnmq0uLwxwAJCp1KprPdiQxOLG1mAYNyFOg5rGscRcfFY+GabIxAKH/HmON0wqrv6UpPnUYynPNSmRpwhb17bhmR6FRJ2Rj4hsO5rZ6dFllXLJPWPyUf0lSpj/ERn4VoVPEpwFag+9MZVyHPDeH0qqXtsdT5EmSnBrDA5/oraH0J4ZVJlbaKLLRwhwkqd5sdQacKLcTI7OiLZkzof1+oQqcLGHUTJXGPKXE/giRrOVTjW4QgN5ieL1/7IQ9rruGAqjL4DBMlYIPCSto/wnKjdbaGau0VVoFwk5XK3Gi2l41DZ9ia64uOs+tMyZaNBlDid+hC4icCEJ+mFWaYFw8mQ3nhUb24YOzGpRAAeZnib7PzVS3htYBTxkmTk+xbTxFzG0de6/KGDbkH7lFpdg+uU+3AhUHAQ0skTzTi4im3h9vNO4mu1VenSpNqh1Q7wHoAg0va2pVLXx6MSqYqvp7rUMIwDKG+7VpmPFANDC2pTwHcsEp9SwU55NRHW33Kn0gr0FEWtdc4NF2mQm0/2em7sxblOmoGRJwO+E53ykEN1FirA1KR3cTgrjaG1XVQtiLRxNyjTZU5ANJ4kwdq5s+Cdz4gtoHVoHtT3Mc7HK3T9Qqdz3558lViqCWHs+r8VVLahFrmtnHNfOCZLSh+1N1tQzPejvpiwWgdcI26kvjHqR3cHgxrqqUalwD5OnVVt3wskgZTvFGC+2zQHkAqu85gz6lfVJtYbQE17tnY8PBLc9PWmCn8Hh10xDhy9CP7PSY7UNnXPgt42k1jmkZAhV/sps1BMB0Fv1Q7705wcGhp1Vf7YVJzdpDTYx9o8FV/agScZAzBwq28bcz5Tn1I20iydCRMYTSYc8iLojoqrbc3S0gd6qGlw0zJt6YKpl+W5lUg5lWJdiY8Fs9msPknraU0Ut07HFdPTknGrmndIDek6KHNYX7s5uI4t5j/KtlpU2XA1JJnoDoqhGxARjHPv0RB2cF2W5BnIW2kU7CGwrtrZXq1XaWHCdbs+0xEwg6je1sjtK8VPPGI/XcrQ6KeTlsdfwRG8kDnCqZmSmnoQsWP4rfSmtY4OdPFr1TTdrhGMDmq8/QPvCoyWta8duOyi81O0YiPrwiclrSMxhVXEXNABj+FW2B326g0ju8JW83OBMZ6g/igX0rstkEnIAiNOah7JjJzrr+KYOtRqpbzgqFx4vSrt7LQJ4m58P10VWC1rbDbd1lUoeCCzi8VtGQP2UZI+sFG+DnF0OjS3qnk1ZdmI07kd1VPPtLZnh0NbA4iiC8U+WRHL8k7yjOzpKNKjUFN5qvl3cGg/crHVx82TwDkB+CIbtTndkkO5d/vQbXOIIcfStn3lW7haPRzRuqu56N71DSXMlse1W6QE7wTy10GcR4IPdXeOWqe68O1wefMqL+00Oweqcbi67WeapOe4vO9yT4LYgBdNLAT6TZ4mt85bvtw3TuX1S4elbVb2oYPaocQ1wGmvOELqhI6x3pk8G9OYEkfrVXB+OLEZMQu1vAeib5Vxn9frwUAyJ1Wk1MaqoQLeMWeEoNL208anxRji+jr7U61wuudieWI+9HxQc2uYLfoaKqDVcWxhthA0hPFJjqkVJtHgqQZVZFNsADvk/chSuipztOMT6l84LTGZ66e9Oa45LgR6k60TCp3OHlALcokOba10OcFWH0i1Ugb21hTaS4deac1jTMCHen8FU79oROitDgQQ7zAPBFHnr7lTYMXSFQl9JoMPujoJVG6JeHnH2VTBFpLHknMzGE6o93ZeeGDLhyVktB3Z4mzl1+P8qoWmRvHZ0T2mmeQi2e770fo7ycQeNbdvAQWttHJUPJAspi+70JlN9EQ2MDuwFSpmjY7eDQzOn4IvFCo7wbKAOyV2s62lTa5vdb+aeYOTzQRJr1Id9SE39pIjpR9K4dp/yI+VbbzBwq9RlJtSmOF12n6wgwUqW41tDgB70/yVO0kzDtcpw+RQ/qKn5Laam0AAQOAHP6wuzWHSGjCltOqG9+Shhw6y1GD/AJYWyP2byocN5HRNcNkB5AX3FZ+D7R6ES7ZCwa6KPkrhPO5ONkUH0rZHFH6Kh7Npz9Fn5JzKd4MxFRunuTv+oRraFSqguFoyLCU4uNd1TnDD/wCqdBt+01VB5Vp3roNLB0CsPytzGjEUDHvWG1p0nd/mg5lNrmtGb9EZ2fZjGNU5u7ptcOipEwZeIjknnXihVu5H0f6U1uWfWhVt3eRkT70JY4xwrFNyoDrVPuWxOZVYx1ERDyqPlKAcBAIflEipS+0MFBjnA2uhtvJVqbIBcBxHlC49sh3c0qPlNVzQNBSXEa8fYMKWF8eCw6fFqAh7n28xFqlnZJwjc7i6FPtqDDZaTMXSqb8NHOeeUQ2wni1J9CfZnhg+KaSJh+iO7dszGAWmTBKdvWUS1uu7VR9Lgdv8H0Il9WmD2CDpEzCF20sY4HJnxPTuVao2rcBGev6wgXGeOFVLZB6jkhdtFUnkLZXDtDp6DCflxlwMlNrsDHeTGp5R+SDn262cJ6IOexz2790hokprHU6mh8xPDadSLruGme5VLqVaHPnseP5Kk0YqBrrvb9yZfluZTAWipxSM8lscZlpmDzhMtq7yJ9HSVEilTvtvvmc6q5lXiicuH66LZmh29BcSCOa+dYR13iOQczDStt30lxnVU7BLGURMd8Ko+8E28teX4phqU27wVSSCPOKuZWYzuUVNvZH0bkXN2lpGmE9lcB0jtKvULd7XItpU459Uxrdkp45OOqdfslCD3hSdjDjOYTt/sztDp1W1bPSc9mzmKnAcoVHbRXDyLrt4rd9tAzaOJB9Ha6jp53/kqtOtL3DDyfFTU2Sm0DtEt0K/Z9gpupgdsiEG1tkZTafOZyTXU7XgiYa1VmUgJc21s6Dmha8NLjqiXbdT7zcUf26k8gexTvb7OcLatkLJ2io3EaBNc3aWUeQ4T4p4+VMeAZMM+9TUa141luFOyVRSaDfgJxO1EXcJLmAKoXVmutxxJzaGKt/FHoTLtvpWxhu9n7ladoFQ68DpTNnq1S24Zhbx21OF2SXOW8ZWfB0N35pjL3PawgytRqqx71gTFv8ApCF1Np1Pzsaqra6gA8kkBynyTtczzKabKYidD1VKf+4cLZqVPZt9UsbMN5ox8B+bqKR9aF/wcR/CtoYaFj3NuEt0KoU6OznaKokut5eKG72Ph+2jGz0xOCdVYaTbefeoe1h7iofRZF04cmn5LtTGxzCpimDc51ouQYalMdZCs+VM0F0sTR8tp+Bp6Iu3lEmYtAhPhwEdFYcm5FrKT9412T1wt0GO3thuLgFUp5u3odIHcj5eoA7Lg5oynPqbW8Zuhp5+pG3aak97QhTDXFt03EKpu6YfUuxKa6js1wH0RqjvNkt5nCcyrT3YIj0q1tekx8AEulGd36EDVrQCbiJ700DaqoPNwj8ELdueZPn02pwbtjNdItwpFYacnJ43LK9UYaHaSmuNLZWADzQZ9yoUn02XCTweH5pgNF7jbyuP3rOz1R/C7/2XkL/Wm8Fx4rRMycL9zENHmo3bJae5bS00yzg6plXZy2HU2szzwEJtxP3d3cqe87W8at2wlkO1nmpOq4HETr3rHaBhMjqi2gd4T9HkpNV8H6LjCBuv+q7Mp2A1x1C2qrRy8M+9UmVHjiwCfcnEVg22pNtvrVSiHtMHIC2x4i6Cc9UG15Lw6QiauzN6j6wHVVtzs9Pf0yS4A9nGThEDLeiH2m/6QrnPea2u7b18UXuqDgafJgdk8sJ20b8NDT2iI5K2oWsqdY7f5ou0buyTKDNlq7tpda76eUalOra62SLe/AVW501A0znHoWzgi95HZGF8orbTDNAGdm2OXpW62qqXkAQ7n4LbXOaX099yRdRgUzFsunHoTK1e002uzGuveqFShT7LCYKoOY0uFmjNApfTLATGchOdpNhj0oDkVWV9drnthshvgEN18EVKzO+5cPwDa7TTuTB/RD2tbraO0iKmw1WHwlOtBpvbkXYQdUc0EO5ug+pBuyUXZHbicckflFIwZbxNiFc2MvVQFswJ0QG9vJGB+KFOhss5xjAPiiRR1EwHCdVuazRAkXRxNQNweJwQqBN2DpKZVpi2Dc0dEH16zuLXjhNbV3jqrj821xcfeiTSrgnszP4ryVx5xfn1Jz2PqMjOU0vNzsCVXi1kGZJz6FU3jpqhhmNAqNDY9nl4zUcccXipYA3uvn71w1J5EHojLWFztSSJT2VxAeI4chPvw08+iLqDi1naaTUgHPJOdUfeGkgllTpzTt0/eRbmIVM7TRc97x2gfzT/AJOxzRznkm1NobcbiNJTbtlZvOVKwSe/Rf8AKWxg4pdURV2draokGmWAepPq0mepCoNRlU6xbBOYWz7iabi0t92PYrnbXY2J4k1r/hAXxwtjMJ/lyYPqVFj3XPJLpTnVMAgOjJdnuUbTsz9iLuKkXHl3ynsbAD4k9Mp1BtLfWiLmzlcOzVqeMgE5UAE8TbbtRnVA3kgy6Gt5SnHeCG3cMZMCUHXTxBuPskqszW18SmnohUvbE6c0GYe7LZnplFpGkTGgUHzVtLndjd8UdFRexvAcQqd1WXGm03Uqcu84k58Ed4LWjGOfetuLu+ZRkdp34qsx9NlQmm4Wu69FZUfa6ZiAOenhCB1X8Q9yCDbqbRdz87H5Kp5Q1H2gRuwGHGXD1oukY83mtopECTRgHojTpNDKt3zh0HJeUc1naLm0GzOsCfQVtL7QOF5hbBUuEuER96c8vpjsywjx9+Fbk3avqNhw7vattA03v3K2mAG7txfc62Xciq7Lt7xw1tvY78+BWzzPZd9yp02S1tmsSVRYHEsc7Bd5vgomRDB/mQb3FVkzhukAx/ChRZTBrAR1DU6pTdAJHn9eaNV7jAzO80yrH02CpEB04Ka7/wAkexXBkvunCAHlGWF89PqpzXM3TW85HF6l4vVU53ruCOUKWdmcZymWXmu7WDyTm1KtjOK5jnm62eStEUwT5xwEGiEQNntcGkh4JHthM96p0mNDHGBf3IueRaCCQRnxTqTaW8c4OaAAfUnm4BzXY3eAE9rxNSIvX8SripJp/R6lbS9xLsGJ6Ks+OLeRPIBCheC8c7TDe6U6qa5DA03OLpJ6LcwwOGhcIDvwTZAuuiRzVQdU5lBheIJfBI5YVVldzalIY3Ye4uujn6VU8Wp9JtVoZTgw890KN7Tex7vMzKvbh1zoKYar3U33SXHVAt2dwdbNpAA170cuvGrWnsmdAnbx1xtJXoK2d9OnSy0C4wLufo5rZgzq84Hcm7vhcMB7uy3vhXvrzUeB2uvrRpVq97mnhcNR4qk6cbt6G0VHjaKx4iAfd+KDHNO7JhhcdCtpZUdeW4n1KhtDNm+UE4cLdCnf8NjJHzZ5KkYAcXtmERM2HHcge74nT9KFPTPsRZrHFC4HGW8wfWpmfFEuMzJW1U2us0JJ6Kix8XNOLTMqpXe5jqrJY0dGj7+JGqRd3ra8Seidu42dwIcJ7J/BX1qF5aDZ9rqOqqVKNAhp4u5TVNzonHZ1QH1x7lv6GQ3JpzxJkODC423OGitpHyThjr+sIPHCAcOW08YbFDmpLabg6HMM4Mae1U3Nte8kgvnR+uPWqj3S3yZJ78LY3te3gbhpKr06sUqTI8m4cTnHA96fLWMY0nsiBK21msVR7lszGt+daWXOMWg6p7RFr83AzImVRZT7dr4Wz1XRg4jQp9Qtl/nEIMcOwG5/iVPGsqqOaYGSHWtiPBU2uba7onim22mORqW8VwHXorXVGV23Hd23cPrUAcSa3pUnKbTHbc5UqLHOvqUy0CnpOM+wo0vOBzLe859qgnIqKrDb3tbIEwncPG8zBCpvqU+zbwt55lMkSXcXawHdP8y6kryg8OqeN4apqv5ns9yb3KmLBr2lxOFPTiInnn2JxrVQ1r9WtfqM8h6PieLPAgL+NW07LNZLwPYnsqReG2tgh3+y2i95psFQGR4Kqym87lzIdUtyAOYCtdUqVId9OANBEc+qq/KPJkuN1uVQtcXtmASqqtawucQWB09mRGVVYOK6YdygmVUuBaeHBVZjicjAaYTWzxzc8TJn9SgabS51ztE11YlzwfPyVfc51OnDJcDrnPtCL6M3zw9SqjniHBhmVA1IVKlUnfxg26ePVbGTOb9PQm7gF7QQRd1VPy7nS0gCm3PaP4IDzQMOI7XetnAPmvVTZqzTb2qbxo7unknUtnEA+xVGOPETKuFzju/mx5+mE+3ZieRmwajPJXXF81m8R55UVXsbGhloICsp1WVI/wDI38UXVKrfBpBlYjtJjjEA+cmGpUbTqc3Nc2T7Uba1Mjueoc4Nb9K0/gnwQ4xqVtFUU7qeGl0xCzSkW9retP3KoNwLjxxvO/xQih4WtW3Vx5EBwBceUqTttJoHMmPuRHy2k7+L8lb8pZp1Cm8Oc7GSqb6jfODsc0xwpuxzwt5unsfrLB+SvtdWcOVTRQaWAIHcq9Wmx+7YyHuTW7neA8gWlXbt4LDqTKrhtMmQRrKpN3LJa2OMT6FFfYgbc5e0ojdwB1gx7VtRrkN8o0iSE11ba6QcBHemvG0U32frmqFTZ6e8ta6QAmtqbESBns/mnW7PZ/CU972WtdYB6wqfc5VlTsBc4tbEeCpA8Lhgh2E6k4tAwXvnAaMp1F3IgHMzAwsCT0TrxHGI9qDSRvL+kmFds+0EOZgNFN2n6JW92h8aDsOQDfpp4LrS5sYBPuXla+BnPA4eCNm2Uag+tVE+9CdqoEf4zfxUAsdU/wC5vW+6VlzonomXUyGqLru9CnV4sRoqdSk6WTMVMck51Vzd43s5CvqHeSOy0p7Gw0aAWoOi7ykweeV5J2y02x2Sn71lKAIJaFXvZvKZdBb1Ta+yzaMkHVvXxTXbLtF9cw11re3IR33HWJw1p08VSEQ0mQqhKh20Nc4+bErhqj1LtXZHPwTa1OoW1D6IH6KdXc+XA5x3KiHOzGQPFBxqCm861OZTqQ2ymacEfrKLpNSqB8508FVDagMtwOaY76KpPeQIjgLTotg3cdl/KOSNSnxfVT3PLBWb2WkaAf7o1ahFMaAELZ+cB8pwqUS63lBcPSjaxlJpMw0QqhiCT6FOQ3dxcBovlNQvsebWtIy3T8ETtAtpBxcG98GB7lDfg7eDwTbfgQM0zCId8Hva7r0Txu3U3aiVtL68l4jdsHNNFXYiWRxeTt5ok7K67uu/FPLWVaYjhGVY6pwOGb+S2vZqNUspMdvJbzTrttrNe0T20yPhF+80AKDqe0XWjAqNW003m1rILs+hRUqVd5GgcE5ja1RxHMZHuUUH98OwpD3SOQW0OrD5RUbThnUlDd7E5/DAkYXlNjAjvC8psrj3ASnbzZHNBTtkoCxzxLy/uRu20t0+byn06e21KrgZOiLt7vRqZCNZ+07lhyeQhNdV2+oGPOt/3QnOZXqW95mVUcWbyqyrnHJZ+DKVUu85zED/AEY3B0/QVLZ6bRs7qh1AnRMqH4Sfac9E9/8ASD3g8xBVHZn2ugjjHT9BeBVfxWyuf2d2yfUqV1RjXjV92U62qbOUAlHjdJ6thQGifpHVOtkcQwVsU0W1azqQLrW3FSPgzeR527yhu9iszJ4dFWhjW12sJE4ytmDaLK21EyeGSh/wMvxpuMH2Kf6BaG9CyE+fgoRrywnF3wdqOUJk7KaZ5ktQvpUvRVVFlUbuX2uTWmlvC3vMLyewB7bYt3cQUI+DXPg58nyXHstp6FuE/wAi1gPUIGiIY5wICpsFI3t5zKfSDCHAcTj4plQOFOk/i11Cbva7T3l7lFJ2xgRPaynUiKWurZ/FPIqjyfm5M+lVfJb112iaaGwtbHdKfdsQbIjT8kadSjursSrPldEVI84J/lWA9WJlLZ9mNbyTBLG9wlQ34Nl3UsyhHwVzk+S7/BOFT4Oe109qNFBpWO8FXo0IJOGuImBKaKnww0uIjdxkLZnCHOoscZhNu2YO+yQhdsLg8lA7t0ciuHgDmkCDHenmi+rZ9rl61bUe4+oqoHuJacQqZAqUbQLuEkKoz5W8iNC1bO4Nlu+bJQbSY19SdO7Cua6pnkxuAizaWXnvwQmuEaoNfMd3oRpVKd7hylGzZ6ZbJ0pdy3dem1redoghXUoiFtlUay3VHeVIL6cSdBon+Vg9CPV7U+jcNosMbwLb63TOPFC1rWMjI6p9erdTddFpMTnMKjUp7QTUPZAyjv8Aifpd+KcTycfcg6sWFoHZHad3JzqbHso9qGaIGpTJE6VBrCvFMNA1zoVUMw0MuK3Wz7SxjTHDp4+KdU+Ug1G8hjMqpd27Dkc1RZZcT10CZtG07UXOqDhOk51VWg299PtQeXgtvNRwaC8ZPJPaKu8aNN3lC4FguIF4VBwIqAX9lUnuAZT5NlcPPUKpUiJA/wBSfjkqv65KgTT3vkWwPQmHZtkpU3RhwGqsdSa3MmCuMU9PpSfegTQabcRdKrMrUrOGOqve27jjKd8nZ5Qu7TkTXpy0nwyrm9lzsKrPJmEDWLYnhGpThslJzgJ7A9al1Kr6HTylBlVjQ4aVCPegIAz5qY9zTA6hXmAT0QeW40J09KbS2UC5wm55yVmqzU8u5Po7VDurqZmCqm74qRGHID66uqX3vuwFU+TNIpObdlMFOq+xnBDFdU2p/sRiq41NIuAHuXCYH2wvnS5rk64wF+ztqPH1RjWE11anUZr5vTVdsVKktktMqm6psLKkjD9PuVWtSo7oNVENbcdM+Ks2Kg2pVbl9QD3BOhpxOkE4R2fa6e7rjGcD0ovDAI9Kc5uth94TKro3msqns7DYazSOEdIQc7aj3IB+2m/6Ljn3pzX1345KiHmdSuClvK0Dgb1VOtt2y8FQ6jzUNoa0OZc10dco/JQ1lI5iUd4KTzFpua78ExtVol7w3B704DsuOPWm04a94pl76s4cqRNrWnNo1lX8i9GmTF8iQnB0jqms4XuhznVJnlp+uioO4Q0gGxus96LZ80ytta51tN1rXYV7GipTaJk+xM8qSd49w14jGkqs51MUZ4hTnl3Lb2nsuwfWtzTyHGGkqlSqu3lakcWwIEGfHmm7i1+zt45dhwTbtPvTut5Vz3Fx6qpb5d7/ADHZsGk/roq9AObScHRjtVBzXCSFtQ/8OT6Qnnd3OGGP6FUjaHPLDfTntGf161WxBAK2IAjeOwB1UVSN7unsIZpGNFvGmaQENHRfCEfTCe6q0Obbwt08VVpCwWuy4au6rY8XdrCpN4KsA2t5T0PrTGmGPLp6n09E5n1B/qU933KtiR+S2LFxNJmOqZSoFt8QXtxCc5pv5m50lPqOLLW6nRbt+WzIdzCqEFvLRNqXdh5wjcA4DAjx5qq0NFzXQ534dEeYvTmtMEtGYmFc6XHOeqr1GtmqRDWnl3osfUPEMKInwTcznToq4eaZBacszaSdUFSLvm+QVI2F5ZnC3m8l17tDkjp+uiqW0zTE9k8k9zXAN6Shz8p96q0ydyWjtdSqhaHXxxPd5yuc4horyQDFyt+TsOztglx1lOa3ZqTrqd1NtvaHLwyt3Ubwzp9H8kxtwOZx4KoUd35XOmtgVZtSpuzdAGl4T/tN96O+2l9OmHwGdfBNp06zqrHNJ+r6FSbTuvdyB1QFSQ+mdNcqaobTaA690dkck7d31STjGSqgcTlsmfFOn6B+5UHU6FI3gCdLvw5rZTgtAqaDwXkQGuJgVHaDvU1Kw4ok6+KOz16u8c3QsPZ7lcNN073pr9nLqh13vQ9/RFtWm217jy6qowZgj3rZdla/dVWfS0cO5S+sCczI78KgG5ArgSDMphry7Z2utAVUUqlM02stFpgOefQmHB2gmXRy8e9M5cSl2gDj7EK1dl1I9poxhO3NVm6ALccIudpyUu4tq6t+9VWxm0mVtYpglzqjRhTIttyHjC8naazBvBfPbnPPot+8lzh05BfCAcOF+CnOpE1hGbRkKpvSXVSWtF+bWcwnUqM7i4uaxjY9yiobHdqE/wDxCrXNA8VSoUnCnUxIbIgDJKrb4NqXcVJoJ0OhQ4uDotuDcuNED2hVaVVsDtNnB9aD6Y3ooEMAc7DpEyq9R+Ja5xMarZya5ouZ2YT6u0U7zYGsqFog5yqpktoSd2HdF8JDvaqe6gvrAAScp7a4BZEtE5OOXpWzPbyL4TjBjDnh2D+sI2NsbyXECDaBn7SHRVo/WFsQGposTGOBB71VFLyJc2N4TA8FXpuD6jLuBoPYx/uiNE76XPPeqtS0OqB1oB7wtl3RDq9SGzPF3yqja8GmOKmQZJxy9KPVr1Ufya0Soc2RyB5IUGi1zjaMayt69m9YRDQBglqLxwnuTNRnXqv2bhu4c6+KCbVtlgH3qXUxUaRkSmOuc97SKph4zM40ReW2+aGhXHyctnvQH/l+9OqauJ5Ap9W8EPaMc07eU963e9lVNoa0XMOKYMw1U6Ro7u+jkt4be6U7hp7WwG2ZKpcNvQRCqdZCpUafk4y8EYbHNVxV8s1/FTaByOhlET/1GYVSjLJu89RdNVoghuGjCpMp0i9pbk+lVKZBybg5vXoVRqGtcaXBUDW9fT3Le0m7jpbqnF4jh588pzWiXFkADxCpMqhzdqAwS39TK2W+ctqeOoVtFhqU5i0c0ZqWdjhk8Pq+5F7qW7u5/S70xnmmmQPWnGg7e035A5+nqFbTojY2EC4xBKdS1PM+lOfAtEC8nTwVKCazLTI0vz+vWtn5eWGEalC55ObSNU1hlpa4OgjRGpabTq4rn28ygx82GZjmrtmgSDLC73Iix7YdMRzToaSdSnO0ICqte6LqmQFmvxYGhx7FTDq8tunDHCfYiyl833FbU8U95NROs2Z+ckiP/RXP2V0uzJj/ANU62i5o0OfyTuCHELjFvGSQUb3cP1RkFXUDvRyIwQmiuRTaBFzswFFN9ztbittEG5zAMeITBtbwY0JdxBZrfKGdxAhVjOocmse9jXsblrtEC3baLiTyaR96M12E9y2k1XBzKlpVPdRQqU9DP4JjqtanUt0An8FsT2kAsJJtGi3VSm97IFuMIwx4+sZTo+iMx3poVVbBbruWKJz0cEyltDt3T/7jTy9SqbRs/Eas9s9j0IjmU8P9SzrdGqD6Uua04I5BNlvzbYkp2uuqqm4NMCCSmy5rY0qM1WagqvmeFwWk+LgpMmp7E0XDVNcI6wJTA1U27o3Du1QcdkeHu14CFY2i71ZXzdjurmZ6qpwAk/rmmUrbX3zBRZdQvqNzcFWDC0gCSG9F5sb0yXHlCbXpPZJ7bOWq3du7yeM8sLgq03VNbnJlr7wE8qN5xfZJQO+wBA4eSosulwqhG2TUM5GVUqG5tSDjqtnLq4Y8jS4BX0n06ZnXqiwbRQDZ1nVO4mmtHzlw9iIBvFupQcGl8NOAqe0VN51ENwFsz+LFF3aQfs4nGWkap+/FrqpN4Ljwxorqh3dFvZahaeFtJ2XFGk1tLHO780DUs+0HEpxkPAcBMqXt8g+BeRomnZ2til5JlxORGpTRLWuY41HHuCtftjWEDzmAymg7fQIJ7RpAIuG1UxHRoV7Xtq25IBynV6m0bgNdGueSx8JVW+OU6PhR7gM8bdVdT2ukZzkIxVa6eQKpU9k2XfbQ17t44dZwo+R0GCD57ULqVMxoN4CvKbMBzuan0dnAZ5Qz6f8AZZ2u3P11xbS7rzH3K1m0O9f4o+XnxW0Vtpdb8mpjQ65QbUNRonFjzKNterdHOoU39oe2dQakwiL3OPWVtFNjX1K1e14EryeztZ03jk5tajSJP1kN/s9lOPFNfUqubiTxYKFSqRadMuk+GU6pRqCzzS1xVY1fKvFSPQnfsN7j2TcZCxsmIXHQuc4QABz5QqjmbAyI84Li2eFSoVGPbVnzvuQIVcL4ML+zumSmTMgfOUmkuWPlRGk7o/gsb23vYobS/ijKebSDhUNpq7TUpF/GbXABW/0jWdHhCE7c5zYlxa7xVZztoNwZeO9U6jy47Q7VrCgfk9aofrE/iv8AlpHrT7dgc1x07k79lc3GA1C+m4eKMif91sgjFyMGOA/6UIqPHlfpeC+cfqfO8UZcTjn6E7P6lUo7k5ORzzRkAqoN46LtJQ4j60ZMquYE75MxrTH+lN/xT7lWwMVBHdlVJe48HMp2SqB3bZsHLuUOptIzqO5VfIU+0PMCMADPJOMBbZBjA96jePgHqtjn6LviYSxpPgtfOKr/AOCfejxH1o8R7SreJ96oxjs+4oeKqwY8m/RDAR4B6l2QnRhQcjoj5NvqT+BuvRdkepcPD4Lbf8Vn+oKpBIyR71QF7o3gGvchwjRbf9pbWOQpyO5XOJc7qfSnNnh3Zwn8I7H3raQCQC4yPShhaBaLshV5zDB/rCqd10LaLiXZGvpVYnJhyaDkY/1BV95xxf2s8ltIjG5n/Kttx5yzRYf4VimweAWxfaVKeZyriJMaqimeH3Kuvgz/AAfxVKxxZweafBVZqPPFzKq+BTc/9Me5bW0iW7l+CmsfxNHI6K7c07utqPA31KrGPJuRkTjmnRSYP4UDzuKyJWgVLC//xAAnEAEAAgIBAwMFAQEBAAAAAAABABEhMUFRYXGBkaEQscHR8OHxIP/aAAgBAQABPyGoYsE9g8Mbb4C1h1zLo8UL3JveB7jKR/G2alB+DmWyeuPaGlF6tZivRqMQeCPIYNGhDeoAg6ha69oXfGp4HFXxLYONQuq5viOUB/jiLLrOobgGZgrR4s9od1FBeCCAbA9sso/qzatkIu2KD95SCGRH2jI7JtrjqRJA0N8b95p7ma11e8z7Guy4oXLwShVQStVeVh1qw7xQDFTHt6ymYbyhek6Qocod24cjuMtd/PvLhr5+xcAN5uongmFKOZVj2niOfFXTtKPmg28znsR61eYhd6DzjMTk61feIGwliXkvt3iieRQY+YvdQXNz+5U00YMszNzOY8muiAw3SX2H9UGFzdbG+kSobM7/AOqdOGqifEKLqpFMwbrdmpk4lkiqiFnlSBKzmUIleqoI5XUZYRM9MbZ0CiQflXvLdKS2vfFSwoGhx5VALL7Zc84jNav6CZLR/h5jqhRgIGb3HfYAe/7pCpmwCOd8TOaLSHfVveI9GoZ9GNx3dT3zMuKdg6RrTDg8okz4oUmcYi/SskhRyvvMokBe0vPMqxy5mhwVEOGsWvwnUEXeahagWX3mabOqDqqnVhQhWtoLwW9pmhmwu+mCBNZzt/H9cesV64+EWyDm4uLxY53jHrFxJMPnQ9Zp40HAxibRiW3f+x1WO57zH4OfK4xHe9ZAfo5gBG00q3x6TCW50pQlracalFQDgUdcWEcWKdhCARCqnmgFvlLw+6GbjxYaVYdfxNLwOHV5HMUUBejh51mVzfJLm9hL7qtul3FyAc33jQU3fhChjYK7Et+ZY2r58IJ/XWdem4Iu1ptZHmbgftU08GdYzcs9eyNHvAtgU0d+sDf1HjD4IJlAWjqvpZuu8culAqeusHHzNL9hA1s+Xnia2Q7inaL5aUC3k0zWTssGwZ79YjWQYCyGJlvcOKWLn1+eYAYoC8/zMIEQluYwMZU2a9d4hqumVlyzOkAWSqrONWPedTO3a9a27jmtPDiCq3rye0KE9HEbb6zEdHVs6OgwScFA8n3nKprChV5ax8xQMbXV4y+GOZZglA0O5GZU3qO3rAXCNVGksiyAZ32xHQwgwSbts128xUdVbVzPBxzfaXij5CvR+kq3bl1h7SvsME0bM16H0lqu7rkyHYsxKqH5M3bnK8GZdx9gM9FncqA7vxLtW/aLN0/lDOMqUMY589JTFYpyKV0NkM9bNCYrpu/iYLGskR8vmWXKzi30SA2pmo7vJ6Qn21oAEO4HytA7W1efi8QROzpha2rpxhZWLAyu4L043KI4NbHZjt8L+8peQDxWhAiZhLQ1j7Qw0PWyOXtXqRTgSnFRa56OJlh7B7o4qGwyyt4BntcboC1PqynZ4xbbAR5Easn8Rbcizd4PE1wxo6HHzFGMl2Y3W3d6g0lGRcPTvG177JyjzJTk2/iNGXgYNASzY0sskvqcfmOMG3AQuDx1l9MNWnaD0yx1kwPu7mR2wIPTWZc2156Co33rNOo2VjUBl8HplUV0BBQzBZa6n2/2CB24qlWbc5hobFO93eSOhqy95bXRr6jv2ir3mYsr1a9JbOwBsHap9TzEEGqQFHYd4yVBo4KV8795g3uTrExQGTPp0ifEtgEOQE8M6MFgpZ3grATL77IH+RZzeSR0phfkhMRAAC73Q8y9q1liOhVquFux8ThX9i3LrjDUoXZ2Viq+49I2Bqq2+Qe9dI5/NtIKDJIWK0Fb6u0Fa+eGWeDeNqDZb34ag7ki8J8pSNJXfWZYDi080xaXwKO2WmDdQFb5uMqWVDPbVnHQzLl7k9Bn1f7CMujZNTmWgCkrnr9CR3Y9L1x1YKVuULEceSMj0CTWrry8SpXkyIV4wXnvjMM6yhvPMvyIMXJhq37TGWPqZjsELkOv/IN9EQB+7zBS0AO4D1PHrB66HmXrWw0sS9K6+kHhULLFfz0hHRp28Cw9ZhKnVXl9EqHzEyly738z+bvG0luv9pzubmtvZ58bjW6mAM6Y2ZOvUggzT6qL6OkqQYBeJzH1h2msd+ksIcuZejfmBwZCObdu+vzMiUIbZVNntnbrikX8mnSYyxRYHqly7wSaYK4Xa+1TNIavMHH7BEr4xhasDC3da+6Kl5uvtqm7PLTZBY4bXL2nMxnIFvUzc/lytxzM+WBdwghD7yv52icpRwygfdF9DIOisvXfee6wTGz0EekRRKxlXyvHLdwlY7duZZ0hjvi0VupIXaWq1Z+IZrDsFq5GqrUug7w8s950J6HaY7spQT1ikDXPPeLl1tBRc6b8/Me0vN8gtDd7z1lOLqB3LVwwkjq74lKqDp62u4X/ABHV0WuZ3AueB4zD3888ykS+hXfqTf2JqIKwx7Q0rtPYi+QK+SCSqGDznJOLfWY0qTbs/rjbYpOAwdOi5vm+kcNQ1yQui6o7h6VFTcrjH0xlUTbpBTNdMfaXRHlQUMA5eriWzYpvvEvTF3VnQ5eOkaZ5PiHUsp7Swa2qj3f3SXSWLQ01fStxq7KKUP6pRcDW50xKrmHFvw7E25C1iIC+MkUyvUNB4z6EouAXpaiMFr0ejLpzOeqaFeC7y39o+B43cZfSDQIEKo7Grzy95kDn4lQvwiSQVvrNnmXtual6PaImSGMdl2TeCU0B0230gk4yg7SdKMRU27zyx9oPB9pLZG2Cahzt1ldekw+bRflCqzLTRcT1H90h/ROgC+IO77BfEABGhe2pZAgqN4ZRRzk4OvWcegZLlyTqrB/2YrEo9EHKlXffD/ky/huZW16gXl95s0u6cz8Nyz8RbtymnFcIGY/IDm7edyibPOgzqbzuKu8H4nFYFrqEWzrG7JBb8uedwg84IK70XBHnL98dZa6PCsXt+Z8qBQHtTulbNaumBss1iUWRHtdFpvEz45FDqG6zlzFfZvNrLMorFnUUk93fmHKrGL5zLWmS8oUWqXvaZA+kGHNd7mcOlxYZe2S4x2pY0LB023fWUA5OQx6RSZYcTcT3RVXL+457enhivCfMMvCtAov8ntHNMqMPtNSEWLiTABQW4K/mHQwNQ9tY5hby6tUbLpL1vglfzA5bSKHmYA4azHGhahb/AKhoMxSqBMyDs6xHy0ZNe3eOFa1kdDTTzAlr+TPHHEy3C3eswEi9eN4llexpCp4G30CP5c3I0rbmEDXYEBb0tpbjeKzla8R243+b5ZxqnF1udQNri0EuI220iJV+jYae0OCxBw5a11I6qy0sHJnessyIE2RupXezqmz+zDrCrVy7zcHlbamSt6z4nBQqsrXbxGVAVaB6RWHAbfPWF0bV4YdWej4D3sqWQ8jaO1X35lFzzQz1YgApR+U4QBliXNg5dL6veP1OCQ2utymwBsinZo/Mqlothc1QXr2iqqzcnF6jBN3RoZtiMiUy36JDvE5aY1ArKlD/AGZZIQXCrrf9UZs+pLOmYVGK6r7ylXzQC3+VO5wSyo6tQbFTnvv4l6BTKep3GVZCXrXoagLMTTz6zdugmBjtESq3gQlyraNda76uMJ+iq6N/2Ia+R5xw28K+8Tk8C8OjcLwaV0SmPUthOZ0xKx7unbKS9bIapvEtHrXwY95TBbM6RdQgqjd5li5ACn+uHpmoAOnTtKUbwPMcy4g19MP8iKqYl3MfaaBFGjn37Sxt5fMVrKOvePX0V4Y+pUDnKXis6l4oGzc8jyo7YVAwOkz3QBwwtXWC5bGgA+wiVCDA0kOrAAe8HVx/mJNcmFTy8K3PiHLX4NXUylxR8NtX8xAg1yjnhI5WHbSLuDsRfmWBHRYzRZpyZhFTABV1l1DBoIVy6ISe4sd39IjFN0gp5qNchaMRXGEqnuh5r3lWz6QSdzymLgesx1uMyoety2WeCqjWynrLuW2Dj3f5h8zOAkFDgZXJ8yUY7LuWXUWN95tJKyDajxnMYirL4c3MrBzgtbodQ8BMGv0eGLNXgFfiAhegCU6Sb0NkXube46Ny3m7ZWtjjvL+Q6bxikeQA48QGlT3bxB2zgAemdviGCbYqrjJfVl1VtZL13ySwyE4Sy2s0Zy5+IFZS7B25PWCQIeKT6QmFjwQOuId4S6nkg+0RKiR4TnEGlkdS5PZKJesYMs7Bo+4TbYdOssxyqVW3/sYzEd7gxrqRrKTB3sxcMikTqauZI/DV5nPdGqgTapaG+szQGF7o4lBIYhxjeO0oHrssMc5z7K6TAWCQtOnmFXNNa1S+JZpXL1VDXDVhY4Aq40FLRyG2G4ZDIIDum9wo9WFwx0j8gyazmNL6wD2zmr3Dbb2BINl7V9zrKHsULTo1Fc6tzHaFCrwE6aAZOd/Ymk3pYYDr3gBdjkYKxqOV26Idbr1jGmljOYdp0vMTACq1O4tvKq94lFHq1j8qlB+4x/BhJMzYni6lq63Y/mkAEWDNnHWDMw5E/kjMzTEyPvn4grFLToO2IpSHoXdc6wxKmxnlUCHTo7rjTWFazrfZqWFhNUY6+lcQRvSjWArAbEe8siUIfQLWrdvaI5cLgTQHiFLQYGhiBbLcFeTi9Otn5lrsL3YzIDywMHprmjIaO0zp1aAC9Xx/kfWxjBbO7ZwMuTzVGFoNro+8ANlyjHY77xF3C6h1zCxJKNYgUxGJRop9Ts7QhP8AN+C89tH4YIIpvWDKJ88DpVf8zFE0KWyr21ny7ROlhXCNLwBcNOfM6aAEt/J9ovZeYy8DHOc9p3qFZJljklNsW+GjURLyFTsshA8RqZrIN3j5gLgpLjkb3dZ6RGLoqsX13rMFdYb4aYBv0J8oYNeS9pfrOAdvt4nPcjZ/ukpkuepavnmhI24g5ZaGDmLvUWVxrc+7Mu1aHDZ33HWKdhc3hSBlG6eoHtLqp4qQWhn3CFsuI5CN+cPtH3psF0jPj+zK8tMTRuqDpUpk6iotuVU0A2iSs9haKw69j1nEs274P72lgXnE5jTpqHHzOi3ANj6GcTuxCgfpvvK8itky0J17RbiwJxiJYb094OFGd23o6194/AVchuV81mU5gbKh5OsfGpUiICaG+GuSukQqWA6yOe0Z7u0qNWC0c4lsMHMD7QkUN6LIV3pPSMowsF1d1ktx13FN+Qv1/CLpOrDGLKUl8VrWojfZt2ZG4y9hK7WtnCI+YqPjOgrdFVllDBxVTKcvpujzUzXZ95Ur3XFVmEtP6xtFpmIndEKoFeMvxGE7FWdOsGVdTxPgw7pWcVng6+ZbaQXz57xw6fht3VQIzGmwWvW8zJOU6Mlt8IXf+guRPYUYWBwli9cIcdaUwdQ3bMTGhQ8rdqiCyi/kOWq2YdSb9dFLg3Siw5947JbhcGb1cDiTejlx0h1Lw4VetXde0ReBwqvePQWxUFZVi3LKm8YPDQQXYlXUBuefBLUtWi67INECilOjmYMvrOsS6spu9tVXlmzHGb5szHnL1ube8oJ+p2duVkF+c+tMFeGuZm4Xk1whnUUwy82wd07Kj7QkQT0defmbT9cu9mRjTxM97Qqsv+ZSquWd4IAYB67ls+YkNZXEbw6sjMGl2A+OLeb8wou2g6I/uWB1U35RRccG9xRLVbu3nZ4jav7VqKvv95tnM1lil4wXjvDThNkdSRpXbTMvVKKVlAuDXSWkaEb264/MQniiI0nVZvnmVbI4ZCoubaDGOekx2+hUnYGBcT5EDmKoGjW7lTlVsea+0HJMVMOB4WhfWAeYa6coeBcXq3gFzAgdkYlk7Ow/czFAdQ9fNEvVbcVhguGKOkoLTxvc6znUGhylxziavb94CJowXNrdnJ6QADYK5dO33EPRKyAU4DGQesGDBSsEaeNekaD29SPWI39cwxLeeJj9CVYOkePaDuXeLP4D4zAAxtUZxzbliZEFz6opmHYt1/2MABwz5sOZZqV4Snz5jYLoKmL/AB7xK10AFIgC5WfUiaNW7nCPN9Rg0dH3hAKjQFXmZHBTjbUsFXLtkg7FfXMFN/MVLTo0mc54mDpdwOcX/a9Dp7Fc/mWQlmOXysw8KZq+WUEThYVw4vzAKU72SC9MAXT2SufSoAlaOzTBSD4iusB936BOtQoVSnjwNOYvLAL8Q9NzcX2tAGSvSY04Q0MCLa1Vot65zqtRbCGNRW67ynspV3WCgL5dmoAL3HqKvcVce6mJTfHLzczAunQektbJS6gvp/bmLBGnjcy4sruqy9/8lm24WKZ77qVEWOmVKJj2OWYUDlbxMZZbkKaYNTbB6qg+0pLOJbim/wAQbvtbfNs3GkHg4VZe732jnZYqmh/fEti4Y31wy6F3WsLf+Riq7TL0blGGJllcb2xhhAjnTkUfA4h8QAVw7GptTVcvZiE5FsejD6wBbDtce9Y6KeNn+xFSwDN2vmBY8Mus6pGys9ty3YOOfzEDCLFWifeiUYGwcDq9oUk0xCPQK/MzTI5bPMs9xYYDRLHgCyhwZOWBoOimrbKm74qUG0A0PsVtjJESw42L3XSIG4Q9AVXzMBmLWy9pcOPzS5GbJS4a5jssL/mZuKL2SC4R9XaUFClThjnnHMr3VrGI2bAD3lEVCqeBiuI81aTwae7jrA0uZLVsduhTLEUAHZb73LQkty08PrFUY0AL4mVNQ0l2PXM0S++F+G2Pj47cEeqm/eWLN0oYMfEZvWiwP0HWXS13Ra/dwQ8N8WjJZ9kI5thWxv3rEXBGDhLa9inpFAm6cEGxRxTXvB6L94UqgtQWktZfITJzpGnO0WZKlvKl/aK80gCurJxqAYZSGyj2K7lGQlDx2RlCr9u8RKTBneekyQbENpOX4ma1JxAcPlMFlTTU4xqEpYEPCArVcnR5v4gCrwmiUt8Mdy/SXoWzsfeEDwEVWtJAIaAD/AjfsDIV8V6wgOIDBmtd5zFxIlYvdLzyU/Moojn10s4qDVSf2KgukbEjtVzEJtZMyma/AkRRKl0ca+8yz9KSKzLv8w+ZmURvuXEa4Ovfsx5ShaqOoVv7xdyUGkxXO4vwjJ/kerXWTd12lChBAacccczUPjxnXaJmFayHDvxc0C7tvcpJkK3FGuset0Ra+gf8gFSFu8vhTG5YoB5NRZfMenpLxaA+0uIjO34OsrECjlWM/wB1gwG8NtNLGhrMIFFHGesTWGs8lind4P8Aeks28Z9jN+YB70DrWJrgZbQvomo4qVT1iFmAhPG4ZNfTiu8ZuE87ccXX/f8AkNmYtqJ1hrzIb41K6ZioYCuzYCEtW2C7zcOXxxRT112iS2QHWLyTEbpkzkGBtqzoMIQSi84suGb9gXwCyMGhvHHsQCnlC06liqcj3lSAXeXeFoPzH2AnIUl1m7LfaMu2reOgEu8H3hViatDtpl2KYc7fEpi1eITxfhDzJAtxXodJi5NoWFAP3MxabRpV/qohV2ifBK92XOp+UZgjszXtDjbZqK1q+b3BxNwZYNMzipFj1/PeZU8C9JeAFcdNROhmaScR6SrdOT4QBNvif2jOoIY25c+sNWkoWKetgD3jfD6eaPmX16EM7rtcBXLi+WD9qy67D4hFpVuDyFHGdd50a1arfMK16PLvEoVzVgN/xmWhDeKd0susKcXBW4GoKvB2qjgIa4BuYA6+qcDDgsmgYmxAbHwG4pl8UNkmpkRYXPmW8X2A+yA6XSj6dR3Fa3OKA7TNnigDd7qUB+dD8QYnGmWzjEDSMCtXvMHWazB3qWF0dGfeFbDpMJobgXUDtCcccS4yIqUExb1QzRY+YONmm8GOuOu4LmQxQWVwfaZfdpSaGIcFzSh5S1ihy2zCQBryFxaQXSPWlx1lyGYHn1O8EiRhZfffes9phb1upcNcYqK5pqdn3rPWUp3Fn96KuyMAr6XH+4C5rzK4N7lwGD4WljpswUzTNBQFIFCDdgUxLHhy+w4mpPaxFgVGCemYX6nbCZUKFZzmC0pLBfj+zKI+NtOx8RQp6wY6YY4HXRamXqByTaWbqoEY0Vby/qWmYKzLNaX46TK89VqxWfX7xhDWqo4XuM5aNWV7vmY3/wCkZp+AmvMOIlrJV8jN9MBhTnHmLB+QSAGUGYw1tR6yCqr8S6dQ3q+YO3tkRh/XEaEtWQ2tU7ozceOQml7zETxtwroQGTvdoehxKrR8kh7Rrpp1OX4iF+8hy2l40mO8s522uM+1hsjyQeM7OKmOckvymNGXgBV6y2ZGaU0x4mL1n8me9LHvdG30zAxFyP7t7QnRbOw6erDdVLf3hBNqqMG+hfRA0B6AlVXDDuol0cl1EbDT4Vu2p268AD5CLzByjD0GMUcu79ofFAfaD1a7eP1wdSluyUUsKxcy9JnUMQSxH1mPceJS/aC2yyq8PmPH5RGOkL1SdFwg0ALVsSLzflN7yglhXvhIJWJ4EV0BaPeDpKVXLF95en8Gkv2jlUk5IyjBkQv3mMPknpisstKy3m9ojak6syjrgWYKC0dTDMwdxVgGw5kerM43RHDdO1zAUvKNYqrf/eOtid/2TPGPOv7w1t8v2zJ9gkCJriAL7Ms6moHDVcpBsvqicc/8bm3J0d/eN7dtyfMNAd4V36xA0UvzPNQQtVXxmpQPHoPtF6/LP7pg7dKJDum0f5RXfOhuDvNvf+S2tN69vadYiOT3iUsYsxLTygL5Jmvtb9qlkHU1KqDnb7wrda9uAQPoF90OrF2CU0rN0NRRUuu39sYhZ/jmIHfCjcw9UcUIXpn7jK2rsSGWpemILt6GZ8Ne+IzShSf6QhVHRq9FhWs6uXduUDAzzwyCFGSNYBqKhug9zClBdP8ACUD0bs+0AFXvbFbd5AZ2hpDMabKdUJqwOwmpadKJLKEY1h+oPO72IKy3pVTIVT+dJjCVug9IJyz2iVGbIum3rM9QnaVVnT0uLoT1mizECzZ3xLoBxXMbbrzAQ8OJQsqpXqNUZS7jyO3PKyLlVjzFV38TAzttLcF8QOB94VYw9GHj7xXYgOF+IBOXjEdFvtMlbvEOWU4M+kBXC1+sExfwnZo9UTckr2niPFSOGVPxCUSviKdV5mHBfiBt4nNNXQjxMxrhWdYeZVYs8MDp5YMs7V0ZyZDnOMI56E7BmXWOyR5xna6lVA26azjfaPS3q5zRviB+ChiseEQchZ7yjoHtAYLuJKMbddpY/JHZ1L5oekT5uVL/AITwQGEPmYdfeVLu/eWKsov8qbgZyvrKoyvmVE2puBvC49L1SktcbsxBCxOVVvSUF4I30h1ajk2YyPev9lSpMagLxANcFoMzOB0wPaZZSu1yqnNTkWnZnEPWA5I0tUAu4O5MQ1KlY9Zd1h0gI9ZgWe06tniBGgUEcr3l46MqOGwMJv4bhswC78L+xMRU7iAFWdG/2Zyg8yt/1+0bV+T+uIMX9NvxMeAeoVCat4TT4jaEfP6JzOa1FSz3GUdHliplJCLR2RKcnrCab2Ubu9oLYVRRmhFAH+OYvsP45irTlmVJbiZgX7OIOPEMW5un+0BWT0R50vtlFmHsimXqwtmogD80RMG+ko6O9ylsnAw76hnp3sRWwOxDLFbMUMVPEZwDG7alBaecy+8esIcKHUM8sSoYW2qKyfedf4S1qleZjR8zqXzO4fhMBT5fiFWMeYS4p9JgVkKsTZB1pGA+aMabPYmzxfUlDp7/AOw4n3iNWPWWVAl8K1dXKJWsCxSsOQpj4QAYwuhuVdO4AfeBPf3gVbvR+5Yb7kV1V5hVuPv+yfojPyWJRhmRq+jC82RS4/MU+Mf1KsiOt0BsMxUq9n9ceD+TtOOL9AFNoG6kFxNPJ7ztfMaQ5onkl+h9P00MNVBLCvDOtEevvE7w6vtOpUu4Jh19FLx/4kjgzHaISgP8CbcZ2HtCE9M9pm4lpuYsspwq8w689WKW1HzLCl8jAPGPEv1e6HV8kB/vma6PVPN90v8A65TQPiBefenc96U8+7KufdjXgPXHpnqj/sJhfuI7DfNwf4FOT5E709cdpPVLv2MP99MOVXdnc+8d63m4PSp2Kd8ZR0mHCI9t8x6csHghyXU0ZDAnQWpaLwHBhZYfpB4x7I0CvCAoKa+MOvH9CVf4nZEPQe0s4Rg/WeBO5PWdR+8q4YFOpaL/AMof84I5e87Hunh7o9nvlm1EmkiTp6yt+SFf8YE6skve2YQRywfWL0+hlLnMs9JaeBEf9Ro6esDW52fSdzBkWvctNZ3Skz5j3zbLGnE3jfiYZzPB954zPrL954sTvL9GeDGxqWH+ytTu+8N8M7TPCV4hPSUg9/eUnvSsqa+0f5Ut/Es9Y+UVXMERqmhLgMMkxd45JTk162Jgwz2wPX5h/bgHHzP7v6Z/zRkLYvKHb7x/2J3fdLtb94u+T1hRly2ZmZTAgMtepa9TNA0v0rzB7Twnj9F3h+qPdsG5i23AuZ3If2S7mp3p3Ev5Q6ydCO8/SOvO99IfWL6n0l7nOPO5lr7/AEBukZ2dxOrBd5Y4i85ZatsteWdxlXMt1nVXLy9S7BW6+kuDjnLxdS9/7LfzFVt953H6C2HtW4f+2bio4YOaKgAu0bOmWYeSEeU8od08/qGUW1mAO4u8s85d5g7Mx4Iqbh9bl1LxBZtH6hVfVxLzOfpcuZgst+jCMkXuXv6b3D6VvrErl5gfRZl/RdzEcp4k7s239S0x9Fzbcfqm30OM8v8Aw2Lo+jynlNIP0aly5bLKHVh+R90wngqELGD8wdsZ8y4Mu4S8y5f0WpcuXLJzLzHbCMuX9L+ly5dvWewf7NO0y4P039Kly45+ly6i5gy5dS5dQfouiX9S6IJ9WWMwRl/QrKUSjLPpSXLJxL+nvEJiV/4vE0hl9F+lxgZeJuVvyqPpD8sGW9lOmWK/FGO8/tdY7l/QW+ofQtl2fS6IsuXBGBL+hFxN/X1hZo9QOZYvVuZgy5p/6QMHMuXCeUvEuXCXLzLl/QfpeZf1qfRlWQgS5cWXmXLS0vMZtlscJcvM3Fa+lpLxMy2Kly/ocT+SYU2aqNSjLpnrL+IFK8wAH82izE3Ofpmb+l19Lz9Lly6m30XLuH0v6XOUa6Eyg2aL+iXKqJGq+hOfofSubxKlE4nP/i/rzL7yypcW5uYv/wA1PKU6yjrKPqagTWTZNAMwvzDSigmKq9y916CX9TrkQCZwhX1KlXKqVj61NfRhEr6jP0G0Q3PpVljtOeVnO5/vdX1uH/kw1AlYiSvocRwRjiDNvoQ0m+kUrZiuf5G/SVvVC/TMv/xzKlfR/wDFfS36Zh9az9Kr6U3DlqxFH1YOUuX2Peb3sUfZEINxV9Pm72V2T0kGbH0VLHA9Ulj1UuwOX0Jizl1H03CB9psX21v4gBBbAtzxxLwpCThdPj5jxUIFUx1OsvEweEptjvlQ9DbnetxkxXCtFddpURRIXRt94apSWh8YovxD2Qwpg+pMiOlaZ9u8vY1pUFnZ6Skh3RT3vjrOa1NLSEH8JtH8QiZ2H8TUUKOE39DEs8MPxzNmeRDwq3b6trR028ztUyD942CN8wHWawumlvtNC526x0mh1xjOxH3n14ly4/TdAXNi/EO+VdSVPwntaRHOFYj7sHg7gvv2ZjL7S+dK1jLOH0JBszmzntBf08Rl4xOfoqe0t9IwvWLKWsGnTeVN1roYOBsyy/rv6Y/8a+lzn6V9KlQJg+nMZXSeZc5gH4SfcmUOYb+R+IxwkaF87EuYg4s2BFqmy5aF+45gVxjgKV1gQBStedwGKhOz7oMurqGG8dJmUSq3MmkBBEzBS7VOW6mRhVupfBWq8QCGbAtm8cQ1aJqpF0glbepub/ukcJ3PFaA4IsQIPC+79RAKIBXK/wDvtKjoYWpOI+MXKNth4TrDM+/1XCS0Yu4G0VkGH7ZvLkGpRleR2HXGIKAtm8rqZ7kNN7rFhS27JxwVCdWbXFe8YEC0dOsoM3EUzgtzqWlqwKEXUMu5roYmHz24MTHiqnCSx1+7LoA8txEHoh0wYo5qivSFdBqvCYfxZfTf15mkwQamHepWCboSu/smOcC/RLjBSqC89ivma0DSXfk8cStJbsEgl1OgVfP+SgyuzpoxRjHWZpZCg+BgNkUGLwrAM9gKw7sgvI+s9JXb6ElYizGnQBRfFajlQDbMGcesR6eq/wDJvfX5maiprd5sawvFlpoMLSEqP/kmnyDs4we9S0YnUXvzLdAzuH4Zh9DUKFcavQEvmKhJjdTXaZZL01vtcELJWYrdZzMDwC7z9EJePukD33QGqKv8Q9BbXsNduZz3oSGXz1UBO8huUpzQW6LRntUsuT7IBbil7s+YZINX0fTcAdhK6ox8xfK7lDel33+I6xrkNeR2gUncHYbmWhT1jaEOqi9em+GM+IyaHUjktbLxvpHnE8QLbnESiAa/XlsuoD6TI6Ymv8q6uP7oyu6RPybzURru9S6lZgNj5PnOZ5UFyUzMdU4Gii9Y5gFSJNQ7W1cQVOLv0Jy6mB6BcZncBurtUXyUcLMvBBK92O7GFe8cstwIv4lQyjQweLlNiDqjTl4WOsoQE9F/DuVoxYL3ivTrKBc7xXM1VgavfoTTvBT7xgyvbiELCzUqd7r4jxTOGG+ea4q+vNYj3SFLQt12i3LIKLV8Y6/iDjAGM2ydU1DFQCmWZxXvMTjL+6LvCRN1aMnRVvfeogP+HvnWNtdizPzbLfrTE/zLHLWcN48zKzDB5pgGcyylVd8wCks3L9ftAzjAQ1Bt+yIWGVdOzMVL3mIwgth11YyzHYesLrdFGDDULGdCUec/uMFYowbgQgC7N+YJie2F/Ew4vNJhloQxVNuAadBZWM6gDLkc47bfeaR9artDOQwQyWfXZC0ClreLxkh6WccafJKXxgu2YDwLAR01ezRfmfHwFdZaAFmxzG+7EHrYfuOQUKuqVZZ6ahkVjKDDwP8AssX+lpY58BEN/ZO/WF1TztvzCpwcsTfRJwC2F9DccB4jRroevmagSzOnCdaf2ZTRNFQ3nz6wVg5XC5XLr8KOUewHaNkP3VySjoucr0w5WLZDayjKVprm4NRYOPSIVoCNCvvzMYMlzYwe98S6fABxMZq1xbAXTVNDwyyeihwuFjqwavZj6e8JAYbLvNPN6t9YwsN55pk+JcOUa43eCLnEnVd2PxMM8OaYGE1dWvgxD2QxNBqtD8eIWfTk1K1yisgBToNQbmbESEtdzXnpcFHKW1YcmeescAddRf7hjW36v9cy0AsVcY9bv3hmJdyhaquollZKdOkXhHYK8YZuXsVkCnVLIKyDBZb/ABKjOemRo8dJfcNiNBRssU+sBcFtyO84ttX6BB32MeSqT3I6vaBVfCP7Ii5yLEOqO8Yo1gvwlg1Q/YP9ld7elJ2Q8pqdLDqkzvnjm8ETYTRqEyeY8OWfExUhcubR2cwSKW4nT7RbnVDRjWr9EpBAbbri7z3xKOltgq18z7k55m/5Fy86nrB2AWnVW+mzpMsKJYayCsqxErFy8eyLg5MmD0xqAYccQ1XctN31/ukRHjVr667w+w4HhfDMGAdLPpJUcNZCYxrEqS7/ALF6Ttsxg9ijhBB94jyVj5c82vpXaWZhFtU2DZ3h69ZNhVQaCOcWd8xM1ln/AGRFZOy1yH5jmKYJp191JeUjZNr4FvOPEAcurKlV6vSYgliuskY1nnpgrp3gGAp1f1xa0NyuAj/wdTqLe1YanxFk7Qy6f7FhwHLMlS0xgZJj5Y0DsY1rcX9i6l7H1geYaV/iNgToMm8VeaqFQFIK72/KHSdKHd5c+8K1wlHypCKPZG7JffxHbwZ3PNBrMO3YbrTPXpv4ljwK5qs5D1m0BT2sCri2t04aC06WlRaEMJSYF762/mVaAZOczFeyXdGsjFKgRGhkoGfs+YAPziEF87LHUTRriYW1iGI0/eYAbL6M5gWonrHniCfN2kF2jr0VRcnEJawde9Nd5j2wAGuWM2X67YIVO/QmRec/5NvFmxLrBb7Sby3CdD++SXFDKjWOC2Lz24lDf8EPAZvPzKSDOo0N+8vVaJ2WQGYBAthtjULexTeSM/v2SkBYB8OftOS/lmXTRLtCe7VsFWrpmQdesM4efxEiMle5NRQaxK16cnzMeki3SB15J6yrI9XIHzUYq0dOC76VuXqUuCMvi/aOrcm44KxUjalDa3fciRKKhYtARj/dEB0lYmgpXLrntEdf4Ia69mBDAZ8nDXEyw0gp1b7TLIB3N08ZzUYt7oQlcgq13sI1dNDktHCvOllbxXsnOviDfzdKy5i3wcBVGc/250UsNLtV9swzWsuIpTXX9vXi55rLMC44qVz3UtlIUTWmFtgwf9SomjI0QhVYyfxlshwZBxzo/wB3GB7psVe9nE1FpbX4V6Mr9zzN6xiEB0UMjFrTnLI6DqJ/CN1SKre4o67YLAw3Xklfkigm+7C5aLBEGF3rZKk7jcoDONMw5UGhip0HEIrBhDSqViAShheeCHpFRnBfl4XMK8qAp8IEhde0LxFornXgutcU+zMW96axS+n5hhSXQydvjcXr8xDLZ5IAucpfQrq4gCdOCsVh6RtxQX0lkwxzQDg3/vaX5Ag7Z1r1KS3ZGiNLWMTVbvL6z3DtHP33+ogcIGPmRpuUf+wKcc3C/hBkHC8tnvL0lSm26rHWCMvC7mlaBtjgkNhPqlvpIJz7xvf7seH9wOvaV7UOTrFJ1YBgtm1qwqCh3PvMMar+/dvEsopE3hfDExorzR7elSxCPCPGqOp1Q8sSCZDF9Sh94JaRMAX1z1Jz01sW69Va+JdSwjWe0w6RXW3s0hWoKomStV+tw50mXhoK6SXAdYEh7YlRN/CAfiESLM0zVMmv0mC2KV8a5p+8z47k0oWw24NEpEhcoY48pTXsfRuC7pqtc5VrnzCd9gcV0e0AsxbkS9XF3RFKZcb6H5i2XMRVAaenxkuV6c47VoRhbiVTeLqppylpjrVuWuNsFvmr6wljPithh1S5LOKoaOsRrbYvSw6K2DZ/vEAGw/mNVxn8TJrmBpZrox33SV/tSlA9z5WwNq7oxszEmotnBUB3X7NxIZByciYUdiKxTj5IOjLuG1WYe7bzZUaK63UrVcL1hoPEOOlWOsEzbxHPlxLBXiuxqNSgoGFOcTSN+LzDB8xRBLYUN77vaU0/hAyrULqx2ONYRlKgN3TjtOn5SzdErDdEuarD0jdjVxVK643jXaZ6Xd1f3zAV6KP3hlYA6q4jGglkV6x1rpld8RnGzftGZSUNhn2VWZmazQfTduCjE9DL5Q+y78alvDvBHgnglmiKUR6ya5K2vWOXMzYzPqa1q6HEcTil60dx1JbGllXnioNNNYjSm+7mEqldSUsTVQVVmvJmbvdVmw58F47e9iq3Xy9jl15dS5SLXauSRDsDjJjAYBF1niq31lDjkR25glyEYtl1j4qEa0zfpjv2hdXg0FWvM6WngGr7w5aLZtDDlTOYmiau1eM6p+0DVSoHqFLMMZMO6DUwaDIamjtfLT6TjNZd5SZ9cLMXtdly7qYL3q5YKsEuyv3LJdjp/Zhp9Als7WunGojXcqD34gsm0iynpC1ITC76eOhM/wBLqjiY30ABi9n7l+qq5NvRlG2qkL2lHxB8HFNTqhYpkUY7Cnh6Y7wYt8YX+f8AWeOjOl94EAbsbeB3ZaGxgI6bvtMmoDQ0eYsCCaVb/wAmSRrYjGlNUCxX5JlKIAk88ZiG/YOn0erMf4ZMNpjn2gKXPcg2sP0SuEbMmDiX3prUuTaJbNYDywAjPqLPuSsKXaGN1oJWReAMPTXWaPENYhMHPSZe4KUQw/p7xXIr5f5fMqlba4YSCu3FvtCE56fMbXGhebJUqW2V7gcPMtnrcc5b3WDxM+dPbLaw4d84iZaI7xEdWyb/AIy7QG0vx5vH+S2puF2Mu44VSjZFDppE1dEAG/MOwjS2NcBB8OSOGun/AGIOim0Y/r+ZvTRhGfEwBMBwj1O0WrgxfllLUNGFBdFiUW3MGAzXX4YvQEXkNN3gdEMdxOd8vLMxgFOQe0w4DmxHEwrvKWvukSEC4cE/5Fx4wtNvxDi8OC4KTbzbvBB4ykt/N1vGfMGeZOd+SWmgzlpC75MzSB0eIxluQCHoeZcYjQ+6jI9a8FVjpiCUTUqtr4pLmpHVZeVz2h9RzEqK+0LjZQ5sOOhlWgCoBYavoPjEEGnjy64flm7h8wPxFk1s6K5lznQYfSqMkqqpte3nMs5Wg4r+9o4TVqCqHw5VN2JU4wqhnHO4hFZp2Bj5gqjry2rIuEbMcZleMS1dq+Od61MzWLyw/uKIDADYbs+YLmgSWq2s61AjI2wtcWc8l/5HYyQKPtKt3w1NsIbsv5h7RktAVeJ1AuObb3BDdhAvMSi6rBcte7AUCekpoD20XVnebsW5BpWfWJyhmAp357nvExTtQ99szKOBtyGuXUo9RiXkFB8s9MCnxyHjcDSrAtabam8axMU84jL+CvmHqJ3LNPSLLkZT/sFJ9Fuv3j1TNin7xVaWlD9TW7nAng9e849oWk7xTHY14YMrzNeRR7y6WFHJ5qMSI1QIeu2ISscqAOIgWUERtQ25YbWt1BHw+EWuzoBnWNZ38ynZcmJsD8xCqtU0eYYw/Q/4hjcCB1G/TbDeMxeXIgNmDCTuq6o9RxPkHaQOJZxCPtfio9wQ1taWfKMm2fpqguYYjY0Wctd4DnpaA81MEVbpNN58TFlbKU4P71hASAVAPP4mk1i+br4lWRXCunZqBAFZS/HEzzfus2Z4m8utgh6l5qfeBnYzTdTSI3buhijrK23YpN7zSfaYwNh4Ans+Jh6a0t37PXRLWVq++cTp66IZd1sFqv47TCNU0CvwaiKnNNCWNQGHocRrF5Ey7gAeJkCq3vm8zLFJRV4F55zAvfW0oqwcd/vEy+wNJZjWiq/dJXNyW1SvFytMIks8QQl1J/iNm5uUgxB2qLUdYjrMiI5fyieuSsGr6QY2Qb7KcR5Yq06hnnMRabGY3+JaYebritpjUwaCs80i7lFg3i30MUaaCsgTr0ZuvtK/frKo3rhOj4mEoGq3jBZ/XCLubF7smHzFMnPvUAYzTds14xt7VAvSFjtwRqNektyvmdpXcqZJNdFZVuHrG4ZrgtvIPWLrl7qbPTZ5gNKuCiqviurFqEvFKN76zD7PEGXFcVFRO4nF1UpTbJ6mYtQYmPEmpdrXuikw+MAvAQHY+aGexDtADdFpqaTqp6Ne6rgujwLLh6C93BXQDuChd8dpnoE8mMB3yeCdFAKPmX7C0KMlPTHqxMg06AOJV9c/MFzb7tCKUyD1WHzOCMeQF21jd/E1zz2uTvr5iqLFBi7f8lrAcG2qnCbjcmqoeJSWLql5951DzwSj8obwQXGX+DlxLQnxVrcXXH5hdEkZ2o/maCtpQWx71LKj7I2feZmMiHqxhdd3iVWet4zi9i61FJKCjZrtaAiK0pNs/dErduwXpX595da+ylazPbHEKSmlYBwerGVgJkvJhnxCC5hRhy2/zJGS5PCAZO4lBSigGmZiR0JGSq6uobpd9JcTLBvoumj1L9ZkWhSbM26Zr5lIx0LDb18dZe3VMhcCU3XTsxj4gDV0wgY5SZ/5MD483JoLqtXN3MRYaQouHHsO0zHoWOZUEIjXBj3CCwDMt7l9bgoKhxhoFeWoRFm2P4V8zexwc/j8ylqtDu/1CRnNrD1Gb6C/YQq6lmWBPJRzUpl3kpapWvEHjaqDnZ8Rt1AW8upk4kiqijZ6hnLmZf42cI1dgrNTJR4gx1K6CW5JzlO/YQ2c6FsuExu/T0lP+v7Jana3vLcn2ZNfaWa/pq1ZVu1Out/iUHvQaArL75mkodA44YnatAvOd/8AEtnVF11m1zB0e+riUbLfWagCJtN7UOwbdqa18/xlY3s2DeMepAC1VwsxR91w6lug6ZxE/wC5UddmqLSG3393aAW8+BjOvvKjGMJMIcTQZsnS/wDkC3X7SUKTUFQ47QoSPg1WgmidFnWu8104dsI2Hyl+eUK6VMbln7zMbeb9T4xOCMF9NBLDwQcHicN7vARi44b9PMtj3b1Ho165gHCkYkzj3z7JgHJDQNq9U+yJSSUW7QF3wymNorY7tV/1d5iCqMZcGbvp94xXnUXve/iE8RRPDWOvHrE6TAelPYLmCfMKJ2alTyN3Rm995SwEJWaW4VpnDZCaCqrLZCokIoTmG6tdLn3IAHgOJes77MPVOxFnmYkrl+0rfMx2Co/HbLt/WS41dMsAFTSp/MMY6L7nXaIKYgHQD/esoWDxS3ftNIWjsrcFnFJ15mSij05MoTaMkyxTqr3WPmPjohszny8MVHKMwCrQW7evSO6CEpnGY+r2mekDNdm08BDbVcEzkrJ1MsAeFbVYOf1iV+lwaS3eSGrgelzGo2Fq9f8AZqQU2pmhr8zNBlCwo26ZfmIz1IFirmUmOotwhF10NekvoiNLbu/7ES1H669fMyGVdby46HmUCDZ5ny7cxDxtq6ML177mAeGwuBS2oPcljhXBWfhHwgStGDWWUPyWnqS4EUQoqDnZ+YbLJgDEFvWbnKtj1P8AqFXpWZhqY5tbfEt5/RVtX94asWyxiuE8QxmuYEAQEWs5KbjMXQDL+vyxh52oEGQdms+Zv8YMw3qcwHDXLCWetwDYqCxiF8G8upGjlldnGfMsWEYNh+Q/O4fp3rswy9abPEIJCCHTn+6TFNTwlWceeZQPA6lPVv8AErhBU7dxUGwHYW4fF09Z0BAwEFRnOpNmglaH38RnUA/v8yx8Fmux034V557xm2AtM06eJVAbvLjDKaK0KyspHly2PpfmJQVwthae/wDXAEW/l6X30bmAgFMl5u4wniSZwxmBhZa5NF7bUQ+hfktCt0Vu8aQsVSWoNMs9YAtG4uymxIbkfwIK0qCyIAyfnzAlFJyWPDx/1CA1n6xFL5LmOAr30nrV3KJtjhH2pdxVwCLp3MlS5E8Zy8q83M/fAPFtfFQFNa132PVhyJcOqP6QA1suTUTG1Q54eE5YnlaQbH6Sjj5MAaeWi/Co5mC2Z0lsibAZK/Igt+3gnh8XLpwynKVF30WvMN1cMfiO4IK8FfiPgZ0WO8xCHPupZ8xbeiFiILL9GJwxbl9UvUSegkRZeYThz+faa5muhjxDWTAs34f4dYiMlJ4XmLZUwq4zK6VDXq/7+JRZ/JjtAVS3/wAjxjC2UPOekHGmhYg0ztuLqYjIqvMFeEYdDVax3/jAxjQdRe4gY0nBa4XtMQs1b0/I+ZYw5ZKPLrUTFy2yxV+qaOxQsUv9V9kH9esVRBVPuq8XtjJ8VjDg5YnUtLmhrOPCf0dhm7Zzcogk1SpufYxyrLl6gq+l28jDUJkclMwJdhaOkxZqE3wmn3lxSdRdD+YsapZXvLluJqUOHipZ2Fd2vJLgW9ocXpia4a7djAPRWlbPb1/UBwcdZSzYOXdGSE7XRZuIlLJYiJ+ceWDW8BezKmdjpIAXC63eIW0WAvRads1CRH+IsU9coWMQCyqukH5qhaDH5+UeK5bmCum9kbedcQMR+G5yr57QJeCb7q2AfOZtaC7l/ZAiK23U9mDBs4d+td5UVbk8e8XJh14e0dbOEcFwB0GRfK631zGUOd4N30O7l7ZelxiRUOchFZD5psixcfMKvRKYGItLanvicQRvIfzvPgYLb5tHhqHML5x0v4hSinAsaxxjP9zK83tsO/72geRfKqH8fMuhJztqPLD794KzmhT7RYgGOPbrMWApW5V3vpMO+0WCQmpVnQiVfTSB7E4uz84tUoSRT1sgCegaPaVAV4FDumotcGhD+94g9LA2fghv0QRZZV/kzmJponWVNNtkROK9d1q3mLtkxxXr49okmiYCPzLWQunA18/M4TrD4JkWbFXLr9J9qVEDvUSmG3QsvF+iqv0lqoBkarAedRywXm69vzLhWrfoK+8Ihr1BXiXbKBGvjj0gIRqqAPWu8oawCiDKnur6wyq6NRZctcEZuc3/ALKwhg9BvMzcjmj3UzDh6tv4INjcU/0iqaAbgq9zrvEuwvHxHgsXZ0xpNsAIdQcHmtOU8wPXHc9CzHRg5Q+E6a9fzLYUbFwFPzV851BTNBicY1zCAsbJxio+2CV3WTXwTC5NDQWoDht9YC4pWmEvbnjuSyzuxUyRovpXsJwOuXQAJdaMG/KHPHweM8diNaqc/jVCJCAHTG4RuUOowX1hjT+gOkDbHRgiSrLWV5xaU6jVYY2O9nbDMvQD0rOPzFIaJjSt1+QRFTgLq/WZrfBFWHGPSFa38kN104hCNd7qlinupe2I6xoEacFHH2hWjhFR/rw8zsBJg6/E3ebQUQ109JZpbZ2nV6mCRAVeJlgge4HL5PeNtfZUNLwHnJ1zAaKwhRWTswDBm7XvxU3KPfK4R14m1wiMfHMGzVAwwVZLLZPLiouor4/ugjBT2q6SsfdQO+0CWmjI6MRgdJiww2+sEjLqv9zEBKxS2b6DLqvoFhqv0lS7ij2bQOaSmrod8Zlg3AyjkNErqRdq+ZeYoLYirGeg+8qKQGWA094pMp4h6yoU1d5V+mOZRlJbVwrp0mb12ysHWCtpulcyk9VTQ/z8RTHA21WM2my8Gqiog1o6LKwQXzsUWnd7m7TIFemu8KkJWVcQJis2HCunZOKjAPwl3rrsMFRTECjggXe8wtsQ7Ld9OxhSTR524+0qDQ1PeZs5X2iNLtlDC2DNo9bDOXzjbqtRKpvE8OBcVmvzK1PearCLV9/iKVZs6tbgy75mhyt6zHCWA6nurMfKfa06du0sP5TUVaf7cdUxSbu/hKNhtmFc7Dyy5v4t6r1PDbTqvOe7AdyEwf2oPviCW6liAO9t5g1NVg3dFnEWhbVzzrrqYMKxMzfOYkHcnCZ/XzLoZ5QOtwutFXmOauOnKCJzmKo1qbNRrvcUAGnXejmu8onuoaMfzB1e0ELd+/McubFm/Ds+8ZwXeJdVx2l6ai5CXSGy0CUjvvJWm/Ylfouy3UfxCr1Ctd0qmtCho3jxGHLd4LfzEaWaLlaOuJg+FXXHF+PtLWLQmEX6cQQ68Fc9W40eq3IYtxLhueVNtsJFzFtjrAQRM5dGvRB8WzX8SBXOgowraE61+9wUakN6G7K7xQyVcOc9COXkc6y8AKl/GBQNM6BYa6kPa3rB5U+4RpeADygh+o6KW81MWfEtI2pXaqwc2I2qNl5K+ktTS6tvhl2xXZa5PnnjUGjBaAwv44lT07YzHxC6B37wULMMXhNvtLo7oEtOGtRjuC7MKwq51GrUHi75JoEk6dHzMZB9vriat1d2p5aSvtL6uD2Nh20UauWKo7+2IKITrLUGOThQ7FXwMGJW2gK5wOx6wA4zRQ7hc3gIqOOOp6+icZGvYqHZAVWxS0OhrFamT5yqlPaaZTy0OSQduTUaTtnTO2vEuliunZNudGNrGmYcvcd+8q5gUweKfSAFfs6trq1zEtWJwQUKplZQqUvtI8QitGsGC/vEL1cw32d7mCuMN1mR1IzL1iy8WV7MLiqbbKwvJB+8rrUchwL8/ucia2HJc+j8Q6yOJW3GCLOdVO0+An3ekDqanWxPkwddmLCKuk6RIVMFceYpxH5Oq+9RqkAEa89Dd48zi3laI66XAJtN8yoFDuOnFWlTV3zGJwazUvQ8i3kj4R1m7Df3jDmSLAzegmA43W3F0z2gIS2Zf9yonBa2p6PswtlXQj895R/FFzn/AGXKzU5aysh4v1O8TCGkVwdD1lB5YS1t9mpUxbOXUP3yKTb0ha3YR98UrahC47MCJEb90rOFopAbPeITtIcbbazKjQVU8uatekExmtrF9EdR9pIPuek+R1q3Us9Vx9b0wPMsnrgrTiCcamCnC5lbCtZVHgc21cnMx8w6BgIZMvYHqp1gYXBWWx4lr6rtMvXrOFK2G3tLn0p7KnV7UIys8uSAj3koo4YFzP1RSbD4g2wi0Kzk9YcprKK3q+PmXSSZGSl+z7xhM1ytENdXEdAoNLFQPXPSoBUJA6ZRfcoJRDVR1FoMxx1L0wwN+PL2Q9lpBshQ+BJx0tZIl1fX9RqjOD/ekZsar1GZQIbx2ZM+jK4lUN20aar4zPPjmlKLzd+s0+b0YM3EU1iFdWlQriFG9MAbpyviUO4AIdR024HP5jYUXbcphCjB4MtpWX0YjL443sa1xRhjg5oaMDPnLyYqbZekKwXZvI1KC2VisKZ2Oa73L0oEJJaaea/0mThL02P2xHICOukBtxWiYbWNgXpAgoOBFFW4Yug30YRVYfaFCbYrD3NU59JV4Mmq8i7FyzHXp3GJZKpUWY4x9q7xndOnaadHvOIVxOacOfmmodn4ZcjLlpu1UofKu3cHTTtcWMDpTFgywcVDC8wZlKkJyveELWVj/OsuQwybsNntMkAxFtawK6pClroztXWm7fSWLzy9JYFVrVL5mBRcEDhWzxKTi48lp7Yu/SWDuzDUKdy/npLSNka/UhEY1aO3MppczFNooBWuYhHL8oPtaBmzmu+N+YaQveLLg8I1EmVSCxynRmpa6oRxOnSHfbgu8nHXEJp/cxcKLVRNBv39JtPEFdmNQQbEpF0rtITMgohOErnu44iqRu5AiVQTcAbforOz0mI29dw5ilQQaBuXb569I8+DfA9AZehuaxX+0rfyUgcHHS5w6wq3D8fJHmEx1+nrmDyqixa7+kpLxqswL5Yuop7jIFzVM4/m7NRWXf7JVM1SGmWepa4mJBRuCuiZzxW1XohFlqoZtT4VAnpOi8ev1hCOu2PJDH2LjRuQByqco8dKgRFUDfNIfEBmehk8d9yjAhC8C3mVCixXlLixIJk9XExG513r/JrLRf8A2KJZzelxIxu3sU4+a/HX7Q0pDkYpt95dSQmezUt07nmoRJJqQFuc1My02JLoGSMcCuxekzEHeAdiYBGQUXfaUeGBtezRyv38VdVfjqlhxAZkjaEwaza4y2xSjOL7Ff3SLj2pV5/1L47pwcad1TKTdVymHxhYzA2VWuDL6JQDfdyVwJMLLdZg28i5Sv1AhA3IidIxq6PeVHlc4QxqBGstu69f1EhxzuAjZGKwgZA1Z11vtLFdAbgA1raQfjf/AGY3MFNpejL0mVxlx1X6ZrkzZdAp6TCcL+47ekpQy0c2ZlHhWS3/AJ2452Wd7MftK0iW3zDO8gBSHRrL1jpSC7lG3a6weWIN22PEq60LqFjcEWm86M2/iAh5SAlXrOi7SuHIUF2OWV0nQwzxUQ9YHu6fmXA6AwL/ADA6i0dJ+iNbbaoULbeNiIHMgo4RC/lCpZFba7rjNde8KZ5VDoSg3Ms1tOEVar5gwxnmHhgtHLtBs1S3GpzV7W/MV54/3AYu6M5oOjM6FzMc5yRaiA/E5l0RSUKFdRdM6bEqvZ1sbYSTakNR6b1EYJb7WHhZxXvLw1CobAdtwunAJ/KOesCAKkK5/wBiEZitKiY66MTDK2YlTTa12Sw0JW5ncGiNcrL7wTz2LCT/AGOKloSgXIFXR1iWHUi+PeAhtIHXJC47XGGsttZiVRISjOS/3iARQt9HvBuOpgKWX0KQBB1EGzennUWDIFbzkhiPaD4rtX+Ql0pjatOeNyyRaZvm5YadYzmVkclX8QYXNUbaWuC7DfEFXc7swXK+iPZgtPm4ZD6KHiDyQr1q0ywdbgqXJSuFj5m2Z8zjJpjW+k2W7VFvoXAhrc2YXBWey66e8XmiIbPW/tBbN6VuEHsQ7NNXRaoZx6Sk0uxV+XpBbry1bIMs4fsiX5S6xLMHPhjs8c148e8sIgjPj0YVNfihDfrNCmU/2NGvlWsMXWHxM+gvj+lF+svQaNinbpHzsCUF1VutzHnNqtuNX94hMFuwH3a9OhLIthkyV0loy5yFvuAigKjDbeTf3g5EN/oMPaW3tMl61fibQZVtru3EtrCsvHiKwQmBLehFMlhndDvLrzB+jg4CvWU7Inhr90BXminpBn7Fx7ywKBi6znYVlYc9YbpbHNfzmGmYHAsvC+8Lg74pM/TE6H/XxN6gd8HocXB+IGYU1dahYV0CKBXTGI+JeSF9IiEDIHHT0TArVuodqa9oILTsvqgyKZODX4EbZeK2O6rRxH0UgDlogTKIXhgVSRcSrl5AeQ0ZqmsNsKurFdinhMRztqXiZ9uYV4AqB5S4bQaBSi8so0ADgQBA3IUvvEprIZlyB+GH3xCTOmHH7GH0Yw7GFasvt+4Ag4p3+ukZVsaq5/ydVAytG4Rte2o16xkbYVwxCLo1iSrwz4iUDTQKTPmLAKC21dXtK7FynPLPSUwkZAas2XTHDDqPSxv2SuHXMCz0W1/ksBiK7O/mWzgCvuQq6pUHhklxwVNDg6RTqjOLZ46zKcLSloqurdidM4RfBR0IV0TjS+TtAvYXKHOh95UKcVZcb3iLGwBRixLadzShO8235TD7Tf3gvL7d2PegTVc3fzzFulysLzn4xLQqNvsgW4pTzr9G8xa4yhYuRSZwfaHB20By/ke03RqOX9cs+7Et5mZN4Alr7QzDfMT2g9hbS3esyx3/AMguNDqEVtC78Q1cLLGOutYnFAZyXVQMs2NgSH3jOCF36+ZwxgKTn8zvzAlMenEcBwgWDhuMQJVYyekQubiFhQao/wCviXQWWu0qw6CzY1rn0lTZ4a3xhiuME8DpAJ6Tq9E28yr88n8FQJdI2wAKx6sJdpWc97qU/WlooR4xCIoXqB0YHF0WVnnVDDE4xg/MfsUpUuARd5qlvqXEXuVHZRJRliE5XR+13iaiQuqxvrzPaUey29rsS/1qHJmAon4WvL8zHkd6l21M3UlmuD08QxoGCuivEYBofT32iCpsFJTOfd8QtVvdF/J/ZlVtqBZKPvz8Q4Fqo0NZA8fMOObnmDXbbqx1g0ssmTJcuDspsSPJfP8AyAxJ2oVePSLCZmW5GPb7xBYb6F0eLiSGsA73UwAYGazDgmRdCVj1gkhyh3UVxEeo0cvmgW0ibSr4TvBYA5l4OUVymvtFgDb5gS9JvLhsmpiBvQtiumq+0souYK/hAip4nm8MCNSto/uWu0acNkSSIKhfadblmyFXHTxMVqUeXI9EtptqvC3xBhgOVS+X1gm3d0VckKRy0mjG+xHA0lvf1ZmYSqAffue8SsXMO/d6Q0lS1Fv1qIuGY4va+uLihxYUpe0JER0fyRHfZQG7AxAQCUJUV4jMpVp4ur94amYAY8fMphCcq6nHXvmKUAKapuscRPyOy2zF9dk15NaG4mAu3ACqtL/8zXpLfgBYhQXMAsF1cj2uVwyNmdSpVANGsvaaQil2AHE6q1AmKtb8PSOItRX2L43mbmLsI5k4jm89svvKuszRItSGbuvJAvSjsqW2+KsJnglHrIr5liVwRX4oDeXTpXW5Xg224YtedzPPo4/MZJUyqFz/AEQsn9O2PzHhB6Fby8OnQgu1NC+CnjGZYcxOLHczte7Nj1rnxEiRxgpoOlWZ1GRpoXF9W5xBGARag3AoHHGskC3uCcm7xxcAZ6bUL/cyzT8G26vxfzESB0XIneVrrw+kIyyW+0sffNwGgR3bVCh5gC2x0jLpAYB1pzOMWCIT1hr0NRo+YMW7FgL9sTbydVgxtlZfEejfR417zBhUCljC+3/ZRbAsdI5BuxDWYkQqrq6+NTelpQUF5dcS4q7r8Q7RVgdQvo/MK3xeuG5ZmOLqxBl7aNBG8VsTgcdznUYNUFZc6trUKs7Z6hWOdTAQ2Wb3KazK6ibiddej2ieMQ94Mp0BMIYvBjPHbpAQOi7du968QWAgArRRVEI2JlKAesyvzVMPTMIipc5NeDG/aLgBVTSdSmOvLTLCCeyOcNDfmNWdFGL18pS7SrXxGz+etOOqi/WZMaOXIddQiQKl0HujaIo63T2smZZs00XVcZeYLa3QixrFNkcWX5tZz0mr4mYCNsyGM4qD/ABKjkiVATmi32rO4CCTjo960/MxWdcqpYlxtcVfzHI6VXtI1Yjjk4lN9NV89Y88w3CdwJD8jVzUcGBZnb/YsVA6qvJeEAQ7POcLPeVqL21AYAeevxC2Lo4jveeKlzHAPaICATgKJQFOjEpHV3Urhvo1bnLEVCpaE15c7x9oZHdntgHTUNsLBD5jH7N3eu8w2tgTwdnfs1rM3D41xXVyd5WjJquhjIvHB4v4j9NJ0gcLGVeOsvtbvQhW86b7dodcHT5R5HOyvET0Hds9pTYcC9bRIL6w7Ha0s/l0xiecK1Cs4xUrLsj1NJgl2MLyl4jhRtcWwt5xW+ipgXB4nb/IIiur6X/e8LXIHCtC3TtjcfhHqUl1r1gCDFoVxUa6QM4asvTXsyg6twlpAW138Ma9kcmtSq1GwUYZOKhKpAEphC8P+oOcQsc4QCE565jLhG+kNQxA3oZmFdVdp37xRCBSwfBmIRqlmhVOct3RMDisPuc6hSykX5/8AJR6PwkT+gtci7XrXfdQKO0c2JbldtTfjDPaXvFZPI3UpTzS8r4mJog2YXj19tsG9DwKw7PDKkt6CWJYjTocQSM5W8QALrDazMDQ4liFW+K/3H0f6HGL7DcMGLpprGpVemNvRXbXb7pupzhdk+I4V6S4tsReLddP8esoMmUyveAmRxbAoI4YfL6nC9VeJ0t3rLdkPQj7zVWTbRv0doIw0HOv5c6aGIfZDKl7uCuuc4xGh4F0d2UfG5WBqJh6Yo6/CuJe5+82qe7IwerDVLfXyxrswAU4U1xL+oSaFWAult66jGsOzy+nWa+FDpwr4jF6DfMEHCHQq3Zb1KpmIJ7CWVBLP0XHtLIlnTlfUvFQSfJbbZrP+xJSbf3MGgHhfR+YVNvAvfQdDF9Y12genQw04i6cLys6axDtw2AF4WbaEzbKsDrtDdTeecaM596jkG87AopT86jh2Y4NVlzBMBStHiXApQ+jiNCSfESumIzwJiz6NaVrFsIVIg30VjJ2+/MZjsLywamK+J5qrZlJoiCsLrqVKqBmMt4aNKHMWdKigOCtEv9swNJa8yix0s3WU15r2g4tya5MXgmOSMuG8gzjrKEFVzsO/rE3c2/eNnxxWMcZHhCWP7fOIf7hSuSzAcOHr1l+5HNMD2gQphVfNEyhRmpcWbd+YqDANxWBvb7QEskKacELlei8ZeM7+8zAwRwskLbL33i2GAdNlrHHrDnbrd6wLkB608+gcQYwgk6HCjZ3+op2rjucai8AmAhi603l7yz0rQtu60Z16RyoF1M6QKbysL8SkxhrJD23CecxzfbNpamosAM5Pd+0GSLjtw5rfywzH1azC6slyxdJgvGOOpuZCksfrDWHXeGnOxdtPDB+YWsgz2bgIXcULv4jKp2s9kO5Job0Fcmj7SlhDKypteLvjTEOVtNI6NOW1v4lMGCybpSdltsz6UxyRQZo7JaAbZRszh9Z0CEAK1tq8QSqUBug+7Ok6hdOtTKigMsIAXMal1LgqTMF9vT5ipbK6Y42moW5ZZ8Au3bu4uLCi19DIdoDWYO82VXiJvwJksqsYjFM4R7x7kIogbW6uX94mRANNHadmHXHdlzUxWKvMzMFyrVnTg5gvJJ7Sq4QzfQiqQInTkY/ty2mrC2hoxjnzUz4jbLc+jgH/AGM2+otNKvy7YqG2TnflGhNAWsE1OKQOol+pUIwuUuzbcIopSU9W9HeKDIFmbmB6sHlGwLfFEbsYijNoGvKVgUFLLTpVbNSwESmBKDrWH9y+LsFd3GS8bIPXhz/WQS3fFFOW97NxXgqeJmX1NYHMydON94qy7ALF8RdOig53DFNlUFVBIwRVaGL8ympHAteXpr5hNQOZVNPSV/NSD3iKeB64b/Evmswpqin4irfKMP5IoLtPiB1jzxKau95bXiOSHjP7Mv2QsV2jFEubS6vrjMw0UcmmhL4oA76Tew0B6QsBpZl4CKZ/tctiEU5xOR894nGa9h6AMsAkrw6V7HEuZOHNM/aNgBSR6pj0g61Olnuy5lumsJjJQYxx8wHWsxS8NfuJzYBhsn2SoIHCHD8kpZwX2ckVQTT2PQticVqjG2+mPBbEOGZXWAQuRbq9YwS+8eGx7HpLttobIZr1JlgN5hpG8fgm0lUhvmBnQ42CAEdBfjvLd8ld2Xs0lbQ1p2BzcuFksUcyhi70dZlYqbDQ0TNnJxdTsJper4cdO8FIYHslbBoAzmGojOrYtc9iMW60Cs42kdzsxeq3PMzLA9KeJ0EWscMJ/EtcXxRLsCjInMRT3F2aPaocpqTZxkqyFVOHDg9/OI/StuxY8vHESsXdpriLeX7SGX4GDucGn374lAakUAgPUiVQqLHUzA209hnj5hO0rdO0ebdOoX9RFocHTMxZILDGvHmbv3NAlmnieI61pXLTUPC4mgnrKdJWu6MVXnMf2w2+7nmGhT5juw6B52Kfi+Zlygjivj1lcMAUj3BeIOeZVl/2IzEwq+kbS7QQaAo/mLXjqfWMSeyYuzOyJqFIDhU5eoQdxKjl1fXyvSPtSYPMbjMMrV81OVClKK/6pcmDNmx/2WJCwvZ4UpGIYkByG1F9WZQU7QBdnxEOCx90SoBRyqVJWBUxnJ8e8eGW2PS1rx9o0n00Wz9/hhl5OqRnT21r5ggxoADs35gSVDAjPS4OrcF6/aGAwEjos+K941skr5q7So2C0BVUYJygMm15gSu7DmsIekYBePEJ5bg++EI396sV/LiOgpaU/EvrQ6MMog25KbHPaEUF6Zl8Hv8AEoPRqQNnv8EW7A9kx16S2BZETmsbuXMUUBy7zUBqKilDzuXm5Ioya7QMncfQ1L4zMtL5NzzdPaWZYe3dQ0nmGqgUPA7F8zPBsKqs2530o9JVlXM2YbLmUBF7i8WY+JpNe/4jkRnTR+Fwswa/Eqk1V17Rc/BQZtIKh7DODnJRWDWHk/Uvit5q55rUsc6ASuYGQUNgo2OYpvhiq/ZEjQ4HPgm8V7S5BJ7w1fSADtsDtnpMMqzCy/wihM3YI+YEL1vJDQawiU32YxIjq2cbjGCLLSGVlsyu5LuOgY9AIUutzW3SFRnkrjYWuvdOiO3zNxnESkaUprpDAILYvvHlQtFOzAiJwDqLVtEqLFKdWMRkC04qUelWMbyhBQRwMDYJuK6upgybFjUvprxljAW3aZQ2dgLAHzhD2J4e0rlm+qnNS0th4YApk0LojXi9TyQKYJuQi0xraaIt4phVUVdKxXDB0QdVE6u8X8XGOoEuZJLauO/SWtXNtV6lwt5JcC45EQUHpLxOFYhYRZdtTLVx0wj1HhMmJLko8ISEt3MEVTMHjhAmNMB0lMRnSOseZo8UarjLAUAjDhVsg5TG23UJsszPF10nTAeJOqeDh7oIqD0lyYsYqYmHtDWyeIlytRXiCXLPtMcR7dvzuT34TAIHAYN4SJwVc30ggAopWL5QRQgEHiH1JNpgDW8JCDVm/wByUsGltzK4LWRnZGtucfmfF/dMvXhDQSv2h/ermiCQ2uFeWMEUCoPibM8/ZGTriqzXSJeVsZx6TrwcNwB4M8IkTpqIHkeAviZcAzQh7gV+00J5EIve4gFQeDtP/9oADAMBAAIAAwAAABC9kh/c79rlr3htDJG1IwUyTHan/Rq34NKEmSnfvYUNb3tCXHE2nd7wPRiDz3XGIJUxtY2iKqGiACDOM69xJ/VkXHD+O4DzBzOpDTuptkYjpygsmNGBRt4zsgLwIiZFHNmA1fy7xiC74ugfKcH03y3Adc94etwvnZ9JDQfLOvETqI/7aY9y/wDZXn+daniS7D5swjimRmH5rNEHuzkrBFd5+T4JwkwtswTJOkEuokmg30Ut2FTy/wBVN5WL1IbvjjfjmZOkUaAzhPEri3MboygWbsCprdB5lEjtjSdbJR6AESU5QvG6YCls2zrwT23KVvSul1xnU/sGjwKdidXEoFmEV+E0M3ctjuJ4I35zQm1u9acmM2Kte6222BdxRiaPd+iInW6gWitI76EfJ8HQ8mQJdySELtCn3s4o/qJjxXUVVmQy0Q8NjQclsMd/ojVou3dG/DPYBESYc+6SvsbtS0cYvyYjH5ox2P8AkBvN8ptWxxA1HEIC0lOs/lXFoXnxTdTwZmPOMNaWrZKGiyq5rVYEVzFuWmgjVDrJVvzmP6wPg8X9VrDFZN0jsx60W+PUTIV8tnMDq1v72Q7LtTs2fwBLcDiCk6RQL299P5AB3BFdgUZZty7TcJqV625lQjsSiV3LNwwLGXK3Ren5witb1723bd6NW4NJPr3ANHOB8nw5GC+4pSjz/E1sXDkfzLRMoO8jsKDHtVdPSeCIOuAdFdyeWweiGgob3WQPeTc+W2/c/lZnuBKSAldEV1d7VvICwcnWBP3PXSJMMdNhl6X14n9pWIeGlACBEZjeR9wNUdO0KRLP/wAsp3HxsqxaRPNMfYmW7iY5mSCy7PJ72Wy2yQZEa6bJ4wKQEUgA0g0gEEwIkKM2g20SAUEgGcJRzqVWnp1G5Z0Jkzze6+1Nqr4ud78X766Ql6A/2j5baXabT5ethE6zWz7/APcjDQz333/QtG8uvksvmsu09+qrcctSv3nk85O2Yac/y/SlfhvALP6b6aL8kzmnZSaM9PF4mwmbVW5UYuPj7vpHQXAFgccj7WMTXaSXLCeuuNWIBAvWf0GGiBlXvezHQ5L2kgZSkU1LzoqIGm9EiXlRbHaxlFizvLtFGDToIDf5ZJvstzxWCMw6KUgjGXXXB4a16Xfy6sCrzmjuTkLIEs4+/cKSlXnZn6yQAyNbqK4HUJX2jsupBCBp1dp1vGXwSwwk9BbZ94DTCsVCsAx/BjuxSL7XqS+w4Be+/wCVhG5Yndf1C7c4z6BC+3t1fqbnDMMZu5X3QJPbM40p5xbuzChYadnDY47B4IkaIfG5qkxsYsJfg8alU/jCqk3jzehvowmSn6pJCZfpS3yw+VrzpOJ5/Y/9xaudUMgilU23gz1183qI7dC7n2YnE0lb+jH/AIoAVmB2NRIR3WPb2/j8Qc0sWA0uqmD0yg3JvL32zFgWjUm51FxijA4zWOaIOE7sOwYInsuPGNse64+ZqX9Mn6WXutNmb1fq+o2Lr+QCJ44Leecs1G4ftH2lWdSuyXRdxdcBca+waFDEsY4ErbD/AJBBu0hID7sFYG1N4NaWfx3IVH/Ih97+dHMWIyMIeJYCTcQEXlgd/iFzecaHpBg7IVmp+oSI59cim/aj07ijarW+BPO3weJb0SpYHdpS/goV4wqVMzv6AiAHT1bH55wrOT1h2FSBSZ3C1QUqRkzlKfSucGLfiMV8ksKvgS1uNSqEx054FlDrmOBmAIEeKTo2ytRXXfuuZEJn0174+AlXXoQ93/5vRn1+6yxAm+qfBBV4wNBHgA3+xNMh5CVkopPBIdsNtLcYQuqSzTjw3dg7qjW8Gd/qKq6bBS6dtuQCnRg1itL5UPvIp6WP5wjeKtti2na9M2zwBT70uBxiClwG6NZKZb1ADRIWqFE79cobw+oOBoSAEk1CU7cIraDxsQYsNWaHLSFTJRUNWpy5XJdyh3Gyp1N8X2L/AFW2izR3AcWQtNgqn+EmWEKrkvF0bA1Z/D4e/am+06Jdqwemhgqzaje2Z04rD78ge3vi1daUbdS+BAkBlQSuoShoFDnRSSKUod7HeDFdr/opqZIi9gF3xLG8E5AzrHdUQi1TJv10Niw1WWKSwnfYILexo2JKeAoPe56PfAHTPH//xAApEQEAAgIBAwMEAwEBAQAAAAABABEhMUFRYXEQgfCRobHB0eHxIDBA/9oACAEDAQE/ELBl894kBuNYcThLlba3MEGDYYaw4jWBAS2K1FA19Lg/GGF9IdhrEaiZYPkiATNJfmKdDwxGIWhAHiVA5jICvMLiBoUcdI1LihgWopW9hzBKnXmURfzAGANFu5XViFsOcwNmFQuY66TXbTF8Q6kC3dw5xBsMXLlBGo3ULbUuWrlKqLPoQgohy5qZ1U3uPdGIWrfeADzDyn2jeU8TFaB73EILl5htJXUso7gbmpci3EARQu0FbSbF7R0t21CYRXczBwUevEyKkrFwt8SGAauaEAXKBpiW1N0+JdpVdRWi3ZBrBilVEKusrL8biMMENglbjrEovmOqUuEEq9JdqkJTQYzA1AQFd6YxozUKq2OdRiln2/mXCcy2g8Ts4AaMR+1zhFPdnWii4qE2SqAxe1jMTBGpRB0REOo1ENx8pRTiXNi327f1B0Y/f/IudhjwZJDYxOL1EKGC9YFLIl4gMQxM5uUdpYlpgAqC7PnxijUCrIlWF3jVfncLF3+f1FTHwTHEQh1gAm4sUVPnEQ4qIMTn3lXaljTMEv5ywq5SIFX1lMuNylMGICcH1gUVgiYVHY4FTNDLoo9atp87Ql7yZlAQ5XvEMwGrY8neAMZsJV34x+YtWGwQUY3fz+ZRSzbjETgu1ndDz0ggZHWDmlS9zrKLRFmEsmfkIAb6yllTItmVvMQoR4j3ladQItCo2ZqV8+dJbDKEZNS794BXoQq+O3x8xmcvM3RisKRhdXzEjZl9oUwAv2l8DZFuhlSHSM1Nji4gocC95g7WxyoYlSjUrmtRR87jEPdEVcGYgHEzkaE0XjMKgyyq4QygzFlYIUlGRmpxZE3pis1AWCpEWbIfeAOr1l92G84jdJlTvEU5qoqk00+IiEEbz1+du8qReYU0zBSESmIDRDBsfmYK1vnXULXj7R02YK6lGtlP1iMM6yHbhiQW6K3+pTaK6t6gPuYlWYrYwD3PzA2SzDXJEQfb2lVWZAkoeT+YgCGF6xpxb2+PjHulsvR1jvKHaiAtLa+vSKsw583/ABALktUI2eG5hqVbPRidlyk3LUGbxKBbj4QrCYNURqTJiJJyYwZm0SpllMdGZgHUoHFEsSr6QhtCUhDOsR3FDZ9PjKWhy94GjAlhFM8IEvJWo4bFzGi+okEKgokdXghSKwvccR4gaBi4lCoruo20alqBqWgVvHeNQwTLIGVgZRctUVq11lIy7d/PrCIVmALdzXXWUgVS7ughrzLBlRvrcPKAsWzHTE09fiUIcQi9efntGqCWqjv3QY0zHWAeAHvjvFUwN667g0uJYWYicu7Kywc8OHt+YjLJgrcV2KH87i4QmvMYhyw9iRKIYiCr1GQ6wIPxLijb1hJRKMYhVqLoahugd/pEtmOm9pQZl8V9pQqFyXEGJmMUQXiYsRgIzVm7UHZPnEQBUWyWEOZS2TSFYoYCVFM+3Fyu/J1gezyRyMqQMjUWLGHrEBGoqktB8kNFRAbmUl0MMCD3OkKaZsxg3C+JyuUBhbJQW0KFMAG4KYfdjf4PeMGlpKlBNBgQveVHtRvBjvr7wAujrXaLcalwuJvMRLgd9IrgKr7wGaXDkUazPzQ1EGq8vrUaE27TWS1SxoIZmKvqyg8J7am3kfmVG8TNjXtKcjD4jTX3i9VFWlmVF0TQdd45uBSpplAaJkc2ZyKC30MN0bQ+IukWRuNFdybSniEgQP4mgNwcUggFkIBiqd7YJkJQZQWGJQyr+39x4IwNhUu295mERpyzAM2ZiOKivRb4gBOSAKggQIDs6xsb1GJq5ksJSrolekoJqEvpka8fqBdCIOKxBCUExRbgxZfsNQukLlrUuJ0koscpywQq/dAlivvBVsBXUYNdYdoimr53hG4q2Y1OZlhHYjAIRbIe3TvCAoTeIbvHKrjInnrMZjxGrgwhcMsMTZ7+hqPZLA8LLiALK7RjVSlUEc2Qq7qManMWFn0gDVEMQVByxBbULKvpGL48+YcK5+fSFtsG8TsQ4R4joxyWMcqkVsD5riDIGI7uN2l3SJU2e348yuCyiizaJqcpiajtgaZkHMUWuJXF8+/vEFiwGXSCHkTJH5VvrFUFRyiCyZjaIdS+3Jz/ABXoIlRApE08xAIxgZMy1dlisY9WSwztEoJWxgdf6jxVqXbMR0qiqXWWKNdZdldc2S1I11nRx/Ui7HX5iLqPF9D5iNGOYymQTOkzW4AtbiAjxAKOv4gB+JWWWsVBxEcuJtUT6aiaW/d+vpATMZXxHx6xKIim6iLHOPzBV7twiwzC1VHTUrWGIUHNxjjYkdUr7wwLGOqTBbTHYfOkrbncdUZZ/da7VcbYlcXFQFO4+iO18xeUdsIux+P1OJFjUa3IqJAbdt1CGz/ZW6JustNGo6pTMGYh8S4Bmtly9oi4EcIZAcsQWPPYiOGFP7+kMYCFRX5IaEU6QgRxr7w0TpMMxpGgs0x2Lgat1nrUMDYblQRiCFrDMlI4t1KoGERvp87wF3zFDM2ZTPP5goGGVFLN/WXKMvKQFPMrrACKBu4olea6eZhjLXmYNhMjGrNFI1ifGENn9wJSYG44gIKrECvUGH3z+ohCzW/PHb+pcW5b/f6ltEWRKWe7DQZkzllblFRctCYmwQRKZUNI771mQKqVVT9NRCENS9zmZW1EW6Amtx0Td6/cG1KxKvWQ0IP3pY1HiErbRhljLEFh7wwDDyF3pgeEqs3ZgW6mO30Jt+6HsY8wLUgqXAFSMoespQ/5/sfF38/2VpJSus+4lqKiSdYlijuZ3cQq5Xio8o8ZdNQ0Sw6zSGoKMIhipuJkxkkKUvntECmpSmSbMFvjMyQUfW5RlufeBRjRUOHmJwa+0xmRv3+EEFs6doWAkAmDI7IlAOXzMMarRR+oIVhZXMSmoZgHQgC4yY8X7cxyYXrtLw4g1dzg4/uYQkzLxzISvnEbV3G8vHzmAALXy5gCKBGTrOEnEVog1KtHr+ohzXMBWPnmILtE8soYmuIlccdYJVxEtXeIsIDc/wBQNwlXSUwjFSszMR3TAqAXX+QLKWEmNzlAJdY3LDdwApn1KJWyYl57RzUFQqr3Y9mnSGcgQ2WLixd3rCGESNo1mYriphxEO4YFQrFQ0UjL1FCnmVwcRqamlUrJgV6bhE3P4i4tXGFg4iy+iF3HPSCHthyalolPmUqwJEH5r+EZJuj8qUMsbIBuMMR9PJDgBjMAo8pR2wkXNE5FyouJmVVc5ndgG4BozUd5fVuWh9oiiB2ywGbOf839IqXY8ywwmVhiBWTV9IAKCIQ58pTchbGYkOPm4BDriIoB7EW1RXjGYlMmYG1ypLlKGWdElFYyhukXv+fpMNRFWzIKuWGMalgHV94VDqAbvBox85jrvBriLiEdYxYxMsqjX7iAlC4V15iy9IF0aFkQGss62aYJZWOJepGbOINTQ8RIVGliUFkQlMVXiLAF3M80cu8XBLZ5ubrLmUNJksqKLSK7vXT/ACWDS2xeytRbc0J1lhrKYQK6ROZzzBByQ5Q1Ti4hGMQaj8xOxqM2RVQSmAoYWi2Gi0wNwuspHIUldEcui2V8yxjMtarHZTpAkd1AowDyllq5bawiv8x0pLl/UTlFIvUhAB+Y+a00KSpdwXBcx6rAWphsqUZTEElIhyxJkheHoDUoUy8hshrUBmpRM6ma2gtMaARyESjQjDOSDVKNYxtuL3VB+amybhRcusK8zaslDqUdMU0wK1FBHMVyh9JSBcSzmZdwWzqBShgCmLYTQB3gNYItQRxqijmP2kLg/RCqUdwCqlAGZgmyDVxDSidsAYJkZa8s8yXquWG+FGoWohx8NoxvllGoxMxOJmIK6zdhKhUxxpGspGwaSq3B1VKoqNTJEIsIkXULGo22kS3UpsJk2wUYhWP0gBxADZAmXQsXBhUUKmGJmztZUN3ITYZYIrpghL9BhKGVTMRqm4kZLgByTJsjRUKamfMp1Q6CpjzBGcTGQDojeBqVMRawTxjeBigtIOhgRlGSGyVWn3jjZiOyHSmOp0YKZzBUlQoUkZrUvxKIJuPrQLpfccSqVSYQN3LvESkEMrl2lZah1QOoTKAAYjSIS5ZZdQURrGCGYGpZ1BcxWBACiZeZbpDtgikhuph0IHpAdJ2ID0AXWL9YDLv8ivP2Z3ZdzOK5Vp9DiWHWI12CXbSdyYMQjp9FyIO1EoqcQwLnejTTGsouYQJemUkRqWm5cUtsw0wdUDYSIGoYMR1kUbiNZjLFyjiIcwIjj0KNMWGGYcwsqPXqFucwpxBrMJlOkYU4gMv5jNnTC7caMRBmPVnWYJB0crdJ2H1nbQPmUcxLn7Snmdyd+BRV6NsaZgDKOsDvKGmCZbLEuZlvSLn0V9FeJXmBlEWKJZLiCYQ9Ai3X00ZmUpKSs7fRfrL9Y1jOErK16e6I6y7ubSlwPqt+ZlzLsXKOYQ6LOq+hd3Doijud6HWi3MFzLmvSd1yyJcy0KyH1YQVBEO30LwXaMHrO76FxwzqpbmX6zzlKCJbpLdJbpCKnqUqomXbnSYggPprO+Y+m0euDl5aXCnq2RfQag+i3oYvL9BlH0rI19JeVhT0MU9LSM4+ikSyp6lT0UjJYiJ4TLiX6RWecVTUww3ALYzSKtcwhAoOXl5aZzymHM84o9LBaDWIdpfoXBPQxLv0pwN+mpctLSmNiFZdjC/Muf8BKl3mecp1mfMy5lp5y3WWMejynlPKU6xPDAyvX0K7idyvTB9FP+F0Q6owOL9S8tBS/obTCXZbLSXirLl2MBsw7W3K8d5gpdy5aW9ZlmK4l5aXlpbLfQaloOSGvQaYI+lzPpcvdIfvHb/4XXouXLJZLlyyWTEJqXLlkuXLmJj/i/UuXLly5cuXLly5cv/i/S5f/AIkBkFCXCosvpqZ/61/269Lly5aW9NPSlPOJgg6y2X6XBv1v/wCdhHcUuWy2H/yrXozUySVBEXCajCES0tC0pBv0tlsM7lTmPpbBjbv/AKLly4R4MuMp9anpIpKet1Ll+i5d+ly5cuXLiwf+giU9C36C+txz/wAXLi+iv+WkG5dS5Z6jT03g3BC0MASRW2Kn6Ll+g1M/Xslkv/klR1Lg3/zTK0epEeBUXrLJZLP+bRXFhe2WTBhXMd4g4zKRQgJZLJZLJZKSkv1FOPW01hhTHUVnrY8wFwA1D7CJOSZBiqaKYLtmXotmTsmHEvSIlnT0GWCn/gxFD0EQrccbf+LZcv0HPqqamenpa6ipuJpOY9YPoG/UXCNZP9SkOr/cu8+tS/UuWQpL9Vv1Kehb9GZ/5WvQYTaI4qVbjQvQTsZpWjAQXZUoFyx1yT7veb8LFZqCZr7RXTHa5e6lTqGLzBnLzG3R9IEKJt1MuVekstzlBgFTUSsO5ZrmG8RyxErXpnlAmAtYrsYFwgFuZiQUj/ntAbqsy7Z9JXsZX1ipNbmSEtEWeZSYfeYpSKUhMQUx6QK36HpdJKcvZis1MZ5/54v1M+l/8XB9K/4q5xc7yuZ7xKh3gsu5Gw6JZaQl+yFN2l4RAGU7kgMCVhS6gAiothZVcv4iqbH8Y5hkriIHZsllaz7kLEpXSJYgsqzKAHaUdtXAlP3EnvDDcrKYqHhbLiK2IqhDdzcX0dRGcMAcxipWKpshWOGFMcso2MyYQ4mI1MZUyuk8+m0uJsypXG0/aEqQjegDMvK8sSAtMAV2fPmIAK1LWlEIUL9ALqdqJKYYY4xlfOZc7JZV8f8AKanGJcyjpf2Ylhj1yetQ3AmiPMFsxfUszBt0I0FTnzA4z7SjILxERDx6fcH5jBCi0psOZmD6QbQuNBqpf1Io1Ba8EFyceZTbgPxLFCo2OsQaUw7eneWo7fnEu7U/zHxdSsmG6hLHOo8+1R5RXrLTLMA3OZWJ9rgBzRmUMCuiN39v5iKDEpY3C4MwMBvXJHOT4mMqGqQR94av06MKxBISaTTQYNesO7KV5/RH2xhAm5cIXkxxb1LBGUAKDJEOUhpSxwEPgrL5IRdwuXSNALj2ZmqJBfFNfSKqogyzWUAsl+8ULjE1XMO3cfO8VeE+d4qCQBfjzf2VErUIFKuTAFg+FZcgcthK3KNUtKC83htUZimZW2S1qs+8esSiIPdT2iUu5+YBxlrxhltpmHMwkPkMxClUEu4ImC6ER53pUuFSDUFCq4Op6QMuI82h9/Pz3jC5xmE3hvzQEy9obHXV8HmoqC8PH9ahbEZq7wHmfr/kYEtZVyKi10vaZGvvRXX3lJSyvYxoMOssj2d48OXppitliKJe69LLxzWS/Ma6lJuBTcPLHILH2vz0+spdB6DCvjmIGNyta/f0meUIxL0hUDDzql2mE3BJlLL7QmzBwl+hRuUM4qJTCGdxgOGHERtAlOO5bgr8zOy6gCYjTKQPIiz0uA5wDpACq11nDctKYiiD2G4lR6whRlOsBLJcqWWpvMRsSg9IeDJYRkuVQpuGXt3GNxjr9II1CiYMFwqXiB2Fyjbfz9RN2CfZLe1RjAUZrv7dY4pf6nOgSg09IrOb/cChww+0MVNI6krAwo075ffS/N8Q9Qlwu8UDSLTC/wBwW0Zk7q8f1Cu9LP48fbMxuogQRAWKt/33isZe+gDVHSHBlShpRBgRWpdtMsssCNrYUyRHOMV9ysjdcTvTEOpZi5pKIXUOb+fScriPAl1zK+YECwPbIVf7Eqyr0/zrB3Aa+XEDEwbjnxiEoOIGfrDGn+EpFDwtu8Py4WJM2KXbqVJW5lNo9CEdUQXf9QTOJ+fMoAhed/onFDKdEob4jG4+NdoJDzKDvvxOaV/cAiXCSn5UpkOqpzTBisCo5946CyoIhREIWZQ1KZCLRWJcgZkC4I5gBdkFzRDXU/Eatmh/2WiZWW9dP3GI6N3g7dYLgnjEoKGFJoO8Xoufrx+4Xgcef3FjdFR1axC225ajAMdY2DjH4/mZIgWc41BQtXxGlckXcmJNG36XLCO5aLrEsXbgxn9EQhOcIBg1hgWvBBmBidTFTSPmjAA3eh6x+ifeEbEJkp8L5uAJRfMQqdYhCXbuFqdIUq2LFUvS6uKAOPj/AHLgtcWEY1SIoUmOkBVrAr8yq04mHGdniKV1do9Zwrbj2y3gnZX7y6BWlcsepntKVb4qDqwg6gsXmFYvO/SbWV1LvHiUdFdQF4Ijrr10QBAUfmAsC4CgY+kaE1BKDjMRhQ10mPOXiPRXMAALCLtmLYwBUwYCOiOm4jhMUUMS3THW+kJyTNhcO41lKuUA8biA1+9ZlNk/WFrZADDcw6NWF7RVSK6czfSPASqDVxKM+m4Dmv3AZIbWGN95hM6nW+8sBTBCq9Uc+s5mAIDlTGKlRkh58xjazZUFKYtsEdW5mweWGzMFgdSOpPExDnhMRUKL9JqcJv8AuUoYe06hXj4QQzOIyxRzHdV1hxBCXUCdlafTn3maUUMbSmaAvNxlqCukTOwtQBW2/aDk/Dr5mBiFfT2gFm5xMHVuoCi7leSVVrsb7RoAxGgj4qG2soDqavr39oy8mE69F4GNI6tJQGfEDIEy9O0HgmV0Rsv6wSzVyhmU0WoGKmzmCLul7X6xK5IArI1lUwmUIy1ZUWMwp0h0APb344jdsbjaARiZziBZA5lryC9ssIfmmWzrPPJwg6rlrGQHGIjpcQOs/ESLERbJAwYIGYNV35hDiXmY0ZYQBTlKhZpi2MrIRmcUwCLccCH/ABAVS5hT0lpLvcQKQWCF3CqGGz9o6riNgySCjC9j+pjBHxBz5nUINdpcDRKWLWZxXFhCWCzf5gRYwu9QuFRANQI67vEXnFYU2PW2fOkYXb5p+kaGKnEFbD7wihB4pSAyljeVIFC1KFGcxihrr89oAC+OlwK00xMWymCy0FMCBaOA/r/UqLT7ozrMhS49rTxKGoRRRJZKT3fETQOpFAMQDeotMbjACwNjVfxGjlGyasPy36lh9PaNJlsZXuoC3Eve0vGyXCnECrmb95QYYL0HTtqKi64+sKGTmdDJntFbb4+0pCfnSVrtL9ahMpFb9oTCCi1q5Q1At2EK7eDvB1gqEqAjKHaC1CbkHcSvv+pkL+pRdxAgioCw318S6FW73/LAwKZg4espAMVDqErURR3XKAuPoi4EIDxEUSYscXeuZlsN9pRMpRdsA7VDhlR+IVViZtzbE6ADitwWAPYgpq8S28a6qJchqOW4DQVBTOsxNWIqoVE6MCy7S32ZS3Qx5KSI4lCbS7ByzdZjhvdRrBUAYgUXsv8AUKgFv7Ry2Wyt1L9vwyo0+7LB5PzBQstByle2YR1NEOIIhhIYGIV5zQVIzfExdtSkMVTYMQxD+8KsQjHJ94yi++eJerbd9oqzglFL95kOwm4ZxX7lO03OTFRWbxFdMWzkYzBzLbDFQqYkcRqoxA1m4YAA8S1pYdcQLu3HSXG4W2TIqLN7kxSKcz/XmU04iv3T6FAKEwxXTX1nA4YBoaX6TEYEuyXIwUPClSnQ546R8DiY9Mw/fBi1sbDjBWNl1MWlyL94KLj2PPv/AJAyWp16Yvr0jYMVqbQc196hguIMpkdikv6QWkNaysTVdfzC7oebmfcGB3EvIiJdVAkLw/SUHeAGfjDYmIhAOY91iwWC5jk4jVSFfOf1EjSBVFZPzLxZK9JwMGxDiwHYQlVJTbEjMZPAW/dn9Qo6r69LlRlmWXRwrXZx9YycNP0qAc/jEGnMdv3mOrp+uJSoKggXvmJZlJjiA9SvvEwm0WtxDRs1maQxLnUpYvCy15cEU4NIlbNc+ZwiWx+CNVcpY7QWiBZwgtELJhDBKRUalEtQ69eOYjsiLe8qeioMAfKuCmiF7qDrUvoqJOolwRdVFQeu45AL2IUMeZmlYo/cslCF68S0dpYlg8wqDfh7Vn8SpL9meP1GqKePw/SU8RKke4lvrhaIpQ+NSwYC27szNbhGWNYjvMeEjO6Q0OV5/MJrwy/IxERZG2EgLG+Zc6H+xQDpMAdIbduNrDELeT8w8omAAvSIccQqphaYRREuLgmimLUBGaiV7cNZlukJqmYqsQmNcwKNs39oh1HTUQaNdhq9cedQzC25qGMhC3Km2Szdv9kNEt6MEK4gUmajrVhmbUs48wWgfeWc1GzPE/uIUXAAuamDTBExtNmAbQGCIixlwYYTKafpOMlSgcyxhXrI6R9hZSuNwBonFUUOCLZ2jUzggU5PtUbZjOWIq4sXvN0L2lrlqa/FYhVy6/F/SYlQ7c6CpbFUOOm+nWX2bqNoO8PqVOHKeIn6/wBlm6MFBrLDFrnrKYpuq3MG5dtuMB2zHYYrtuNBfeMLcR43FC4KBF28XODMQiGzbr2zGViiNLSYjO/nMWxzAqtECLEoI7ZkHXtA/wBBibxGG2mJ7D0WihT59IlqRi1E7HzrBryvSv4nKMoUzp4mV4mXK/BFXRLlbceErEVHc1klZEzFQlRu5U3Jn05joc/EpnHyZKmg5McwTk47xxEYrvDgmxYy8R2zT4nIzKjcso6yrdA117p+IDQZUsIQbRQ6slmEYmSGIGUt2Qcn2hA8ogGCiiVENUOtwYbhdXKgHWYF0kYcEalttmECtU9ZbI1Vb4i1CB3/AHKyioxYZjpCdopQGYIuUTB0TES+Ir72Zmlitv3MAyKg4YQjsxKGi/Os2qu4FiwnQH3/AIi8G5uWAXuHGZijsPM5GQOE/MQbygYCKYrsmbFQuoPC2DMQamg2KNPdbjYDPf6TUEDsJ18GYbNGq6Qs3p+fOYGTM6ypwO69RV57yu58MfOsG1CWB2j24/bFyjeHz2g1HEvhR1nWPu9+8LNEcLpIzTz88Q+Ly1iEgxzncBjETP0Iz3ygtTA5OLa7nBBLHiXzfnzmF9xOi+faLV/OXKPWIcIiqVfzxLPIyyixDZFFIgSBdzAZJk/eyiwr52lDU0oQsoSukdBLVj1g2hiKJkQIOZdKshCQByhIQE1lEoY5/wAZmaXMQO/5iYGN74Ikg5c+0LGQiXXENDrcSN1+8MU9YJotH7zAY95VjMyQtKzDAwsEXGlFYgVFcAR6n5lConCMYz5uGsDEuIk3JMzIBcDAmSkKcqFoVM7aKUuDRUaub+ahUSJrXUcC1n9Q1Tnv85llJruHJAMl3XHGf3KLFZ6tnb3gMSp8QB0PnETPLqr/AD+4gjcSnZHMtRfvk/E4SoW2VWytPp0hIT3ixrpBR2xVbzHRBU7TfMAxi24gTBamCSbhNPmZWwxS1Vmo4L2y6sI1IJdywbx3j0ez6xbIskVg746S6RmUPE4XLcAK6PExrLi4RJAPA57R7HE3Lj2lNFdHPlP4zGs78GvZ3BAdNdPfmWqlIC3fMImD1xqHeAKrBqJUJiIpo3+YGcdo55K7v6gUHzzNsQ35Uv5y7hu3oxe0dOX3g1UEstBp30ZdLLXn9QJAlKukcGilESz5jwuafmVQ7wDKVmoGG0EBdmWaNSoSVtFjLmN/NymXA5fPwmF+kGBsfrEYn18dJUxWxlamRIhg3At3AcTCYAizRDCOT6wc5AFHb5uV6cQ2GK2TejS+Dn9RB3hzxCrNV9tQ4KajHAr9xdilqFkQG5akiCBKyU1be3ETt/sZVyraE4ahNqj8PqzXFFj0IjlGgtwcJZW5oIB4feOhApr4gsF9oQhx0/mExhtMj5jAibA0y3TU5gW1AY6JXl4XpG1AY/u74lEZHfmJSnMeZ6Ry1wIzKN8+0PM6wQOl4sPnWWUMQQu78zJ0wlALIa6Q5cQ0wFPeWDy+fSYlq00ysTJdDnt+7gaZkeIEH47wytIhKh2dt9IIXpbz1/qA4ND8wdC37v4iPIPh/iIlCI5zNVmXj7NfiAcGGWJaRQlyoVGeiSigFkXcJVOYGl1CAK/WUGDHVqUGoEkZ7yxS/L8YspSXvO41dKooGnnZ9JcnXkhg6IIH9JQX/X6gHMFXG/pLaFR0IVFaGZX4uHshRWLYpgUgLGOikyQhQFGYTD2gC+K/cvbm6/cTQjLMWFxhOuUKSvA/xAjn6P8AEVll1A6zzJAYFyjHWfxWweHoDm7kZGt8S5LZhO7xLYzzw9PEsqRt8U17/wAQxsRy/omS5uO75SwTqlRbNcwA8UQnLFQAiAuL+0vsUX50jgMaxsPeUAC6lBHo/qH9wgCJ3RBRMrsOwIgFZcLmbvkrEFNOdxmcZmZWvEto38wcYmYsUWlC2cMzKEK2QixLI9zTrzHGAWONQjNTNuGN3TyP7lyo+eYxExuxCEc1URpwfowznvO/SJbML12olEDEcTeoY0JWHmappGo1ErGYq5I3drM8ckNaKdfSHgbhWJQfSbxSjsStYZcFMxSxDNksrUqgsQHDBgJegBhwRGzHN71ErEbjkMWNjMixQzCPYzCkGYgW/wBxY198KocMVKWRLOKzL04ogmMaK4c8RtlV0+HpLGyvd/kNbA13iJbYRHc0UE0v5gSl3aQGgWdbg3vhMVw+CHmpaun1/uUyQYDqGp6QbIr+5preH9TfbQlc6jtRp2QoYtKFS7HNxCQzU1mUUN6xKuI1Vn1hJbL3GJUEaIHmUuCXkhrAAUE9RAFo3AVSu0ob1jau4fNV2489Iwlfz7xi0jtPnEdZ056eesapX8cQfL6RFmVXeJ9qU9vEAZpL46Rg2j59I1DCqvmsc/NeiKMW/wBS4o8NTQNzB0sf1EAz1SlsAPECTdhjxH7gYaR0WsjpmJVqEDzEFh3l/wDEx8/UBypYUatzKE0St8yrlZUWQMQEeYIVKl7TqcS1/B16Qs4uMV39SWN4fWOW8JkAImqBFfHzWWBdCBYxgSsUJWSBAGLgwVHzmBcW8QVlVQ5fQ8fzLaK3XXmdREFCwK+UFOqFXeKgmu/aDesIal9IjQuI5k9YA64sgh4tdZW79eJgu5Ed6WIYugqAIcfSC6kVog2JSJHt7yq4VEXxGo4/mHRKuaPWu2r3MQDcau5M0Mw34D72yiUyywqgMsZDUa5gc8rDMhPsRFjFYcEYmA7Pn+dYgXkaibVqolxrmagbPv7y81zGwiA2Tb+PneAB7mKHR/JLCpnneuvvLZUVlYsElsxhIAKjREIqBWCGlLjOv5lmDznp0Iwj1jDrRLDOIjZG3lX7iWXEFs2siyOY7kGNupY84YGQcE0WynSN2BB4Llga6RnBm/jHBebHH9BMidjS9HnziGDuH18yixNmCpb/ADBAF9fMwycywnS7itGaiyjELS38x3iEm9V3+x0jGtVAU1DT8MJ22de8ti5X6hu46dYQOsl0iClfSaBR81HBTCUhMKJAIVD50mT9SEdMurmCFhN54DrAX0gVuWRCKlzAwDf11KtalC5xiS1M1M/gNnsamMRg2bhMwPf+p3QnHXiEBaZgLRqa4ZalPnu/2+fmYReX8wnzM/2S6efnGojoXOJ4kgTLyjYOnJ06b1N53LgxJsQvx/saCxgbjDBwgGTCE0qGGKhKJnaNsvExDcGritIBBqsxthr58YAYz6fjjzNyFLWiF52gUMTgZisDRZT2E0lUYS1r8fSKoPAmSeiXB4lrAAsW5lprE31fPHtUWQU8veuYOVnt/cQI2jq5lwy8UdbY7Q1ftGDtIuE1VY7/AHjlRxMpVUITricJWx7f7KU7ioYFmlMz3P57So7v6hrVPyoQK3n338zHrBdHpHU/SLawGEHDQ7agLYpv4Stvch01wwkBom7mFpRFG7gstCF7sbtg6fzKWa+a/mWKxeDrAunav7itYcNf3KIrAW4rjBYsOsfHGvGZToSxmNMWKmiNzrHvKTh4IEq1KKcVESmk0ill2Zi67hg2LiCZCMGAp5faWFQUu9ELtnP7QJaS0RzBYvE1jLCGwbmd7jAYOCpXrg+3oApTqD5IaQipV5lxCOa9nSwmEtx7ywsiC3MZ3JS5YkAYzA67/ctoJrr/ALBa9qVX9y+ohMsDcZUx/dENVEpMCn5jrAoFSgFxLtTiNsgxNfcxrHaIadMNCn9ysaU/qaQdH8SwBYafMAVvM3e0saTBiuZ1hK8C/OOZlLLLKdRytAfZBbdPdYgtjm7ywbOEGXDB58QBXEJRF36nmNbsXzxAynzET0TGJllhEfoTLE+38yjFw3CZ06QGj7J/EdYvY/uKMBU1qTCmWM2rXNfLgSWqa5xTGDeJLPjEtXOXMARuHXmPU5hwCK2VBKDXmGeTKHgmjEzqkVgIXoMLcxnIMDgJyowqGgsr1YTcRKqZl+qi6I4U+8lYIqyQlIKCvR90R19CbI9ZZqNn5lWhG3g9AnuQLGukwxhHzfuIzOkOUcVOkaqTX5iW1+Khk1AFCfZelp8MbaIQsxwmS8RM5O5s+czc8E/SfdxNbist9FuiYr1gxmZn3DAoF7/UMNEZ93E33thAEJZ5mvohqM19Od/Q/c4PWCUnSfbS0ufMM6CyfmbwlchEVEahZ9sxKL4/ia5lHTwmr6MqBcJgR36AF+JjRHBuaXE+3CMp2cx0wjnKZE//xAApEQEAAgICAQMEAgMBAQAAAAABABEhMUFRYRBxgZGhwfAgsTDR4fFA/9oACAECAQE/EBAovmbKKlVq4AHVczMg9jL9ZWpQUK5siiIrTLipNkyDQ0HQrhoVCzsXARbO4nzInsgNAkGhfvKOx8QPDuPekxKErHkeIqwjMc0VY5lmUIjdqLFX7MRDhCivMg/AuUy2a7iGkQKbXcQZuXmyKKRuwXFwpIiu68ziU31DRw17QChVV4iBq1idMXJg7mCzLLJUUJVUAg43ytTIzO4pAgC0BqPFsNlSUpOoGy1EcrKFbCjLebJbqRJQxoLiaWE24JZhfeFFiX7wIHDKBJWQTGqXyQgPtMqB1FTY+0QbFK1KS47oEvBC2pZT1j6CmVtTqZYseIapT9+sNUggX8S5L3mcTE5OIMFXBUsczCK3EvNfYYbuj4YNQLHHI8xIqMx8wxYhteKJVWYuEBYEto4lhbI3eAlxhVifvEtBxUTcshDah9WNzcwhoLdQw7TBia8IRgItBv8Aef1LR0fhBLMoDjqZCXIK+Ib2gs7dVzAxsw2kqMubOI6ElwgAfZeIp0IFf+49niI5QrEr/aZqIs4QbrhEZWu4PtjFm5mjnlg7jhUiWkx2Cym8TBr+00FQQGVwqpZI9StzAg2GnURsx1AVb9TIMv5ii62ADlLEhUEpWDI7ja1DYt5qOX8IbYo3RqYILsmclsYeCALFCheO2gWdyOGWDQf3GhXDmVrG+pkGUAA5L/54jhM519EQDAlECmo21xdENHbEd6QuDqN05biyVxLjFPzctpKFJ0AZz+/M+AhNfMwXv7RfwNS1jELoiAMyx0LxGAA/9lBS0IqhzMWYCEADMvewPtOEWsf9jYFlBmIQzZIYBe87I22RHguAAMqFQLNS5UZmZYYVVyT5jBPbLOJuZnEYBnEvGqo3MWgJbz4/uIo5ZhUqClfUrkRHGFmE1F65lxtaS0t3A1hTHubIo4lYtbuu4WtrF5Th6hZGzuPChDQISNcx2WbOVxFbgb8y8RBDaY08EeQQaMu0eL/qVBzIhgrmKogy/wDkI7/mD1kufCwhgRsCmBozE3vU5giroFH1iAPNR5Ro1LCmDk3FVhpxqJoFExp7R13cAgthsVK+1T6hkSxL3vqItREqDOYFi2ftGp36SMO5VT4SxZCeBDUpjUV2wbuMG+OohSSwFTHJYwSVDL0OiIWO5tMdhMTzhJXLjfHMMXYcdVHEVbiSCLgR0EI+VGAtJvRqK0MfyTAkpUl14X6SyZx/XmAMJ5gMGNpBsjqplbKr5ih0c/MGdI8KZmOXUujFwJbTZFlqL+WagBLt7giG5yTI95TjHDNk2sSzTaS3PMKGCNoBgnJCVFxgtLH9qg7pOYDDRGvXPcvQ9otAlKMrZfMLwu5c23BCYn9YWYxlulmElLKgKpK6iwMv7iALjwuoJRwfEeHB+5iqBjxEWGFVnUW3ZAtELgHVYlClbJfLESV1CoDxGrMq8qisl7gLFT9YAFjC1pgBFbRnCOcvMAUUCQTj6udHntmBNI6UXCMIbOo1Q+8VNNEY+oUyGOnz/cHM+iKEMsYUXAGcsD/zlQLivPiNF8w7Nsi4EYi7Y2KVA0K4UHpeUDPmEDuWKhHiyAVRkomiWR1qP0mGOIZUF06jrkr3IdMD4uPA/SWv9lTWNy2DMglmUJ8KuiA7xi1wReYV8RdQqFcVgHPcGQSxmUYEZPxURGOZmY7r2MXxlyZvhiiqDEFBUGNbiIHUBODGpXPcVrSVm99QxZQeLfmcMYgVrLWdp1kMM35nhLFJo5iWu7NIDDXBmF3iXiScJjQGI7IIhgEjGxM7MZdqZgY73JVZSYKZSzWYNDuhxAgJ4axGXbzORCgLTCIueY4lLcx4e8HsMy/CH5ibdExhqEsOYdLhMBEFgMEuRiCdxe0oojohdzepBdK+qgpcCHsy4PKZ5dRsVuKd/pLjYT4lhzM2HNRYLRFWq+5RmpZqiG7NMNXu7jDbLTVofehHjE0uzuOhg18SpFsaISufMJoCRJwMEVBYxUqYRTSFZUfIuYgnsSo5PeDw/dOV98Otp9IVGgzHIhpRQLgHEZlYYODCGIqFP+/SUyHlM9WcTJYMZg3+3AIJqTxKYa7mOjtAgm873MW21K3hHaUeOSIV8moomWBInZgOhQQoOPSACziNRFH3j3E/dMhdfiMskphAIWNwZ0/eJTT3KCpVFcQbPSCSYrnuM4sPUwYJjMolGkIWiIsDqWYN6rr2heS8RNENDAa3GDpEIKjlpnUN2XXM40lSVuVcJpXwCNUhUipfBIBL6lwWoG0alVd/X8QXLv4mCGGYEwU3Kx7ZRVlgoqG95zAa5IELYhChKiA9EV5CCJmfWBeIV9E75QmK3cxMdxLfMqgWf3GI0QdhudEswLFkuTLUe1p/2M16zFc4lNsVA9aPvCEGmBUuzcvgYhauOKEglxrxGzOoilydRKLcL/7FAGoEZIrUV4hpBBK+V/TEZsBWf+RI0zYAougCvr8xCE0yIgyykveAqxGMWqdRvWoilPz7+YizmodFKmXtQBco0ZQWqzFBod41HSn0EhTEG0NhyuG0TODBEeiUwuSmIMDhVHpdxidLT4zzBG8XxByk0Jl6zKjW3ctvPcNsZ8fiWMJNl9QSAQZbTVniECBmlErWo8SBrqM4GSCGzjua3uInyhyi2leZqMYpVW6gqbfmU4loFEePxEsEzvDRXuKlC0dSxDV8QvCLiIBRnmGIsHMcPOIiaOIfYEISoyR0XSLoY7iPa3SWK5qdKJjJOJ7iUrBbz/2NFNTA14g2bgtGESUVorjmGvT8RpaomaIo7GCrV8SuPaWYmpB8XbAIMvxDNzLIf1Mva/qUCzEOqKxfiG1t4RdLg/qDcMUiMx03iCq4e48xKJlSwRF7OaBgQ8pW0przGtnvNs8yqkFCijLEWFRfUKAuUwKfcjt241EX5hmTjLXTBXWptutPI7lyQ6ObjBvEFwxABRTBWuIIMUIMjQGJAkzGghe0EgWuJ2sqqKg0oitthQSmUYGpcZiK5Y52S6KWylvmWfOLVsiwCbWMqMAa94dojKKX+YFp1UCVzF6jgqvzDKGoULkS3YhymYVv5jdffNFX6JjOvvMAE1LBprUAaDEmMVLQtKn2iMymVVVQicqrurgjYmYM36bQ7ZeXf4j+1koaoAowNSC45l1vD0y1TqZIa+sFR9yaHUAsuJaxGsm4Z8uoy5L8RAvJg8sZjMpUoFW2GBjmGZrAhyNVCsAxLwS4hBFR4L6jFHF2jDPUvYUDzM/KZmUliDqNXbeszhsMsx7SofeAl9Q+rcsZCWkszcAjkjDjKEZyEQUOPEyw5lvugILegtZWHXm/mMBTO9YihIIwwrb2l0m11BTpL2vmCNr6ckoKkZBDMUNkCEdQMxe2oBIt5lUGKvtElyoKnFMhii0BpGMKDMVASoPYgHMji1zKoqEJtG9xUAO0bsVNGFbgK6QoW3CqliCrMtiONEzXiDQvMKxNSzzLGyGwTE5P7lZTbHLG4GLIuVBDPpfcpGQiO5jlIBija1OTGNeIosPYJQdxNslwojKY4l1Vtg1qIVbiNhmKaIAXiMMIOg1fEu1uJ7YBUUDbPES8rzCwGveL8KP4BLClEqGHYgAIWwTMUixn6I2VNzKs/wBgj2KIYYmKqRjYVGYJzKjJmrMCNqJnby9RQLf2I8QfcjDX9RVwBVioDRcdBFQKxBBvUvau0GxhKE+7GcP3xXq/vGrf9pY1NJqW0Ww7xLuVKziCmCGdxxxLmY5jELDidiWu4DgYpKHDMmrgtVB3mDoRDEVlxwKgzhmUHExbComsxMCmNWItqEdtw3ImyBTtblPi5gUSyQuYiyRXFwmjLEs8sPRgAC4QNJiRuoibjZyS44mW4tA0mG1YFu4OXcscswBA9lxXpAyoYHigojmFNE5LuHfNpKm4r6IJiXcy6xgVcvXRAuWeSjfdxbmW7YralDRjAzbgfMEVGbLBmmDcLAoVxTmJlFuC2BFCUpMqDeWBJpLW4KqHEwUQHMo3FpUGZYmsyxggxQpgHUsu55RpqLdkD1CC659EFNkvxLS5cI62szVgXuYu7lNXMl3MlqPMSpsmSBZvKFd5ZzFcMLSjHiYeUyzLkv1KEExBHHoXFxfMBz3AYAyoWRKhQ9yiwomYG50EDucsHc8RTKqhL2yko6iFQBVRRiZlIkDEb4goplrqNOYvDG7ZHuJ2ieePBMFTwxCPREYIZls4fzDsijmXg0szpIjxCvUpNROZOtQOkehMNxbiAS0g01EMxRAsy5hWKMQyzLGFLKtxMILFS7lmyO64IcxpaueD0L0I7ipL1BhH7lUG7JmmJS3OnBYtqI8x7oMlkPT1sV6Yj0IhwS8imL9BC7MWRXmF9stN492OovTeOeL7zBr7xTiV8RSDlPuSnFfeZGWNzNxXOIPZKGGUSWQbUruAi0ba9bKIjeXNS2FxDmPBAinmDqE5RpFNQVRSY9Ieovlg+5YhTMtcrslHcQGINlwhyekzHLQfEvF8wlgbsnEk6CFuJhslIlhKvco5lZQiFlxAhAQDqIdRbNSnpHcYgwg3HpV4gHMTqIYgdzzJsRk1QlVLPQyT2zLiW6lOoy8kR3KxhgjDUXXpJwXJG5LS09seHpQysTMdyjKSkDGQRSVWpUDMF9BLASkSykrUPUY5lTKVgCFo19FZQlEogGJUA5iOJXiXlqg4uXlpeDjASVhIYEYcr3hVR6mo5Imow+kwoEqxkHUoSkyhndT2QhPPogyqlSj0Cz+F+ZcZUqVKiSpSUlJQzwegyrK+lREwPMpKMoSkQynpUlJX0VgSIuJg1AShqNvRSUlZVlIhhJLKEYqV9SvRSUSiASpRGBwncSSK08Q1cqV6URDKSkqUlOpSUSoxTknb1SVUolHEtElRAJVY9MP+KpUqVKlSpUqblSpUqVKlSvSoFxivSpUqVKletHpUqVK9KlV6P8a9LSqjKobZieYGFQIlelH+Opr/ACcVKdypSOgQFBloFR36qJX+ULlfzqJ/BiAdSs/wP8KlVKx/I3H1qV6VLep1HRcCiUrRY+ExZVetJRKiV6h/FTFj0q/8B4pg/wAAw1/Ax6pfq8SvXMP8JEuJX8KiFfwS/Wj/ADsSPKBqncSyVSeJp9U9RIF/4TYSo7/kqJZaDcfEzKf/AL7l+t05lncsZ2Skyigxuc9wTIjjcsntCuZi/wDFbE1HQe8f3Q2CC5af5VDf8fab3LJYRZhDMZWL/hkwxwKuB/Con8BUqv8AEF+hKgX6Ehme8eBiEHauFOvSybJg2hLHUtWYiKixaoLMSE4oBhHeU+010BSOQJVsalG7+8EWn7ylYy41oOZYCcwLmoeFNgkr0cZgDtlmhjkFrOpCj2ipPMVSMpbmv+FYv0wy6lRlnQ+gGFrMCA94oKftF5RMgVQYaGbQgUTacelMSWQ2S2KpUrLv+GZr+VSvSiIXiV6VBKlkyNMyxN4Jk3MJAmAvEUSWCwNVkxBI1YpsQe7s9pXmC4TLi3fUCDfXNSiNQNTiZXwyg2iDQOOoO+vMTiZlVsh2Yi8oA2NRqbSyrdH9ymZ9INtK8y4uRGcR7RAsxLqQYtl4hFA4nWJXUJiLFfclqCNVQShjbKhxc3DMusTQy4d067izBIY1ZKRFpwksKXhqxHwdS1b8MxK2YGAYMDiFzuGfRQNy4MVSpTiA6hkRCMR/hWjcECVf4YZOmKFtxepxDXrhBcO+h6gbhwhEDg9PtmFK7QyVb5lOxBhpa9S+AiS1qCjKM65mClZEi9Rl4j1vcBUcw3avPUqD5JTo5i0Z3zLLgmso12JLAUzIEs5zUdgDEMMSjQIxrG0KCc/EhMG2oC1KiMGwM3ONOohZfiXBipZnMLltS+o1E8JUg3cEbZOIHdREmjzBF/SjFqAhi2zuNULPGpevM7l4FMQjqYFT5uMdwALDxE4klwo97SpF7QxG+r4iRFONzGgwTMKbZizLkINeExWEc5w0VkZmS4Z5QaKyzIuogdJfiIVlCYlQJhP2YzS+kHFRBMjRQ1h6jjVfSGJB7gMiWaGNdw/QYL0a4hWuNv8Ayb+wxQHJNkcJ3BD3mVVuGIIfZBAGJilv4lNGF0YaI9wqxiIHN4j6ln7qIMyHbwyhV5mUKuBoW+kwBxLOYSCC1e+4Vw/WCN6epeljmOLA8xZtUJTUNyXZo7/r/cKrtqZlcRhEyQ9BVRWyWSmjL2BAy4RmTjnaipkqZqGB4IFDEoiSV5RqIyF+yExT2gpDmByI5jBlhBXgjpVRe49U5cVlLaYFTz4lQi2aSuZeusPMxBDesjm2iJKnqW1TmCN7Ki/2EYghOWJ0bMVjceJmqsQZSWNAWuByRFTLUSIOYy5zDB1xKZdI2X92YtSY2rY1qqvMBYYyzD6E40lALeGKlPEv0477i6lXBZWOnEq9RXW9SkS9S4Q6TCmSmJbC8fbuItTbEl/MCK5ijOVUf+xsWKeJtNsd4dMVTyQ3U93UYtMwKeRMB2I62PmIVZ/2BbDiXBZuKFxujMIPDzGFBViTU03MQ0gCBZrEopoy4fDLhFj0JDKVCC2R94WQfnmbXXcobEQEAth3xEalHM9jCGm8yjYR9YBWGNpSwcwoeHqI4cwILNYl154hsBeYdseppEBV1Ec116hZtlgQFBqIxVSybhkhx1FWhKR3v7Qbq1E2TjUwbUoebVN4hjPJ4AQE1o6lwGR7RaHFLTBEDUtgqP7l1tqWA6PUDIcD8TccSyt459yOm12iRxHPcDcMY1lcVFeMXNGDR4uAV01UQG6hXHprOKjAWWPZXWpczAKiabQF3Bj4gXN5lJXLD8T9uZcGu5kwDxM7czTgZVxtGUrvnx5iXotnDEYR7JUDXZiDm5gYiALeZm1N69ogisIT2UQxJVfesfSA0sRyYcwwP7RZeSIKSwGWy8xGchWGpeig+8Jiu+f3mXRNlHERkA9qVFU4wDGVJ7w+leYQvFwiP/txT7EZDCyyjiG88RZgSg5oZYsQdLGC7KlbbQEtFiwrFn5jAjzNSr/cs4Dqe/sDW0zk6gpF0AiBBT0LnqFBW5f4PzLnDWoofvnzDLbOMcTOCpSaSyBh3DQiNzEygxm8TA9IDPVfkipSNGqziUZ7YBqn+4V9Tce2EDa+Y2FXDOKqIZIo3EJeov2zKkigAvLLMFhcSiiQLmcE3Ha3JKVcgtn1zgSO4w6lgFZjexzuYOEByy01QzdJ5mTMgi4RILzEaRrmJQjiowSiWn71FNLYToKXCZbTDCsv9AjTkmo1iANHELm7h59pYDrlFpT95VYcVEIzDOYu4paOkIbpFRvjmNpgvRmLmE7mwD5gECE+CIAiRZmeIrlvHtGovdiBSAESxI4QAcQFR8RFGFR1bi7UOf396hZ4luW/Mox3BjgIhciUkiKTa3MaYYiPqHaYuAoNSnbmUqQXAlyr5lvyj6w1vf3l0GjGt3+s7PLxCbGCpRu+qleZbimtYiVC8xdDVXK2EqYLYeYAQiJ7EuVYd/GczaDFdiMDGYFAOYJ08794VUHklgobPMPTA0bCfeVFK5rsyhpMBeYoc0y1iVflEVUYleO0qgCvMLUBED5E2VfMQIj4iTFk2ZbGg0Y/eYpaCdyplpsm/BgQBRzLESwejCutBzzE8/1qUxxKwmOoEa9S3NC4rPbmLp8uZbNiGDUSjQsrC1N0QjIam1cizksWwkxAhhQmAtVcZt+7EF2ZWldQXMzNplCHUGxg6Y0uD7wPJR9JTV+sUM1LSjKWNVykBuFRjC7tIIWgEXHPxGevUMmzxAubhoZqHY39I0745gOlzSG4JllLVua4gT0mPBLhABAMrBKG2Yh0wQr9XAVwLj8jmEAx6ERkljR3UFQ2hQozLPILlIe8y3a5Y2MwvxBli5Va1EujUqYCZL5mKzxFSI+zEBcbYCwcrN5mUvCNYg8NtywQKacZlC0lTscIweWTUQHkhwnzKSvP7x4HtmIRsrEMhMTzFzpcuvEoaVAYNwXjnWIqzR8QGyILCeYflzIU5lKgwnG5jBeTmIENOYubl4FHiC+JH1eZuSGFI5gm0RyCmFFMwa3lIvYM39ZfRdYhkbPcQIWYSNoNTGpRZLAdvxMuz7JQammhMC2IAXjUTk1QBS7inC8Txw1g5iKaUqBZNNRgtXEBVj94ktxqjhC/vLcBfcSMUjcmN1TuA8viDNDC6DWYAc3z9ZebxrX4x06hABECMhEgWxSBM3ZEHSvMREdV+IUMwOClFGxhRHglJDS+YyToDvc2JuVuJflDKqglu1QjDUBeYZg1f2jwYOqrEpCjRi5ai1n7uMTShZUS1ALa4N/LBT3Q+5KIFqWxbiHKgPTZ3GWGfPUTKsCfQVPnoDQlanhBiiBjllwj4mGqK3FnYXLLJF2aZezGDXMUxMq3/wAgkEFDEIAh+a2wo51HaS5geWk1F3u8H4idP/caY2h1cQwDD+YTGblDDqJczzLvFJY51K4cIhd1TeXj8QNaZlrViWTY/dxegxBeb8SvYVr8/aW8Rr8zIB9IPLWQrAIoSqpjTpDaC4d0uoK5JWiOI0JnEDAbiV1glGQ/VIs1rUcWKNyhrFR4Pc32Xb/eY4FxMt0vdOoEKoiM2QkD39ota9zIK7gcvCXcIlARrgdxDD5S77oFCOIUhX3hZfbkmp7yzfC8RGjH5j+VM7ncpH3wiVlcGU5p+YDsJhJuHgdQHfJWH4ixO/RqW65lBRi6ixZhalljr7kYfhHRUSLwS6XFC9XASjE7cQND++0pVksVIGz6oAqsVG6gplLuLMcBLCIwmo6GMsa3HcEYHtDYpvmG45gRHRCqhRKpV6mQruILOsQ8VuMR1VEd4pr6QDp9oEvLmUArEON6mV7P6mjyYA1q2ZhYgio2JMEpgkEBMJA1Yu7GVhQx3BFGUuVHKtijFgyJVWLwG0yEv+IikyyktIT2RMkCYFwrDwwsFcMCIct/iKOYEMNtx7qqKKyXCBAJjtCCK2nsHzEc/sP7jdyH78Sq0QEjlQKqiLhzLxW33QlTL5mN5i44FxvMJT4hSLuG1v5ld0zcsVNSo2SDYQUBBQ4EfDB4VK1jEGZY9yV36qEAb1DkTUuqF7NQClYChk94LTxDLEsxhGoIFQuFL4BgzBmBVKlAFxCgmvNYlxQLqCQFolN0YO4bmWYmwI0g2RnjqK9XiZ5X4rUzmDo6PxBb92IAYLo8GXS4DiqIBh4TcfxlJhYpBJhIBLGQovctUSAO+FwIs117QSE4YnvfiAYgJtLGGhv91Apa8x67obshaWZlIGb7xGeXs3HG2l9Kq/MYcQTNb7jFDctlNMJPKFyiFa5lgI1CALDqGfg94KpKlCy1RBAS1yhtSZSsxFRNjELyliwi1Y+0Xoue8sWr3BYOo3EEYFoT/qJaCy4vGiHMZMMjnwwarYK2MEVgY3CIV1FhGmUFG2EzPtcAdvzMgCQydKhMollVlPCmpQofqo/irge1GKZalChAvDKY6WqJJLoJlXd0ILpEP9YCtAckFtwJYRE7qcSMTXWvqY479j/cMZjHKTkuNUqBg4lY+bZQMojYYwrimEqFChXoapOoYUg41EwCiYVKlYbIZS0guBelQANDBQEqIRo4ga+sIoiRRbsnH2jExTMMp7RKbsz4hFSs2T+k+ISEdB2ZZwaiz6DU8SqnSAY0Y/cwLEzDoXJArBhPUN48LNyDn3QOpBLL/EXISqbziHIZRe4zgsli7WPWYUfMGNxkvC5lmGAPeFIN+JkPPUoU4ZVAKXmZqW1AaExM0oO4dyM4ZWAiPjDZ2VDYJq4d1DiACipBBVyyLAHihaGWVRkNywrKFjG4gNGpRq3FDViVXAgwVLiuOy4y3gyogcZePFkJoMNoYnmzHbpauA5/MEoBM1sRReyWF0WI3xYQqtQvFKXE4YiF5JdWCUGoZaRNL5gaBuBF2gALL2qLc++X9+I1xtlKXmU0xwvFmpwozBEeX7uHAm9lnMvRT5mXsiqHcNFnGo6A/EfhEs8a4dlZ762TLDHiApLmowXqn601Kr1UQLyRQyeuIqnH3iI7WzJYbHmNzlnf9p/UWYaT7cI0xeIdbCdlH9wk5cy0CPUwRAUbrqA6qvvFoMu+JvpL5xecItruIHvKACjxLtmVyjRZ5zHV6x18ImIH71AaN/eWeDUFm0oElKwlFViG7OIP3mpld/0lqPiCWucxOg2QljGU6QWmh4xiEywMCWbqe0yFvepiKdQFFx9pagxAyKQ0T2ReMDFavzM0rb+35jCdwEKolaioks4pjEn1mRcaquIUwIAsyxBiBCyJF1uUA0gWJbH7cBKvh+fzKbaoi6Zq5IsuhE5rqWxxHH77hk6Q0a3xB0ZOJZbXKKu4qwUT2RzxTmeQhAILb4jPob/1AqMruUG1/wBmtPBzvEqjtg6RZPJMzXBQaVlUhux3Dv0hl6S25r44hcBv3mK0l67mWGJQ6i/vWotWYSXDORABopNVCabOPaHmFsRQCq13HtGV7yuSvvD6k03CXvMzv4mYuL1iygttSi9S/wBuEwLnfj9+IgBsdxJUpjyohlVVCSmIStCkTplUbk0xNqxCwfHzuA64mhpGF2NKP94dPZ+ZXZly7LgYapmz8yxvD7zL9iIIagGHMp4HAdMaNkpbLnErEQB5RiQloXF595isQSowUoqUbBjZ/ogi1blnUypf0wKyRXSGYOoklBtiwYIEhQe8EW4FXytykFnJ/wBg9tGF6pIKaSuwL4hk7oO91/uKzIJrDJcOrZQQDUsShBvMxKbXbORqIEADI6DzCJ7Z9IsPKBsrEH3QwwpduksNWTEtPcEFz/cddMWtGupcZKm0XHcKlyEZMS9QtRbiqYEuDaV+KFyJe4jCSpTpuoFKywNsi/WJd66jNeCyJaOEyjGasozAvrllJDXNFBbDqU2ZxFTHUsTSpiTMSxA87PzLrmILXiKb4hzdn5ilmuqiXcwjZM1vKGtfd5qWi5wLKRSGkBuMPeIsZkDDCCpgsEXTvuCKQd4LBWX8T8wIKlDqJXZLDJnxNkWSpc8Fw1zQtsbaOBqZ0EV7ljbBxKcKHZJCAq5Tq2LqHHUqLP8AkN24SF0BmTyxUyHUKDImEKMDkEVysjuDEbv/AFNcDqMiiKzSpkHEJ31NAiCBDOYRlyYwFwd6jfghAXTAHEtbniMopXxEF0zE8Si7ELiAK5uKhPumkWYyjeAltymTi8RpvkxP+r/8iOxcRM0qFbYrkqpazKEHQOpc2SUJBYtMxiS9xCjRdGoN2WamWEihK7dWkegbIV0cMPwMMbtCCIO1bEUBHlUvYIU9mOZAOYhXGpmrEQXRCbCJVmKm33lOTKLvDcYF5utywXb4jTwXMRMQqLlghmfv3iDCO54dBgRdHhjgXPNyigDXESyzAHdx5pb3EUdvEdul/SCxqG4gRcUP7shVjiUup5gtf0TJsagBeaIfTCBYuEKj3ljvGWVzkfmEVwc0EI2j1SVSAW/qxBb/ALpSIWFhS9dsHozB1c+02jHU5kOuu4BGiJ0Ztb46iSMHvMJeyJF6YQs9RAtSv5ozLDLB2bYX9f1NJjV1LtmbiAEzFkSOijMW2oTa4yFxEje4/f8AkXfn9StG2YQckqp1DILLhWaIHQTPYiJG4lsfpqBiquJY7qYverDmyMUzq5hTcRcjPx8Qgh9e4aiU6gIcIKurcEF2+ZmTMFlOtLLPsOsRaBXcOPmJzqOImEKUPrNh6QN+kNi4HAtS444lnF/iWCczEctysSnqOpcU76jVTJcaq1BaCxczPcS+X9zGawH4g41biqfaLfGZZG2eZuM3EL9cOc5icc4iA6uJQ2fjMZ0VGiAtnEeuA2wRdiohoTcrFwknxNWEYImtiOV8QEF47mSYCBLc1REuBX08wgbXNVM9ymfiLwzCDS5ZTeJYDBVZ+ZUJr9+zCzI1sTAoQWYr6+8DhJT6H+pg03nLGaebqGgigpw8xVmE+YUAeQJYDDhu8RBeE/MVZBf6gMFkG01lmYdEyKN1j2h2JNm9xq6jmOTH98Y9KpZuS8+0OgrylDvqMdNzz2EIOz7dxcqDaToIgEdktRuf9ynMEd28QjOv3mWhMypWe4SiAokVLLQm9ebnz7S4xUQ67hXsJeAQc/MJ2JGE5eZR4dr7wKjfJiyQVphPnMqDDv4jcHslU0QgkIMPoDp5jBLuEYRgXWiWwx3cUC9kaKX9MsmpqEQK794GIgEoQqbYn7qKjwm2OQcEpdcRzatYiljU1Bhdkv7F+OoUX1mJLYNr2lVDiAGUjHFVYhSgsPt8Rpjb+/aNLWn7TIDcQMxGLw6lBwblMtaf6jETApRLMsHYMuLbZ1VBS7SqVxcRT5wA9H5mUu4w0Yr6fv5gBSNo+ZTOukiOQJemIsPO4Cwr24hYepbpYmpVZjCCvTDEFVK1C2i9QYL9IZ0gcLxKIlB0xdpXBF7T2KiLb5lRRSb68pwsVYRbjEIOyVJzLZ1iEjLBT+JZwikCqYndtYAvfxAyGEYRq4j9omyBCuUqH39oNaylO/8AkVpDj5jMksoVxIcuaiB0j9Z0CD4rTiJA0Ii82MWIoKSv1mDqYgXZEK+iF8EwhfzHkYjvCmAadHmcQIsOnvCbfvEEeIXA5xCsXBqc4lQzCfSApNv/AJMOn/UFXiKCVCCQSY06hHeR/qMrRjiA0VlkULCbLhE8wsaXVwABTAD5xrhKhtnh+YlXJHXD8TnCAiazCQGNGNYy8kU5bTTBUQHEq7a8VB0muOLhsLITzlNFxrtrGgwTXKgtExF1aYFYz74mPBT7yrPLwy7KXAAqE3dolRf7mIf1/wCoG+HiZOlSvVpGVZRkYqmRKgiy1xbgXZ8wlDKCj4hdymhSVNGzIOPvMyYpmIg7Rhei82SvmWs1LNETrxLAlJT0lvQjTC2FkaUn0nRRCzYwzbEYJx9Ml33BXLjwmQejJ3KEX3AV94RzgLx2ZxKjif3RpLAp5ib+I1NvDH2EAGiJFTM6xN/MRdvMM5T7qHJn3h+YSvx+YlAay/36k3RcfSbPmaxk/iUdQDOIBiEnfGAYIhc+wn2UBf2mBM/ZgGIisIAQI2iC/gjHaK4Ia+cAJ7nB6iflmQPf5ja+PxMgXdxhhjyI7Jj+zBdXMWeg090NvefeP4jQZ4Ylb4m/sibxIK7gKJAXAUlHyxoZaS4RVxwKTtRs/8QAJhABAQADAAICAgIDAQEBAAAAAREAITFBUWFxgZGhscHR8OHxEP/aAAgBAQABPxACaHcB7J04zXN49cIgF027P84zMewU9v7x/NI2AJ7EdMj+8ZM7KwMBPrr23h0EGvSVHnAHgdGGlMHexFQL4eGV6zK0S267e+zKhEbbJTXqx1hFUaRqiup7Zpvi6r4QU+Qdm1xeYw1bIo2BZ6Txiu3QqKEQ0NE9/WWkVpXjNCB1CEzEaCsa2Mx69UKFsUxAlehTuaMSBb6F+8POclVSNBBv/wBysYUuN6BAMV8H8Y1zL12lFPziyWUgLWndJ8ZQbiZc+p8KecK8aBUMU7W27wb0T5bS7o+zHjKb1CiShtiOa8OpBrb2E794cdl0B8o0KnNNAhDBA8oeDL1hCEUMAtr/AB0yOAPYOnYLRb9g1kYau4u7AILfn35cPiqPLWq+rr594NDCQMQPQsPeGxyCUqBDxHThl0chkPwaZs/WWn4qwAIPcs/GNIHDSEVT5N9+c82SFQAWOw69+cPKqVgBrstc9HqYyEaIQEsRGYSB3Cr1SxOJ5PxhhylssRiL4uF/nDy2a8/vDZ0bOWhKzXfN/jGH8g6tTzbJ3i73gs8gAIoI695rxm1aJ2KPJr5XmBHiUFPez8T5wNN3Ep7P4xBsuwIgF8EP5cl6phBTAYOpt3ori8lUkhoNGH4d9xhjVAI4u/wZ59y0nfR29fHrDsBw0yBDxus8LMVDhdPLOpWvCevV2enzBVANJD9vrALjRLAAodq7TxsuBKrWQu1KSF47wQTVOlJxyt1hDVQYajJ40MO3imo2tFquePGSL6ClNjYd2+mHiZViNAKj8aPjDNISllaBOuHnEBbStE87fRiChBviKB68Y3bYB4dz8YGMol8aps0p08YurEIiUynKB7PXlIUCkACgZRre1PoqAajFqE0Ihy/OcGaQ7qUlnmfjC7YPYavp7D8ZYxWJo1uaoqYRKBkLYg+4BD2uFDETX5/Llakc5WahtRZtB9mE+OWirpvVBsPWPmRazLRsPoUtysGvNiFia2Lr2+IujVpwr0U71xmiFeQ7d95hFx1A3NFq6eSfqPXhdMBRWCKEU1fWMgGd3ZC1rckM8bNmAPCD58n3gELG7tAU9F/ecvPgQaHRRZvxzz8aQhqrHbwimtms7Swew0QXcxBBdvogJBaVVAhB8n6xaLWTESHYJpu6eN5sjgO2TaPU2dxyGAOogRC1tvnxjmDZFoSL4OhHkx93cCBeHzwafOQR9qRaGHshTWsRXgtEgWdc/wCMnESwElgR7smu6ymKISygI2unXuP0aigD1GtHpxkHbICXrtYszlMIYmwKX0Z8AszYCKvdL304SOQENGjcefxj4YU2FDv6TnvFWjontwy2TInRopA0vjCPfxNfbXi+N3C3tyigKzbffzlQluzr+g2ceczb/XIBKOUnCDpUAcjKpIs3oQmkfDePGaZldAbFSlbXOY31SzfzpY0vcf641ZyqAEGed+LJNe1PfQqr9gDJzpG/blJRIEg8wfo5OiWHzNAesnoEOLCg+EBiETnFRQfyGDqBGLrJe8IWi8wL0S3QX4cvAJ6wQWMeAA0BaRUEPeXRJZWdgbUVrQhfG7ppsscbCeMJi3QYptXRmFMhTBKbp5buzwy44q7mKtOgItapUmNlDXcH4R01U1dbDyJ4fLjIaCU/GDCXd0ovoZ+UFhXoHQaR9uaqeNFdUUFI91e5eD1lDISjYgdatri9ka4jvGZUvBUkCi0f+GBk7Ci2EWAOV940DMXCFLjUF6+cMQ1YQCJXapINRsuJjoo5vBR0bu38Y+RhAK7QXv8AWSrwRu27CC6f+Lig0KhEHolA6bYTBMGgdagjfEnXXi4ASVmhaW1UUFgmDbW0jNk+SjoJr3rBirsnnwxzCjRhBVGq0VTyeWIQQEcG5sat38hmrC1xEVsAE01Oq41roI+OkaB7rojq4ScMA0bCcQ1buYyoKgcLvRnaoD20NnydxDYdIuFtUIqQj+8u/JjcB4gAQ+SnbhDciqIaELVd0Ocxaopqs+chwi3IadJbxr5FIKyRH7MvUE+KmaF4E6FHUO9OB5zzyVcw3ZtKfdngxmBdkVYAWIa8fNhG50dJ8TwAV/jFsMJ4UZuxLPvALcwoIbEAjIz5ydsPF4BD9AYQaQOh4vnAkYNWCe+YBuf7aJk83z8aNrjY6Y4gBv8AaWD1/HPQdIINHYF3B5xm87AO0Ap0gSS26O8aEO7t6NVNWnjKq5BAUVI+kTXu+sNQC2WNE8j18WbxYf4CYoRu3mghp0YpLyF2FaOHoJpbxpNL5pArUaRC0ibzWRQ4j1fzWYM/jUXgzaadoLNaDJwqsFu1qrzZs+UAhnYug9ihAhAaJdjEFtUFYBVAFcARqXhAsL3RzKl7XwNijh32NE5IC3Zu9u9gTp49WwqL0R8vjuCES9zwxc3LGI0aaA8tB1DeCptVaHoAAr6djj2kv0gUakAGmhksG4kAYwAjRVR4leyIiAKYkEDdbfplt9YXQQ1/ZkjLjAbPyPl/XnFSwwi6osQhia8tVXzGlYUBBoKk8gOqlo/EqvgATF37bP4xgMDaLCqhRYBtf3YgXEX3KkB8633AzsFeNu8qhLILQ5s9B2LebSi8BR2GkphCfnWG6giA8Dw0adLW1EOMgS3pmwaTwt3glStSiSowDuuvML0z5RFanCrzDV0igFodNrYaXc7G4xrSqfT0iO4Y7cdoskNeDOV5gKL8tAKjXNJ+HL0KRsulhFt9FDtB/j6xXOhGrK18jDxMFDGLQjwoNAdIYBJCKAQQVEdoXj4KuB0pb/3c0BtbJ7+s7nFHbeyd4m8Vbe0n7yTAZgSqAev684YmAGeAL0KfevzIuRRJBzKnRtq/OWbNAJkQCnaKBopl5yowBQUZqY9XGg0Sa59SZqaIIfMZWV2bMomjvnXnAGiiELDr7dLWsQW1qgKM0wJhM27xvNt7RRI2EJBHnYjmmrCogUPjvcSdmI8sKn+8nssyhIU/OByVLVAVUik2XwyOr4uqQAaANvWPnBHWkQW7kDa9AwYdBq1m2nbG82mXsmVS96BkDdX+3fjCzY/1hnPSeTSDruVYrdIBAWkEKs7tr4FyBuhC6Lh1ErGe8dZZFRnmEvz84ceg88MNBLUCiiS4PNXUmkUNC0TXrVyWJFyEAAVY8IA27woSXyoCgAlW9KqYuV9D01SruE2917zpxUCK7fiTxv4z5Nb/AC4JNd0IAnyW/i4WViyUmeS1I+39oPqtJ5mQDKmtwKmyCI8ZRojQtmqZCgTTcfDv9YUVfI4w0+kd+plGNpfjIamjm0d2/wB4EwSE86t+8kExD81/2eO+MDlyFpWz/h59FxKFJaqBSgQY/o7kV0cqTaSkh5Z1JguOEllOoKPw243ZRnseGruu784gKBOWY/lCB5XCxCuXBEgg3yiML7Mq9F6NIuzu8JxlEQVtMFWr5VzYbdPAYFPesasKSCThlT+HChPwqEEdIHtvj5uFTM2jQ6PacJNRlgw6LeOBJnaqtrgeBtFEYBAK6nnBrUpFoc3ecxGmxYnSwXIKRPliTVALIKR+ztcUhRUHp4Mk2A3b3rzP1hyDQSiBFjcLT7NawF8p1EQFWQKvhnHZ0PfNA2Pa0SK7xXWUF/A94PUmimgoQ+zJplg0gmvV+G5gWZXCJ2YqBEpFTqkW6yj4aQAhGW4Tc/bISDzz4fxiJB2P8GWoais1w3TXgtauPlbjAqgViPTEBHNaYqlSfX2uApKWrwgTjA9IvMZhQtagkgQR51IhgyMVtNaaduhRNlwtM4kDoCKbgeuesb0KmEAgvfkLZh2jzLbV4PemTxo1Gur2NRCLs9Y5SwkHF0AUUR/gsAN4LAg8Ak0EPWSeH02Ug8HnFpiJPWBmn9iS9bv1zCAsgMS4RNGz8H4S9YF1KVfwTfmEQHvoGwbXQ9jAoQwq2+WvnAKEDAV8T84bYzW6U5/n4cf0X37x3WBQ2AvyZ8F5l8CCm0Aml108Waxk04upVfIAbesSqe0aFJWuxH5xAO6the7bm644mpWIqw3rKHvCslYbyB9m1AArc9tb+ssqAWCguXKPnW+Y3QfNiig+9mtvphZyiqqAHA2b/nG3RYqBE18cnnGFxSqQVWGNMllNHT6idxg3kGRVkVr/AHvFAQmjgN0hfBpUwRbNCpZ0GvFflfnIIKSA0J0bGYKI0IwLY6DseC7Cr5DIxVxpdrPNoDefOMBH3XuKB2pAztze5dSp2E2V4PgBx69PocRs+U/7i+IjSYd0TbMt9/HHeIBOlD3oQ9w3r5mTj/8AmoS4KijtXxa0luvDOHSmnlXWsQF5VRBt8CD+iYSBWDaxoTyAD8Y1o1ViwWKxSK+dKWeMEIUYtwaSk9R22MxwVBaFFFUDS034mIqIPxQAL8A1V3iJSAdbnj5f5xXAiYqgLpk2+0nHIRVgFubMSb3q9s/7WU4HaSs/H45g66gDSA348/f4cKRQgjIdbQWj7coUMr3L4Ogi87oypoiTwppNXE08lwJoE3ScB6Ah+MqOKSKFO+JJ7wOpIEOKV4uAxnOy5INKit+Rg8WwQji6VJRs8cXgARtsmnBDNsPLkAPHrDwnudFitTfZtrmaZvDW6NeycO6ycx9FR+IhumvfvINkKB1zS+cZ+O8YNaKeOPQxrLDHxE29XXnHHYGhIaI0ILc0wjO4iK2O8amAsaQcfWHAthyhVVE/J0YPrJpmRSyGUeb94NFe8hG+Qup1Xy5rMKThpIM1vW/WeQVDBRtjR/73IOBIeJvfxcUSCCHbs0F0kfjAELRW0iMC3Vqrk7OOCcekQnx5ubvyjgpsMFEYa7gaOB98MPvKKgg0YBeBNgD1kY6P16wdOb0dknz24eyRp2Cs8iku4ujJoyToRrFJ5HYb3hiYxeoTCFgFIesrgQGlVHcNLt891jQ4uT70ifA7vN+4CSUA3fI0F1MqDh5Br5pRx9pkfesoGnSABvyi5XCkIpsm2nlcBsKTZoImtP8AnEEKKPK6JjZjah2JuCsqd9GaV2ZBu0N9D6d5GjkFjTo2V9d8YiDzEsKvmg89/oT3TLCgOvGz+cOsP9byiAbOF0m94dr7CrANfkde8YCO3R7ub1CixHoN02h1J3CIVpMrZbt2DxMQuwEdrc6pEmVgCTVKhs5f7wMYieul20fXnGo0aCT2iaZZw7l6u67kzfo04FA5vwlOYBouK7uCmge9ePObx/jEUGiyps9v51XkUQEsF1usvMhCjShtDsE9OJlgQRrD5v2Gn5wYhqTiBvg0oeI84THaAR2XUoG2hZGboEbJJMN3Brn94lrk+Hotvv13eXYYUOhh5X+7jrWgBu3OXrsMkIBej2YGg5hiMRIqEoeHdZ2MwaPTR6IfO+ceZIR0BLDQfmUwlR4A1Gw1S/4PRkltbSk+8VQ1aAAtq6O4SrQBbBQgICIb8ZpvuqSrX2vxs942lnRbNB3VpmCtaCPit9v36mAZ52x1vUIbrt5nlUTh+8SehrlVN2UJJ5PZkavQkVCTWUU44mNQMACAR4RX8PkzmmuNoiJ3o/J7xVLasaQprdfnHqyIC8JsVMRdAITJhgijnwTLZA1Ogo7yqa+IlEZ7N7+fkwGhiAWogO0gAc+DL8bQUV6do7BO/tMuLBLdL+6dC4QEArUXcSk3k+UjYRacE5+seN4rt3Yzx478YP7IaTIaHhZpkm1xFtRQPQHG5qVQ+MUwmB0TA2gcdeP3joybxKAPq9x1RNiEgYPAGR7yCMLFIkAedfxmiRDqFwBF2P8Azl4DBJK7l9nIjcaIDL5oaBrJMBHaaujGHx5+8A0nKVCbavAFX3iOWIBQJRPib51xN2pnjjSQQLHGxBoo0lBTRgdq8OFV1uXm57+IoGmzKs0JTbQ24lw0keVLGjUvx7cOdkaMS6HXlN5SOSgXU8970c6xzaufQ48VnSLkA4MLp6zLEwBJcSVKT2desJlKOi73XT474w+5+xkKkO+gCNMA3V+Mq75cTygwuuwEBZlz7FSCAnaLHeIlQSoiuN0NfZ844fLrBrUSFfHj4wtB3SXAqVr48/WLsLBmHm9ZQ3waXO+BvnjD75SKTl2rtXy+c1Leijw0MqKd85vkEjKPQJ0n3i3UYgnbICDp14wdfNo2Rv0Xp5y41AOLhrWsohHwQIYHh/zjmg2o0xEa8Fm80G7xD8pBsBoNx5hDYQUV9t/VxCcI2oGg+XM3/UKR0eCC/wA3Nq/KryfXrj4xQjWm/Ny/mje1Qba0v4c07ddcoEuWhRG4hFpUHfhgeLcXlAgAUFUWBxbqIlS+KCneuveBi5CICPDzQ347hnhpBDqwwWL+7tCp9/zxR4YLVNAKhs8b+NGrCEgggxCEPSkN0xUJnw/EUs74mzWdsVoOohvPHJj+tl4g+s6TGE4RWpD+XB5OvZjSiF8+Xzjh0nMKaVW6TU5Drm5ODYiKypDa/vGkiE5ruqCOun95rBFZODTkVmR2mdG2tXUL3/OHyTywiETQLyvIbxWMEYtxUcEcJFhAWho74vHEztg1LSa5OePWGb3i9XL8OuvGJipAJALT73niiKwBCvjqbuARJVEUG4KbDQz3kgiMWqMevvX4x6x53L3Z4AeN4tGICXZBT2+MVOCv8sO1+idebHIfjFinSNCoffTu95dnqcbOMK0369YWxIagBED3ePyCkshVYpej+M0rshFomk6z3duM2Q44LesiQS3TyDDIrLCUrf8AOPfXhSDC9sILNPrHpidjCGra0Ik/eRAOrVUA7Ea9p3Rie2+MUR813ZPGEjAHiNATbv2YQERLXZAD2+8SdFghAx+36Bgr7eFDaeHTd229xcHUhKED6k5xuW0GhsBGxpoSdwq5dTQZb57hqXJINu24oDjE8OHLrIMzaaNBFIesIAu6yh6ZN0xl7PNZ9NIEGAxJcKYNAhHDUW33PW5d8N4PAZ4nubyGrWiCi2SAQCN4Iw2YEA2AHoCz6wzSYJ7Dpw53USDonYiKrr7xhdoZSmyGcZ3ydKNi+Q7wwp0Nv3pUKq0bCxogVBEXA8QTOJJRYudaJzHVKcNYCAI745tTmxumnbVPveiXE+UbQkrsNNvttwsTKUN0FDSukacCwEJ5fJA+/wDWSbpd3AxziSOwjrdUBcie2qZCShviPbXYZNccAfHdrvzm9SHBE0LqNIWs1gQiABfSt0216fJC5SnUmKRCGUjpOZp9JBayCVAuyPs4LaiA8SnwNbf0TmKxBEUUjNiLzYx5cd7zUuA4gqqbaR1K0V9vRC06Avgl3gcBR9UQK6IuKUYCQqaPPO/WMyIJfYp/WL4xrGvCD4NKO9dDObOtCvSeSoAlqHnCJxAAyNtFETXom/GOyaZgMMMYA9oldYkLaaTr+MJMgjJ5v9+8twtTWUR9056c225/vjoJVQ3gkjDpPI244hGQWoIg6tVfEuy5C6+NdNS/cepASShw1GokcAU7JrBNEOU4fnJqhR2uxLKQ18ZF+EflcPoVOkpfOua2jNYTERG23yzpYOeEBBV5kgUGwc3P72xQNLu04hoPQRq8VHbT6iM9jLAK7Hv5xiFFpC2OR6v34xCFOgbJoHawXVrcMi4EobbCUnFBx9zKDQgrG0iPkU84MA2wCCP2T+/Rg/HrW94ZKYtsIspZTfpt3kuuNIaV6UIgnK6yoH5IgbZOt07KouC/dIG9Fo6OgA7uL9VEQIpXkx0dvvPeGj04iaYekcmneUYCs00I7pATd7NzNnRUEsz0mw8QeSEgflH0D7FWCPGaOIzQRqrzXH1MVqtUoKsuni+2vxjOytMofC2vGzQ6eew3BFgyt6g0zUWeo+pjNUT9pECRsjxHhxvuQfCbSAntqWUTcK5AW+zLcGBAUIn2gjPTzIA8IHvFapPU1sa8bmsTnaSktrWbDpJpF0hfvxh1EJQmF3tRZs8kR0USwowiVEB5JbkwCRnS2yuhUiu8AlPzs03UCbTeOgVAXHg4QTz0n4VMoY+KL41P4wNinQvtSota10w4qO70AWoitk/jRtrBQ2Fs+feFFVAPNt536xYmGhN+EF1rze6cfQA6MCIVsrrywJlog+i7GFgNEOnzRBpAMMRIFNrojlHuGoCpqMmlwv4Jnf08nz41gXGa0ZjNJpx5NEFiMUHvUAiwoblvNYk7GkM0GRaOrsv7ee5VDbpBugWkoM/q0ocHqOUUFVeB2TDVmkiNoCBVde/eXRet/wDhT+82Jagnof8AF+MhAD/VQ0ev85YoTnAugh5PTsKKEAVCncSavqJtxCrxgUUaahjR7vxgLOt4JGYNkrSX3m+WCxSCaqNgNeliaN0ISVl8+f18YX9GkIpNwF+WvDuKUwsorpY1TpHvMlIA0uoS1AG4WDpi+PuKJFCFAy1d62LTUKCPTSlDNaxpdQ6DM+eLPjBYAcpEXQMF9k+Mn7Kx7NQn5SMD4QYTGbV26Bt2e+cqWiXYX5/wwVoVHERb8RxqkxYlfnU+n/zCcAoQCKBS8YBgS4UB6VBefIMRmBaaXSiJ+Q+cFAR2D9f9/OWCnTV5g2UUqBiqwaePTkj8/wCWJahzh7T6Cvz84RA5DFVSeh5IHsxEGhdXUYQ2qta7k5c1DbFEDQK9NVENexQa+NZdDbsFPiXZ8zK3pb595wsZMRoc4wGscVp3zRHQoun8v7q3dZABDSVPdfOHmGQ3JgKEYNrt0QwhKFZNEP1Pj1jTDqBJDRz63kN4ro6RKb2fxzCXACbCCTY+SpsmSNYJGoatFSl1t1nRyiq+aBsVQLp2tRAApDpKTVt/OFDHswYTibGt7YAAGo8THc4gBYEgsVpjs5g+68QASBTj9ZrdxuqNI+hCJrwwYjPaBIHyfrlzzIg+fLjsBQ7jxj0FfLyICv28vTk41Y7chKLZDRRuDihVrh+EtWCIoWGMECF02Wynv/GaDyOgmJTpFeJnXlprCF4S5JlY2F/k94mDsyfzenReTBxhHznoRKjdvL3qEAWn2lzYxXiqgmDSq+h/z3C5kBfNoW+aeuGUCk6YmiOtfQXGHwaJDBTfAuK+KXB0wE4zaTmNbe3J7O+rAbNnw4h0VlSgh0iDHutczZV0iWmhSlZsNjWsPmRaGg4tb5DfegmeQ5IV7sav5wGAqGh5v3P2Y8H4+akaaBjxt6GOq0MURBdxoAAhvCZ59pEfJVJu24G83GkO4Sj9l84WmJm70iSG07s+sehoB1YEVJfh/Wnulsk4VZilR8O/GEwdMWEdjwTipZvE9bpmyOu7Vi7PBvNs4iZpcKZQhKbVFA1VUaM3msz2iGio0uFev1JCEFbwPzhko+xfRA4JLexeYjnFFQDYdemr67vEAsv2yAgJRmgqcCjBQDAguy6joPGsXd/u6VR9UDa4JDJIAHKaW87jUR7WxYaihs7NLMdVpph12EWGPnwuBbHLG9yH5Tyb1g4hRsOixQsSLx8Li9hF3i6pR8zik1PN0bYYbeCkQyxgC79Q33CMHVqshp8Oz8/ZgjYEA7CDS75G3443DprAKJVtUa9PO50jwhGCCPhabHZLss5xURC3aA9vzjIqdiIQAWBEfE+sNIjyiKcfXnNj1ZmhAgnfpt8Zrad8xgUhAPDusREaY4WcBuXnnBDYcaiaj5YH6zRM72xdQ81ZjAs1lAVEtizXg8XAJC4a/sjIhwRGJvb2Q+I0cO2vu3QQ8QascbJ/XrCfO2rDE2dO33rOIKRibcRoJ63gFr4FFk+W7+c2H7fvHJZtTbOgmt+DmAz4doF4E9CNecdm+moZQa3X13eWW3jDm8D+XBM57hf4CnH3kTDh1Jp8aNjD38YBOwX6ckSaokEJ1cXrvR7wgmoZT3QU2SKm9ZD/AKYUaeyiaST1i/KKAC8g45g43qxHibASWHgPNwQapBSKVH9Y4QpAgN9ILb4BfGBwi6Lwm9272kxOSR4clA2pM2ivchb5gQzSlY6X+Aa+q6oWMY9wT0JErt71zLT4YVqi6XZig99uSALqKibDlSErb3Eq2BPWhE2glINq2NYJBWJoPKYdDXjNKrIUAWiRg18fGwAJ1z7xR01FncNIaTEAKcEMJr38Zf6KAQKi9h0vj4cXV9uSTlHQXd9bxl8phRq/AX6xU33QQKqpuOh+8U49mFSstxoBwBhAtPMQW65oL6NHZfBJlYrhKa9Sx2K1JgjyJtE3hqGruzgwKvXuHt102vXLKqMtkQkdTfnzmhwrSY1IkoUPmMf3hkvIwaKHgyqRaDVndPl3Tv6GzuOELJsJTPziG0FDW6QioLvDpJ8DJ58EOo+slP5jzVPAZXxvLIjOBRbngOsU+lBXV0L83BOdPliQ13G9duAsELEMEdqRDqqTdSyRxSlxpxamC6aZgUn4TI/2QiULwFd+XnJiogFbSihhDz6xwpUF4CInt8e9vg4jgWQ1sov0z5yyVrKtkKRp7zTqA6AQAANa/GO3j6cAmsLfby+skfEFFsuv5N2/GMG0LUICPTnMVBCFgkqE07uMDj3IwKJerbY8MFQ6kjGVR+gavDsZXRObF0G3jfrJn0KgeSHzzFuKqOuYH0OFn1iKS7dbTa7ibE+i8LFoE8D1MKzZ0ia0KM93+cfSncTODRPe8/cv94Z7CXDSSHAFVPrD+D7VlRQKkd69JjhUiNCotHff4YgA0GHth1w9n3gHELeGsGhCfM0mC83KKDKqAb0HygFh6MWYGINWB58uibh25BaNjFfV+fOMvroAsSDy3w9YaQpz4NsuG0PDeLqtyNG0SDRsuvjCkZE2H2FfxhE0JoHmIN9s967jeg2hm1/2zSrza24j5Qqc+TC6bahVCHwpDRDY64S3Y9hDfq3e9F8FAmIq3xYvnSa9uLgAGKhrsZ7zUeThVpM14ogKaST+XNRsg0qX+DnjduObXIGACp8nous2H6Kazc1tpzYaR6kAJjMSURybS7PUxapQvAVUR3bIb3JgSBwChCqKgR2u111lDAgG9FDA6NFvvcNqcmMKE9wf/uGZJ+/BRRrA3PPaI6mMFASWCd6eM4A1rsgl2dkND+HDtPMkZRXUcCMm4nGMwsxAiQQo2QTWjvMLf+4KGwoIBHxlonBmK0QaNv8A4aYGUkX6lJPNe4ngNToQD41s1aMxptGWpkofnmo6fYm9sNhWQYa0ildU0u0xzUwGGMAUbpmm8R1GOcttSa3nJ2Q9y9ZXm+cLAzWPzllVWQ3rr1+8NEwUbq3QUpwXlNY5nXYMo9B3oLpEVT0fjZTVwjYFUeTjt4um+8u3CQ4A7Cf5fGbJZuM7o+n3F/Dz6wtzGKxhQjCfbrDEUHucjZszZyCY6G0nrHYlVg5kMBGBYx6Bjw/vE3zEIlw3jT+TF8DXm9i/6yZoGQUE0tmTjTDwQzZtQtwfG/bEzQYAEeAao2odMELgSCSA6lBkDymbE6UwE9vIJeFO0x9uAjQIS7gMQbNXKrr3krpQNrQfk+zK4HSBV2Nb+VWG8utgRidCa9lrfJYtR2BVsGM1r/OTjEVqjnRqeei8yoSTUKos9bOwxqnAlcthRULp8+eevAZ1dHil/W941UpAKjUgh0Mda8ZrinpbkfggPvQub8yLTalUL+jJ07QSCc0Pe/HrFO+q32U2i6X47MBlSg/UJD6x4pEBRLsLkPGWUm2xiQK8fJ3KFRjba1Gq8onSuW5XQx4DUfHRmS3rgggCm7f1MHF7s99wrmbVgGpUX0iHXDPaOoQTn5awAMSKzNwe6a4ZK1YpH8sT6pCIWbp9fGLDuEaiYYCAp8xTUoyEx9Z9TCDAvjLedZhaBfDv+DLSGl1q6EQTUh84pSZFmgLChE/NuVCpNA0Qq6irseuRhgtEo+HJOevxiGwoIRTWvZvLDp1m4jT5t8IYiKrgSYzLZQUVW73aMGCy8GgAxiDOauNB9TIFSrbH4IekxVhYkh0XUGBQhedc+WhK8hPhj+M9T1NSLoDvR4+83iGGVbNICv1i6KpdPAG3fw8y0HICr0ebP0ZS2GEh+MskE0Kf1g7eNtE9bv8A5h6j0xVmZiQm1bXvHmO3xgGPmstAd39dxBigqjQAU3ryY4hDoGR89b5y1Dqga1+x8YlRNGjS7P1jrEA5Ct/nuHMqAzsNbH38sKMALYIwFVgQ8T4xMYACj05Hbq3fN4PP5ZOxUTj7mKE4gaDjr6chuqt/ebfeeu1TcWGDb6ybgLSjKaBeARA6xFQqXwcBFUVXqCxzQ59Fgw5vXiXXrLjFAPiiNn015Pm4ZAQJfOaegRwp8Nb+p8uGWYdewxnY2Fk3cvclAlaTTq5vWOJg7Aq73N/9cf6yXc6Omjm4hRPzkyGUoDUyhJVHvvweL4xIRsB18XaH6Qcf3Uq0QOm+HzmuXQECXm0MpVEXBbuPH85dBfE/OJMA41Nra1epjLX6s4gFKIIOrmoeNcCSuiz2/eKMwETUdJ4QbkrEp0APqfeacFuj4jSjsOzNymh7O64LlSLYnk/vBot7egJfNH/nI2tK6hpmWZTthVqNeE7xPOBEcmZpBqOPWnjB+/BFvVIPAB6F+s0mBNukgQmvibwRDESI7qiHT2TruFVtFagiAV/0e84+7BaeVIS252fqs/JqYdb4bd4xa2IgHRhxmVS3VjJJNlb1lzyzdNNBYRsYJgm8v2DCol9BltybukEhCXVb6y8KBgMV8b+Dz5M3IENoH9TD+zDk1OFftyDG3dNOnmz6w1AAqx8DvPMm8THUK2I/vAVJ4hycg+qjf5yoV3+Uy2EMa0yUfn8YzPjU2xpTrTf+sALOAc6Tc7gojy1Ztb5XeAzTwbFGO/CX4cKqTy3X/OIKiMP444Ze2wnOPjAO9wL4aNXpcDkSNAjEE8zvkmTLpSLkRRzI8EMX73j6RaIo6dPCW/Bj5RhGqO3m/ONqR+iezNd2mGi7dMNjh252y34xL0OUfTZ1Oe82HhFVvifH/cxOGIAgSb0O8LLcRGm4vPPMNIkaaQ7xyto3HK83HGwerW+/lyAnE4j6MWCBJA4aL402NdmuIBCoiBub2liCn4MHjXjcJtO885u6BVNXmn+mKeqOH/z85tqdV/PYrBS104J/P+ctgDqUXy4fmY4NLv8AfCEiNlOq4ZsFZ6E35jrL4aq77d7JvdyOdvQH0cPxkkeafyCudDIAb/Bw4EiYxUTYu16vjuRTTEh+XZ/eLJWNTaVoUwO2jVLv6Y/GM2Fv8k2A/EwEOYBJV8TiPlDo29tf584lTvZO63e8K8jVKDQkg/GNXGkm/c+WM1URO7b1/tlYDps18PH8YFjZK17ExRAQELJOHMSnOr9tFvbPnHQ5IRqb4MWSvC1/cGL6Jdq/GhcAlSDak+v75ZhEsAbkt8ecKJxy6+OOv84NRXsL8PrnnBqyE2K+Ddsy9s2q8PRfWq4wKYAQ6+jz1g0ht4Nj4D/vAstNlCeXpOY+JyxVD9hlGKaHptt1i+gNIYmghebzhE8qnxZkbQxWkfmF/nCBAkEBxtSqxM/MMQMRX7KoXB7rX9o7gkADaiPX/vWA9H6f8Y9NvRhfMTWCEe9IP3p+MqXjLwy68jW0fPnIgZWRF+8aTspeQuwOmmwswODDKbfty5nYOt4PRsnxX36xrUYUFPu5AsDgIZCKh6fw4noG+GayxkNJ9jcQjRBV8eX/AHlhUXoL+/OOnQTwuSEGxLxzY+jjxAXhQdestDgYeiEGHq/a4SQV6wxFl8pMT2IFqtUpKeGPQXfNMCk9kLud3hWPk6a3rHpIu0WmERICUZXs9+X5HkxS+lIz84BSvV574wBVJjAN6zZIrtHPxjDuizen/hzJIRyVuBy7h4fjB0XkapMVKTwdYtT6xcODTptjnuKyxjfcd0hh06HP/GNEV00+cICnLtIK7RB++5Lt6FMmdfFYShEPWbha6p/TiWppPuL9OPchJRf7jjZaNSX61jOV6rD63hSio6P+t4olLF7H4ygrkx9fB/nAI+akio22+Ws73oToD4734x3NgVVMvkGQab/vHSVera/ODAA0qbfOxf3mnbVlj5mEAxNJI/v/ABksQClE8ro78e8WDQtnXM6SEetxhBbSA9+PGUX+AmHCTQoQa8feaXjfX/uXwQ3fL9ZKa2P4YBgDkRgN8Rgw60ucZkQ1KntlCkELx8H6yRoIKaX/AMxb8EWuu+soFlpCEXb+MWNjW6VNaf6yF6QYrfTkNdeY6/aQJXU1H84Q0lqA/nvjNoNE/hTQ0c9sm1M6AXT6NYolMDd9erh8gGYb6T/tYEIBLH9SBgTUIWnXVmHO9BWz947a6IjPxj6AeRMqdDveIC9EjjsJ1+/GDtCdm9/abxYozsdxUIXPlgggfBk/OWLRzFdBdGiGHcDfrXxiGj+4v8zB8YiKK/eUSObBW/XcEWe9p+cklT+PDHpGMi97zhmjpFNPpf8AOMzm4vx8GRAZJNT9bwqQPhliWpPFmKUod6Xyjge2tn24pgICdfvma/zkYRTR8PM0oHwfjNHu/Q/1gAIxtEX8uLDx5CJke9t/2WKdEd6P5wV8yGtZ9uU0s0v9mLkpqP8Asw+qN3/nKgl0PEsIiGzFwYQ9nz5wcqJ5J/vG8Yeqfu5uGePy/eMgg0H+795em5utPuYeBXl/24zkjTuP5wyEGk7fvIuK7B1/OB/MNdfzjmKmpOURB7D/AM5aUCWBz5wMNbrc3kds6qNMRFJoY/xm6E+AifnIYsaaH6xBXngv7u8H1FRXbs3lkotkD/OUIDqoTuLoyneZPQPgfsOUclNA2/u5vCdnHRh0RTwcZMVHc4/vEoY9GvN5cEUPOtP/AHETxWwn+f8AeQwdKb/wyJOnwn84aFqPR/38YXLjbEX73k9cQm6/T5waQRaKmv8AGQiT4Rf2OJ8FRAAfdx53/Jx86csSpSpP5cEFYmhBhgTV1efrFWBnP4echCXe5z1bgcOwgknnz3AIarUT489xdytDOHG7ybVkIlAQ24VClBAVqSzNt4ggJPCodwQuPQ/zg073vMq4lAPAO9+f4zbp9Nl/nBHd7Nr84pCP2P8AnO4IdYR/ec83yBn848TTTt/xjUNOz/zgMv7mfxhypWbcwmvlo/jGJmz3dx3Ermga8ex3+RiRkiXuQdF4j/rH7q+HGwZXm4EtnFWk+MDcad1/6x9dvBf/AHFH7U/1jrq/mYSpA61nQsvnGhr5Zuz/ABhoRPWIBsvzkNIDwRnpH9MwZQuRNCA8OBCcPZg2nZ3GkA+rgCG/scXRS82YN4sGYH8YVVH6HAjwE0jJgaPhiV9fIwjR18BvGykDxLg+AMCIFiOwfPMVNJ3mOtTfjzi6IvDYxBp04ZSMG7f+8eVHoqf3giPun/eVTbOeD+c9nb1/sx29v/HnG4OdOj/OBIBk9X+cmBofBs/nCkAXzYKEUdXd/OJG5PvV/OUU3Emj+8u0X0X+c3Vre/8AdiOqeoX84GS/zkyKfCh/eQrJ5an85ThiHB/nLIB+P/fC5Jv+e4dUvlv7cD8N7T/diQhhuEs1hHkK/wCcNYEmgHg01d7LEovlMEOu3jBu/GRxnDU/73jYAPgwut3kGJ8k+DLLYWNWsN97cUzbNNEgFYG3CEUH5P1NY9Tw7hzX6eEJovkGImre4MQ0N+Aa/jPKj/31htP/AB+MFbB8mVmzPScoAk86Yh4E1rgs6e4yE6n0/wB4pNhvhMU4/jMtv8kZuqw45s6KvXPWD5MTBU8YQOD7YpVPGIbC+sDdLuFSSnvIIF/bzFhR9cxSKte1g9Z8xy82n5MUKDrsxIiW9XWGgN+TBpF394A/ztMhGEnnBbp/ObW9+TNByfDgBgjq5I6TM5pL8zAJ1f1jnn8YTG1j/acTCPPhyxe67MWOp+HAOtZABf5xQ3L+MFppPrN/A+tYC+vrEfB95tn9sC9HxcFRXxvIKn7cs9PZioH4ZQ3ZgYOx+c17/lkFAg9OKZ/bgRpnZt8Ul/djmINe8DW4kDpODgAYV8TBmjP3ghLfWSwv3vAN8O7yg3NdnMPEP3cTw094DILfQ5IPI005lroL1mAePvCKsE9mKAh+9sgeF+McCVPKOPFpTHMUX4xmYkDsif8AOblhJWyqa1qv67mq1E4eQ/pwSFTfL85AW38Y4tV5RiwBv3jzZ+awuwf2cd/Z8rhQif8AnzkSoLyT/OHlT8NzZ38Fx1gfljyP1GEE24dhfwxj3/dMZNS4u9mW1zIN0rvuBrxx8hrFfX1l/CGBqCZTwfjK1aQegV/gcQvGYA8V94pdz85Zdt+3BaqygUHBFtgxQEfrBHl/WRR9UygIl6mGAExSSn1m7X4Jco2mHi+qZR0r9Ymeb6zoCfNDAb2/AYzifPtw87b8ub0qfWJVl87z4X4uHAj9maGhfvCDSnlMg8v1Mahc+JhuuvvWMEkfOUoj7wQJLnhI5kIMmVcB8XAJ+owAO0+cqJ+WIQ9F5iUBf3jzMfIYaPFkTtPrEPlkF0XQ4jRCepch4b8TFnU+T/7kY+XrGGo/gxfV+wwfV/RiIS3Hrpyl7+8WBue6ynFPms/sDH/0ssdfvF5VcSMAEK5MwRSsvEw5Kedgsc+XnvzrGk1YHQH9THHU2mvnEE2/eCnUnhzkbuGe3+MSI/wyuV384qG4Z4G57y0BfkzYI+MoP4fWXtUnjHuR6wSbfD/5gHcDijW9YMW+OYpMUR5vJETVw2l3lRuTB7HfWCVnfnmU7N34yyzVpvinzF/TmsPPWKActGKYefca3xyQ7N5Qguv6zdULhSaMfUZCz1nD3hZnsE7gr0zc3i+E1lWdy0fxlwOfWdf5xw0bMUkJ5xZYZWzLlX9YotfZjelFMI69wKkH7wKNGsMj+sOa6cMoxZvmD8+u+XFwrzGfFPeSCsfEX5cXNr3BeSYqm5hraB5+MiO9OzEVuCtyq9zBz29YwS9+M0l3h9sVO4ICkw5K4bajGzicx07ubHcMiz+jGi4oPeKghh6sCi8OZbyc+xmuGSiGKhBQTV8Tfr9hEXNCTc378ZSuvftiCejKbv6xDg4kO4oDb241s0fOChXUwasc8Z1gU7+8TKqzJ35O5b3+cEHqXJ8LhYr+skZv2OHWt5xsmQdv1gqOtdzY4/jKoeMb4b95f59YUwGF94p9vJ3AU/nCBE/9zbquWr6wnTMHakxh8mQ3CnW8URyhZpylMCvP4ynwwErgYlwojTzj5R+81jNZpVaOwcpvdMzwAbk+iecY5/OCXx5MDBwXjLueXNBfOIj1MBz43ioaxBDeUWeTJwYh584sjfow+xliYstncGPOIppynaYMP3u5424pXsxAb5es8QVc8id9YBF2zxhNQcY/jFGTEBwhT84XBrB/WK6PHrBBO4JNGr5yHeYrrx7xjruU0WfGP2gq+PORQpgIc3c6ahTaAvrcxjwJyAGvzv8AvNgOf5ectfGeqfrKt3+8q3rUxChMV3mAhtM40/nEI9M2PJ4+8ETtyA3q+sgaw2fJ8+Mi75hDjp8f/kDrFCb7iLPOBU8ZY/OCm8OOed4QYokve4eNIfY4zbf7GLW3E+vnCxbm4zQ9LmxtzR8z1h+GU8zZpzcvctt1mtGh8Y4O/wBYJUo+87VXGiOjFzTPjGRXv3gVPneG5ztjjWrt85IQb85TT+8WLvPJdnjOyv2Yxx/GN2/rLT6wi0+MOhnjEUNOeIYVWmIEkznv4xzjD4y+Gky24IXszZ94JpeYiwgYyazG0pnDo+TPuriqLM+GkxA39YKzzcsmLVvBFfOBTdzq5lpvKqYL9YtjvzjhiQZ7KP8ABhp1u+y7ycwgEeC/M29xWRg8cRf5XCdACA8GFE9Z8sTTLfDALjD3KoMLOus0B/eWvf8A8BR6/rPP6mboGs9n8ZIF385bcOBwCiWeMAtMDarvNC8/GPy6x21mt2qCsUHAGm9OosMYLdX4yQ3ggA4lncEPZhmzH8Y+D3GUD957X7yCr6yIdGR7MAe+PWaFvIdL+sq6NnzlR3eZKlw9rvOMO5YN0/GUKH7wM6Pxh5lcTe55BvIIrPlM9nMZ4NYghZih8FyDSR8Y72/xgDRjpr+s1a0wRlf1kUBrihbrEdrH6wL/ACjqhV/WcToCyyo0HykxaEJRl0Zw1vdPeKAXUJ/KGS6+NX7hmIbNogjsmCrDeCGTOgm8Er4xHwU84Rt7y6zfZkxMA+GdJf1jD5+sVR042dubA3ZmpSkwnIiQTxoP844/RfjV/wB4RSj/AFXy/PfOCgHVfB3+nFwNZC3xMXdnPOab1MBbiR1HP8YIYGaxX05rx5wl155hopzAl8/JknX+Mj4yTXa7y+HDHTXM4TzjmphcY89YJfOE6r4TkCajbCPxP2uRvUjvgL/rIhqubduNHQwTd8yecRW+cSvcDqucYOaypTuePr4w2D7x3cCTDRXebNn6uWd6/ONa1x+zry5ruzeAvn95uyZNXW/eIe+5aSLrrgHvAgTfrDODQzfChggQDX246Xp/WdbvZz7EpidoipX84l8cwTv7P8aYkwN4JP1mxphTa81MZKuiSf2ZtbVQsVQ3AV+sN3jMtgxFmny+ssD8jCjbooOOXCgmIm/OCElvp2dJHJUDmRdkMRPaYsFhQO3k7Gvh9TCGgGDuNCwgjuMxSnuwFwkRdzl784upndF8qA3HCEiztCs8gZ95IigOM3CWuifWSE0+jZX46/3lGYiHsaAE45/hzy4GkJQFlAkcDDd5aa6TUuzIO9YikIDABUOpvU7GYsVBlBsmushpPGgFTavdG2awGFEDpHEg+cA3rgABPUxba4Ubck+m2GBg8ka4FQg8HGJrSoD3sgnkn38bbCQaS7EbZNYLcC3lBaYzXclLbQ9AVl+EsMWUgElpPy7yJVCi5F7kguDo5r5hg9Nx02bsXt5kDY8Vf8Y07hugmLHeCGaIsrADq7/WIhI7d1VPD4t8OJA5zkm1YA68s3Z5DOI2x5Ot6a+uFxL7Cqg4s2KbxYLOluaohGTwHe5F0hruLT/eMMdGQYWY7u4I3fpiDyo8YG8AV2q17MLdoCUBa4LNX3hRsbD9Yhs7g7Subtv4ybY70msg+/eEfRglpzCTBBvB33Db6crH/wCJl78GB4z5rc4TIFsHOG/zgl1+MDZw6IoDcR4fvCnWrh05ZF1iFFBDqJMxZeSLp8kHqRzFrADcQ1FRZ58foW5VB9wWT9YtmkHobJ5v3kXIUYGNXCPERUjtSaL6PBDNlvgmJwgjP7xPSaoyWX/ZwFk2CRRsjwGLVmneJTMMptmlYxe6zyeKhpRBQkmiy62kuk90eBw0iJTwH+MuDChUslevCVySNVeUF8efPi4XMqYl9oqLd6R9NuI8qTDoMZqJtZSap1MJliDLWNFCG3Yq3kCiIhZOI4fJiC9jiHq/SuGtJk0Z3wV28+cMoSY5gUumMfa2FCXZXxBnxixzACPhFqfdy9VUdA0cinv1M8Yzr1CYC/Ab75uSEAAcF2c46HKqCaCj+QnnvvLNYsNinhoSb3c0yzJBu/P8GXHUEJfgp0fGASipapEwCaHvDyYqVOEFr7dywf6HRySslkkR9XfMEpy10+AvEdHzvJJ/egdMZtP6y+jczf2tD9GMq+8QSX8XFZJCnymv8fzkIgigxm4fxkViVJ9pk3fHnLHvAhhHDnwYFdEnFUCiuqF2eCYOsrmUgiXPtk9dDmArsDvt84Thw+ZrUHgBbHO52zYo2RToRHvfvE4yUBaoItGR9H1caAOoGjsRo2GjfCDhgFi24GKmwappiaqV76Sm9VhCCe8XF8p2Dcu9+H9YHV2U8dk78YhwCqPoBRxK6rF60Vw15H1mksuWeDkITXvC1glaWgWURLfH1dqvACL1EIIzcZzNXarDhg6+MpfDhBNmPnUx4upEAaEHc/v7wrmCFt3810dB+ZjGyK+4B+vP6xFEQYRsWbDXU/xlrJvBexwOzIa94D5lyx+HLDXXFVEkNxGrcWWblkcuToEBiktcNxya/JKNJR3B8Ph1hRuX7xb6LinBHjl/J2oE0OqoesE+70ELA34SbccxROzhsRdOK2eLjQxgj54ER9lmUydOgMdmnIxM5BIT4ymRAWUHYpEd+CVusJodAAnaIsVh4PW8OrJ0D2DvSXT9ZqsKDiy6nz4JlQCxQ7g0fN5HcAO2ubh3AnBCovFCPnXnOLKhGJ7R+OZXPZRGLp82nzlLSEW7A+3R9GehllVdibQk+ImIePpnv3CQBp5W8Jc2haKCNiVem4e1+X9VFBI/K4kYsAIlTeTtdx6zeug+JlFRdFQoAlBC7X2FdqNiJHuOX0mljB5MC3bPJgu3h5UM+oj+cJ2y6PNPil749GXmzw6N9qWoaVfUxGiTMXBHYb0PlJvKDqFIoEJNPDjh920UXARk/bPwOHCWjthSo6AHeiNxSkWmQQaUmrNH4xPODbPCTRHqJ85TU6VFbVRzuIRAk5h7CPm6yGHT5IDvYCm7+Jk2SSEnbE+RNhrCo7lKAAlNJPHnuJAZOBmqE3yXv2YiRYFlV4LSEhq+MsQmMDsA0qMY9etqDaFhI20sb6nSHlgQjiEoonnjl7dQWnfyesLQlpTgm/1gjlUAhC1+X+c4jWU7QHT8VscNY9Am7/cyZSdpDG0EYx28mm+csMc1eQLoLuX94gmamBrcXpl+WbvZTjgBAgUYUYjcRkxMZABpSxqwxpx0KbT8u69LfGbZ6LCTbfNHk7hP01dQBhaqkzvSJCHsNRjObMgrREqWtQbHyvjRiwaCyKeVp28MmsBF7gCq9fG6mKnEJ7dU+Y0umuJGLpCy2Ot005rd7EEaVqB5CdNYOfa+HB4pCteuIaACJN0i61dPnBAVCpYMk86mq6MCbtrUlqZrN2mCmitzi44fRSAJd9rqbNvMPEgoIRSLsnws8XEuvVKBUHilP3kT6Op73Gjjp3rK0/AmLLri0/DlBRyIhPdCfnC3DgICrBV+guVt4ihQewkDp4u8G6BTW6VpGjhzUF8I+h/lMSS0fUi+iJ+tZcQWJIS4A1CPgxT8o1acBHnzm9c2EAMliisNe8UMBZrrTYF+H4w3aLRYafDZ/wB89pUIT1q5H4GPndGuvhhe45K3UMfKnZ1x4HfUHQNhQZGKOlR1kzEbPdjXm/ObIbwffF+4/Pw4KHLNb01Ea+cYK6Qh9xF38ZRAzjEbEytHvCd6QQobVqYShfWbinzRbQo2C3TGegoUMiiJfK+nH4mSpCoHtu/5uapK4ICVSlJ6MCfq9gdy+I3XzfOQkkbhGKAmxDcXugDhxqxpRoZtOwGaFuBDyAgNfVzY1BURO0/GJQT4CCMJRqX1i+YCiPso2ti/t4EMA82SlScJJpcIQkEACmw3Pxjwit2EwL71vEFBZVCngYG0NzXyByX6dJaJAyMXB1JFCzQQCkXfXk1kRkSuEeZ883rAQhpSFpW7LW/Hxk5Juq5YRdM2kPfGkEfbcLwVHakU8Mw8OpQL38MxgttzoAf4yhYSSl9md4APzVyVUwT13xVqhlVkhzUqNKnqsBoCAXF/3QSimmgD4E+JiQAeYIQ1t0sb9mCRwnEbYCm9R3A2bKeQL0RuJpXxPZjs1d8sTumjmCcBo33oVLaa4PrNHiJQ0NKhvVeQbCvAiPAVoxBDpfrFaBMpMFUxB9eI5odk/SKQiF3BdmN9yorRqFkCOh3TlISUyTSB+j43gpLROAzdoLtnS+F35AIHiK7eXkfOaSGuiFriZTw1NEd+eYghIhJxJfOkwUs8B0uA/NfrA8xlGZ0xOPzjNqN81156z+8pBa05LzZ6wWvQgxTTIXwu8ChmiBeCc0+/OI3y7ToqenTzvzmlmvVJ4vmAIIpDHSyIqJQQVFqbUp6OH75omx8PfjNc5glqCh+Lfx5zWBhrlpQ2U6MiR1kdihgbYKCIhaLygCk07GqwG4CDW6YBk2sb0aQsd684owGKIosQj4ef1jjgRK1Q0SYoyAW5JdOXmG8PX1NBqw2/BkKailM9ngX1+sNhJ0oOvw/KX3gRDJOGNAgNg71hGGAENNh1FHfD4wlhrn04V/W2xkeHwQm5cpBOtVsZJaNjakiOFEgUHY6No1rAE9oPA1t+d/WO2uTRdpPpbgDojJ8vUf1lCx3hUgnrZfx7yqCXCQOkdPbkscCtMkwU3RphNGkuiYoq6gB8N7gagARnlOc/lxDgdNUR9X6aH4r62kLhmqgvXOD6xI+iaVRs9S/nBGro2ACvsB/eDbvjeytukmjuDpROTUqqvSP3jWeINEbr/uYEEVVaBopwh3BYpGjHVpl29HbrKmB2j3Q58ElMql5soRKdjmM+IhaIANLw84SPINA36D7wWSrV6A1widBrDSIVLoXS19LTLd4rwtqGQfnTiXFEQEBRja1w/wAZVNIfgqkBsHwYThkjUFtKqDkn5YYqjt9f2S2yYw809W+YAAZ8u/TP3YIEwddKh63l3Cku3RBaLnvbg95IhEPl+sbTCNv7M8ZCYGxBzYs6fmtzq+ujvOJoGh/HJFslhnYHga81BRMACLoDwfsPxjbFBxdSacF2QhtKFdKd0DzFMRyAiQdiA1IO7zCAqXJiJBWVAPFN7I1QmmEXKEZxTxkUaJVB2KsS93rfvGSVpKx02BUirXuQAuSPNNMETQ0b7nE2akXYM3odhwce3ogISIz5mG3/AJmFAdnkZaPo3k3gBIaWBFK7WoXYruyEI62FCNHDIxNEwlDCVeLuveOaJBR3S+FgPrWF0mmwhNBpZLr5yziya6KSgk0vvpl1Jh0FAb0m0/PvLeh1NogolXZv+s5TaGygbMKs1XmLE1nlVLYp2J6SI4eBsrAVEh942RBTFpxG3d50kRTTPuoio7fo+Ey66QYvqt/IYmAjKwD6kN9tAhlr+IIaPokTZ5NXBh9Ir0O+x/rCYaBrgl8Z5kCSwq7gnjk5EeYtZjMZAn1EEVVHCXVnkqoJk0AzzqHmMwJAJJUtW9MKeR9Zu6xjqq3rIHiCz32CSZEDsQNWNf6yoTKEIJeBRTwPow/NLAw0pl3g4ecG2QAMi0IrFSI7nnaM8RFCq+owNqdFBEkTyR8f4yohMn1hWuvF6TBNUm9kaQAClrqR2ICrU+80AUuiJso7wJ3QXYFBDYbnzPeWjIH2G23NHwYiQwpdkJC2Eb1pxIm7VoEHWbU7iAIKwRps06uWVqMj0Go1AlZDGsWl1xB3pUWYh1dPMHBk3CEiULp0Ifed2IJEKjwoS/8AtyhogRZ5cdmo6kKawKE2uz3nIQT63DsST085jOeS/B/Jw7uY7qlxoABVv5VGTcxCErxZIpo6NZ4wvCEAkGpmgqEvz18lUuGz2FD4EPOSjmnlDZ9xw+x9AMAQ7F2IF5gjq7RRcgXSYE2GFBQHnsTt86mQWJ8aSYFEaoQd4Rhl07QRGw2nTmPzVNoWoGwWnk0wt+NesWVtQL7fgDxRcwYchKUTd4nnmbw3SonZthub845NQrOGVdDYeVfeEFzEVgwfocJpxCVpy6FQhNXeCdG4ErBt6R2TeE3GqQOVCIE00mcXVfE2EVUZpthMUaaBaRA2VIBAuvDFKMpbRTub3XyeMBhC6tCb3GGguzXEtV09pUoGz4cpgIgZCFQr0WP1qmPxzrn1TNHSuseTwO4fa+u7xQH2uO07STncAonrDSsCiyMi1niiiyCBQkgHya13FOF8zHhwKb+cnpu5bROvn1m4tst/DGQ2ASmuUSPmIFPeW4jaOPkKb1+zwY4eSNNV0eAZbinCXxXcq8/77wxre1aEe079mMDoTE1SOm1OcClb5bWDFG9LyWutVZAPFatIVVELX6BhwzFG6kEBv1Me8MdpsXSOgL6erlt3kIq5xYvCvDeW06Te6CsIDrXPGCAQFFJdAWSTmP3Hq7/5BMYWiRhGLFG0PKdoYNWrdzFCBVKao1uudA8mNZTQMPL8ShKgwEwE0cVfrG+XJ1BKoX94gS3dClBU6Rhx9Xn1ReGjsIWXxmqsF9NRHKXZYT3hlPGUsd+hFjOscavXmtuhQ0dQG6TFaKxsChanu+POA6YVUCA9z8W44CxrU3iPQCk73BnBSJKHtsDV9bcdJwZua7Kl3NLzJv8AJFCm8Pq70beG2XSNd7XUCp3mBYBi0GNv1jhEs4Ufh9Y4dLQvjeRg7pQWxRdFE3rITtkeLQ0Lvy5jOWA6RAaQegLqYj4sia4KCioyO8JhZ4TfkpN6nctjuKiOD4ShwPrFwL4kF+Jmvb7x9MeicFAOypodrJia6apYmgN6I9Owc5DwwCmzx4P1hFqafu6aPl/xcd+Q3q8pSDCiBCahlPC0UxhRvibH77lBrHBKlqRWrWthoxGM2SAKfR7VX85ESgECKIGg969+xrqLRg3gr6ArdSJYASNC7pd6xEkLRho636L8T3kosfQJdGAoiqafjHXWSyYqKDZF60K9xrh5tSF8umibYCLiYpFWh4B4V4eY+sOiWL0P8kyTEmQOhDSVT4binVOHuHYqgiPpu8qiLKSggJfk8f8AjVOEHNDqaLW+vDin3ojcJl3gBY/OaSigSKDtCoL4KZGLhtZgWxNVCkSVDQEC1WjguyPRgDubPRi1Zipv0CDjSyKqePDkw7g1Wrwdb17M8dD0o0tNAMNtJ5xJ7uhcephxA+GnPqbsFh8zxj5zH+wmrcLvWJZdWmjuCgUThrows5AIib3JVoDQisYJ61BAlIx/Xg+zDIj89kL84SaDIkQo3tdhQauIkYKke6mq0VfK+8k2mRILH4SXvEdWCDnbmsUhSvINY+THvHbIAtnXNNKzHALSoogp/wB3k/PraaA8KqFCjreuI7CpEOzVUVHmhhNUnpRAgEQ3bIscJyMFGN2hCSTz72PKNxuxEIBkfFzSVCVHkgpU73z4MushIyx1S8SZLwWFbwKvk16RwV4I8ZWunI/WAU6NDcL/AK8vDlRInyRv+ME7mQhDSR4Q2esKbljilT1dBv6yp8LCnkC/n1iyiJR57MaDXjIkrEcX5LV1vxhutAa0IIwOUsoncKasO6B3Du+B6qZBAIBwqWoob57xIgidUo0vhnpxzaqOdE6MEaj2/EMGgKEopdID6ehzSVaL2gLt9Hx/BhGn5O5sK7CZu5bSTSRugHKzmdbQVMsDE2NbN8iYMqSLy4vM8+b4x5lrN5psQID4qnqyjtV414fJ+I4Shvsvk1tsDzckx9Pr06WzRfBzBQ1CLLt0DhDXmecUCaFKPdheN6dH3gUUMVtiKEq63F1iSTqj50sRAbmikLduGiQ3CAk7wtFcDp7bVSbB0J5wcRmtgoBLE/f3i3k3bAAF1dNO7hUd2Mu0WvB9Ka1MfC5BqIlNubQvhl+lohBpvdfwmsSgK2q9SgCPdGFhAAHhf/rNzjV+PD9YqTpSKOP1jDshz4Nnqrz3zBNBZPHrnO1KBN4B4pgahYZSSukGuKFfyB1DDRJX0t/gSvxrzhob1Zeoy2g6/hl7CtiJ2ebFZNtbhXb9oUGlrrWklwfQQDetRPH4wNyAepZbCzfs04sLxnaiUB9D59YwJrEyJWsqV99eTGMNC6ug0W9Hs0mIEacbEaeSSrVW9cUr6iWqBUZ4H+8ezS1V2eT036TIUoEJwd5a99JtNBt89NWcyAY7YuqbIglHnKPMLZqWDph5V4GS3JpHLUrbbSWyGg5C6ZokSrPAoqevRqrHoN0Cvsg5RpuPTfbOqehXNnkAuw7I8FPjBl2QQAL5AUzcuLHc+aeAmySEhvCdwP6MJ3FAImtY5IexOlyxANJ4Q8YmcqpZ8MNILvZ8uMEqABUVFPq4knUDBro0H6UxQimYD5GD+8GSHwwieKJ4nXDAyWdgqEIAruTuRbGl7KDTyvfeIk1LUWH59jxsxsuQgm1BAWIkfZw3FcyUBRarxB0GJ9Z5l5QNsYowZkxwNFLFF91Ptfhygrjgj0KunS685WSQ7R2Ci7NLw61X2kDkbYBoNL3fOYYpjEKoY6AdGoI+sSrKxCYGwqKFkNGCINHdkWRY/IwDDZF0Sen8UXnrIi4YbwvUNgvkYg/bErZtpvwJoBHO6yjZNs8HW21MagY9WAhr2pAu9b0w0SIJtUURo3u4AE3pAeidHj5049D61Cr7Ty/nCxZFTFLWnh+8asgg/A9Zv7WRCkNbHXImO5oD5NV5gVM08QQ6MUL8hg+3kDqMHfv8HrH5iE9jZr3rz4MRozcYtCn26dbwxZC8mCgo1C+e4FoAgthdPaXp0LjQotHwFUMke+HvFb8KIND0gI3SZc8AtwrKQOHzm7d+pbkAFFuk5tRoMMF10UIiTrf7LDXHNcI6MArfLDAtOfLoOAabpNN4YIC4jKvpwTG9YJkL5+TfkyL3F0xbNiTf2YchiTw/LQM8YDE1hgfD3hME5VCDHRBPTH7h8NaIZHegm/nKaONn9ZU8/OUJOuoSxsIP9YXTbaQ9Gpvjdu+SNdyAy+z/AB/W211JupC7KAjWPciUhV8OpDwGg3hI2T1dG40YrVdHjDGNvNm3tEU+H5M1QQEjgB025h6xBIex0eQU8w7nZWGA3Q4nhO4Laruwr1ebL/rC3Ec4Mqd/7zhhkCL6RL+oZF+o7KU9HzJ3uA1CfMAKGxEAEtHet1+x5BAhA13z1hBt7mzXhw9HjHFNlApAJueTt19YQGh9CuIc1J3ZgzFaiWhErUQ5PGNIGiNR0qx635nMA1uDSFFlqbb4+sGAEt4gUNV8m8P/ADHudL279OZMPloROh+fy3veBUtC/TIHkE+snHgEDCUQ0JN+DHl5AUiKoE5yYica0QPUk5P/AJhdDRSQNTQLq3gLhX1QYigUC03ssTIxdQRSKuHsJ95GrEODsVRVg6XXjEnFnJVPAdA0wvMRsTFS6LfC6bipqy1WgLBkSQ9+8BYYWi0m+OG+FVSvtegV1secaeSyIIS6RYPjzlABRBEUClB4mGyWfVEbgoEeQSmHLfm46qvlO7JrFdEdC61FnXyGamBd+Iowwhrb14odx0CH8DRv8fzhhwpIMegYHj3l6hgO0LVstV/HMOb9KLEoflPGQIHQqHnTVXOqemRG+b5rzzk0mQDE5De0hrCF4QXQ2MO5RaXAnUAIIgAa0/rGHxFZq1STpLswPQ6Qui74DU8YNLZN6KD3/wCMcFwb4kmpE4EN53Qk56Gpb3RhmB0IWeWB3TzCPVSaEFeWhQ84+eCaRqWCpPL/AJwFIzNgYICTUIjdzCgTDkB8oTWvNdyzn5VHkQLO/Dc0WeoOhCJaK+bM11xCKpR5Kc99xkpAC1uUkRdgnI4nfrt2CX6HvrNQB4hU2O097m/XcP0+4QaaCGgHph8KTDYyLUL2fEB6yEIVhYmlIDWzZvwGJGQEqKGncDquaiBvChdtnibLIRDUoKENaa9+3KsTsSbOqLCe/wCM1YavQpSc2MuydcrlMXBgOvox3Cu6wl2IDhAXmUmNApGLo9vy+zJko0DDr2w6uvVhr5KG3pWHeqfjCcHK27gFsXnO0+cg7azGUShSgBs+ZnaNsKaT1G//AHIgUlvn5Dcj+TGVetG/kwV4mQIgH9+f8495KWiygRF1K89hAEySCLYHwF9HW7wXgEwptNu/eNArRpU7UijR8NxgQQkeUjYKts0rIYn3NsIDJEWKm9HmQTLjCn4bgo+PoMYbJgVIAWjFeF9zAp5EZj9hCr11YGafG4kEii2SH7ygadJH9J1Bp2vjKOmqREEN6s0FKnheJpLaLq2JEkrBXXyWKd1dFvlMBMRRNzE37Jo6zkQwI4oqRO7Q+7lnl8cVJT9ZByFNWiVX8gYRKLcGtTFvnjtg/wBK/jIzowtECg3bdZIfBvg3UIXQenc0lBC4fPE6urngeshNNk81Zs+F78YJC1Gii8IhE8nNYIxvGUK8FNj6MiNkjSqgIBqnsddJTB0FEhnFfRrpmij8jolP5xiOIAGo794I2I/idoGq1fH4xgsIJbyJgN0umwMui7U+CTqChZwsxzRKBQATvrdeEmzDTOEB93v85IEtcVAGaXZeGFgtwPIa1sR/OG3yyRQo90kv39GXL5oIJLPXj8mNiajmpt5W371cEvVRHfCk3NHnmb/Xelhg87P5c1xWGIguENOZRuuwVuwoGIduQrQAs0FZ7wLBU6cAN0MOU3vDkhEfGgQG9LfxhZYHSQbjrX8bbPmArQvFWCuv4YD7kaWaGP8AE45fAIpU2P7KYe0WDRXgV69HdhloO0abRXNKkvbAw+PMBqHzor/xTEGmKk9Gk2el/GRA9s0sDXPGpiVKLKoKx8dwEaUKp8Q9vcACRfEIGXxyYrRISgCfQi6y1+3GCNVPM8maAuLF0So6hiInRJGHB2VkR4KmRQNxAfiEVR61eGL0KiJQsDnQYEltXSCSwpFJ8/Bi0/0PhJQiovvArpMCSt+iPhhV6YZFQE55uvGN4K9A8jW0/pi2Ki9jwrB/OCopDMrIQbEp97x5GqbqqR9cfm7cF8SCSNOB4s7jsoBLVlSOquTjLOngbi3kwAIba7kAzYfg03a29i+S47fxjkWx7SWf5witEBNs+8bZBEUxC+jwJVhN2PAiQyg20sLLJngdVyU2p5dl0fOXwgqtgDbyii+H3TAIBMb78P3s/LhIl+n9IKWp55+lnmUWk6aQF/yuIWuUNTQh13B4BQQSN6LNZdHnRBBE3GN+JiweLEKrftNR8rhkIKJrASb9J+JrGXYvwJDfBzWdtT+CAswFDV8lHY0JruEuGhqTp0BKIKi2CS7gpWw6hTQEmRa+LHGSuAFEEqEp8DjlNy3o5btWa7/eIroak8KFiijIfJhwYMSBqJCiU1ePw1aiuzB3wGGvw+8DxRpoNIW0nskcyWIdlX0ewDy38MjFJRC6DqFuveLJ6XtYANdveYmbH9Q3lIFGogoZFBJVR6CCV2fMXDJuuoT4IM2fgPGTfSXYKeCKlLvzqZwOgeyK/j8mBumUlDx1/H84QEtJ3iX+TCtiHHO9fxjMpqxG18C7fGTEl6H0uwofJ59bwN0URoFBtfk8/GMx+DbasNoCWC9UAcUWKzLwDNF14+Zh7D6yoEPpT6r1jsqF1JofCpBPnKUiIKTKRULWLdj4TW5dIpRG7QO/PMkwvXXy+f4wK6jFCFB5T15wJCdRumvo8HkHw5KbQAlRQN6dQ+cvdiQJRWmoyUj5wA0smrnBYDnlcOzKEGNwegX4+cDApURF6VHrtOjveNI9XUVC/kRPxi9aG9GgdAEFU0K9DE5CU1XZ7haPSTA2g10ZAUut7AwpqZoe0+DFEaVPYnRFKw1uIdC+dJXznjisa+8KF17QwYdAQz0HWOFcliqrXtFe6d4ivBSWiagf4YgoI0eur+YHj2ZRBcuMKxrZEB6TubImSeOcDY4hhzBt1USQroDmsmyieu/NjGZfVEDvln563itTC3EAnVZwHp84qSDsooiH7uOrLDOTZ01nw8pjSo6AVAbRB9HxglHe4BMTW9/r3NJwxbIlQoJqo03QABYoFEjFAAsa/OHGWGiRo2bScRNjmgaP0GgAjoGgdniqFylR0y+0wMVQTUoAJyBa0hEDGmTJ4sCn7H7xyidaQCVfLFgehhqTdxhu2jRGkdExdlA27etAhKTRd0xIlZ8hJDtrptDiwooaL11YbIMnNnHeGAaoSqQTxDMhO+nsNGrWFXrWE5tQbqE2UlANeO43XIKEKKI37g1gR6WXEHQCbPGJRhOBjVd10e2tbGuLayy0+kz61MGE3d7c75a4vfvLoGUoj0N9Rh2Kq14ql/nHQkNqEvYJQBxSesOm+PR3fBdtkVvrX0G0DUBhQni9MFwStAgZd6Dn+MW5pU33Y/MfnAnI1KCL+F2TU8MA+KHzXl1IVfIe3LfSGmDRSTafQOMEGpDcIga63kvFa8Y1Ot29x87xHuhyAQURa+sDXhwihdIeAPfW9YQ1BI74B8qb1PN0DNSA3b8PvHYhsXQCsjUHQCKiQctHIgraiqpqP0wANFqSGBLU+LfjAoZggN467FKErpDIZSjEaPHqSt74wwJCFA0S2U2dM9Y18bWODL8tqDpJMS7CSEZOQihfnnrYVxAgeD0SWFpRcU9VMBIu72uNr6xUO2fdWk1EZRfkuEJQNGl3QgPQ06y5FEBXlFppgC8Z4xnCdDIVeBKFosuC0/AYNljdz7vzcSG/VqhQFgkvn41g6kAMBNopvziG08bwI5twieajJzIOsqnrFV/GCIdte68M6YcoG6/E/TNXBmTkOBWBIRmrMAIWhDIYPgA763NDxZyQrqAOsGDZrEGnyZdXDApKskP6EPrOPgmFCAdaPP7cyykZgpYCFp5iUXBB0gwNgV5twOHw7QENuOx/I5H6V0KV9+sk1UNLAIAG3yf2yOqOpSKnr48DCxXUDg+Lt7fOsfKrOsAAh8HwDtxng0I2LAL2A6vU8YUiApEAPH5ny3pPmOiy0/IxHqMJoESJEjNv2OgBGTk1PVFJ3h94IFiQqhIB89/F2YBoi9HWleWECfrN5MegJgNgs1qfHHQj3zeD0NFYap1C6YlVJvFNX1sehUIX0esOJuWUEPLBcNZXVTUBFs0DYAxxdvhBuGgEUCLOekSck8unC2IGHBTDliQpfBXXf58Y/wAJyvsz4N/jESp0NPPRoE9H1iOjTcCmjY8fI81m0hEtJdv4NY2UuUJAAniH5dkxYUtfJ20EggEt0YnMJZUVWedBrDO0I0A+dfr6xlqutA2SC5EUvSDJ2IDutpufvBI0OADe/wC8MKUNaBXwWvwOGU6wgiVsp62lI487pWQN/h/CaiZBtA6SQlfMKBddNkiIMAVCkmuzVxjWa7AFjo6pprHmU1E06IvopdXzjhADtbfa1Rvtr6m7tkRAtTR8nfvHQqBUg9ffO+cbOSumLoURMni/aHTqqDni8x188WdXXgCiVjs7dfGTmsuxpbz9YDQmsSPYMi1ZjaQ2IhPPC3+cICqJSt1izaHcInVrIBWw288ZR30BdbDtpt73gYEhAxuUala1wx02noqVr5V+3GdabANWDFNGvZhRf0jcZFPl60YYvsuroNzauk7rrgpuRBIAHiHZw2+MWub66eWMKPiMGUoHdEllBCTdws7xCiB2F6k8R5zc5XYS8AbBQtkOuCV09UIfBeivWeTjQ100BWPt0L8NYiaRdYHx9D4aTFOi5AcI1tdLT8XN9T6daju6x5eYrToCsAoJrb3L84gAb8ajQVlfnG/SmZyROEWWzG+EaTs0Fepr5+cJDkDQBRaP1grg1ceFJSOrx8YYIoSjz9B08mbTCdWK60CN3w50FqIdPC/0YiLskSTDaJbpRwSafBICp5nWcHCim9XCPd3g6nDEuHWbWiKfXn9YwhFfrQwXo0h7eMTJZ0QOxNiFubxc6wTY6SH/AMZX9NZs2eelef6z6QIasbkaWp+GeLKwMIBBLIaTqfjuRcqBKiHOCtpOoliAiE2AtZwgO+A1jXXgDUEXw8gj6Xg5PAmH3Q/lhOQh9bAG/NHw/eN6oKPO3o7pBzmjG0agEFSbPhPR6IpctXgmaLM9p84rRfavIkuyVxSpevWcUffw3vNsZHB2BG2wl8831UCW5J5cEByxC1K6ZaMPaasAOI1P/OCsPrpCidoIx1TEgEZqpoP1Bmo3tuAs7DQuwhTebGMiAAj0AF9ZTBDRAGkJHkLabvluRmCnZdOVJF8vhnFGgEdKk8MZ9/GCQ5PZLX3zEHXBqK0FSVGX9ZYvmuCzFlnmdw6igt5NH39hTzhymsA7jITUndLcRMVjn43BFdQCOjDjhxhiLvQ8aKGUxU6B1Z+ATGvCAhDt2n95tKKEUIAKQ5OgyhAUm78mRoeuY5jScn7Gv8es4+5HFQBpE070mUhAJ0G2HgAOvjmXcYFoNaicvdPMseVKJNIQjW4B84LGo4gDC6KfZ5OC4COu2wCReD82x+DFGy2bnK+Z+CnjAYb2zEaPh94Vg0r4CFralPmBigMIoWfxHjnOYtU8OZph0UDVpTqK2uUxAvLR0PPNgGcQUiiJONdmLOYSNpbeU/VPq/GOBSsfgjRo1HCHJk/BZwiIEA0C/GWkHTWxOelcZpolDNpYNAZqp5yCR5ViINiE8nxCOAo04oUiCAfXvBVwyBpCQter7wMKoY1UER/0YS7QGpZrRODzdHrEX2JQazV5VfxizYz1YvgA51ujuHjXNpKMvcI8jv4MpRyozSsBqrXXlOaxU9AqIqDWkr5+83eEPsG0NInPvWDgM/kQCwpSYBIEggJJDYaI/OAGZUF0JQTzz8Yc7QLeehFFRL8OGCEc25Aamy964IFZVqdAAdZCiewX9OATyNQVIVXfM0Y8IylU0R8OvnLY/wAGBQJRp1EnyZ0dBQptu9095YRAV0V0XRNeD6xSY/meNtFUHOuWWyqMGvoaeD3jCWQK+0vv84cx6QAr781oNz5x2tKpFjZNjHfv2zaqINaACDa9d/i4QENyU9MjDx+MJKZNDUalNlN7wOgUyhHfshu12YnZTNxV6BKZfLikxSnQAHgaN4xjjwQbCHabtxJWIUFaoIbTxisfUMcB4NM13WfKa2lAUc+bzF9rhgIUo79HBuHc0Nhl186YqiovmgY+/wDTnIKiHS1i5ZgmWNL453GeJBpvAFOXf5EgbdHsLDRRCa0DDDTlLwG70gC827vEt5JoSolZNTQAhcC7N9oE7b/7eMccqmqnLqPUpgxvkxxE+UGNr3rlbzd3jxsBrb79Y3JstSkNY2yTSJmrEZUCKmj/AJDHfW5oYBT/APbB9wZA+ASA1/Hx4VvKXzDPp3wDHgEgKpDo3g/nBdVBattdDXtwm1U6DKNaFt/GFXCDLj7Ry/4wqtbe0oE4rmFENAh6JuBFovvEJNeUHREZuGEkYD2gJcKeKbT8fGHIYEeAh31PnuHrnGg9T8OvjBDFEfBgNOiPSbtxb0K4DSgCjy345iqdFmRPQa2G/GRiYCyhMUVXq1r4wGrDfKRVTuvZ5Hc2nz6BQGAxOGgM2ruuBrXk1PfnAaVREGueXfM2PtJ0gmwMC+Axx1btzsLX1+ZTznR/CrvSIRuIJll1IlPt6P3hDQ2crR20t9eHADPkIgVCsbJzWmmCwNZoqSpdQ6JXcWqhQYhaAUph2GHBCD0hUIqc+LS++RrLoMGh799HHfUckyaHfTmUMIJcCq3hwmtdlagGaEE6Cm+mRnwLwQXRaUOeTC5CcBasGGR/WMY3Ykp84kXv8SiKOBgk1g+zhQeC+Tb9E2OK/NckKqAgef4PmnwkSw3CbU0Hj1ksMzlqgyRpdzNrhUE6o1tHNoYZZbioAtBYAqZTl4XHskLNiOsNWEBUJVVrt/lwI6cVAaWeB/WfBloOGbAH373vFeATNCdTz+sPoaQChseqgIBb2TBOPgIuCkHXKn4xCBWKAeq1PsTBQEFGwLqnqo/jswmFQaAZfFN8d8YG8Vr6iQMHDae8BaT2ENTZLD3Fx2oLGUMQELsdOrTJgogQQbA2aYIskhobAOcs6whwmOYIjhtpLbNmo12ZEnboi1sdChR8iLaBGmqtNaGKWcv2b4HBC9F4FxqLUtuAPtPONCmCxPROqAYBQtbrUwABPOkU2Bkm94pl2lCC12PSUpjTBrR9gXXvus5p0DiaBCbPLYbfGokneVqCryb+G58Ed6gAgjnh8FSVYeiVQqimlvxjQd1CZBsM9RdO9XFDhSUtHqqbMfG48p6WAIF0IFH3Lq4vSkdpx5rAM2PpceER7qckbKEYFdbwDQf9lXaLr69YrtgbERB0KK7361XiwawkdQA6Vun5wmju9pH7/FyPcO7jn43jO0hft/54CllqPIPaX941B03CDkVGx39ax2ntPlew6F+PZxMniwdidGgAPRX0g2CloJsa73xh9Z6USY8ry0uz4uTsD94VToHZT+FwIYervOGVNfFuTQJa0jKDsdp84ZiaXUKb8h1J8XyYXzdMJGJsgJUrTjvJIjqKAKXQRBdVqKCMlRiKrAFLsFuaCBaVj2RKhfvKW0iGVGsyRv8AGEPN2NBuqTovyzxkRwn4d2AqRj41hFg6aQhfOi/FmFmAOHqK3T65TD3sK1WFE1vyaJ2t1ovBKMdYaPY6yYZRYBhFvtOnfGElABpaQ2h0H84hbpK2Nf8AnMIiHcQC9kCTCwnrS4WoxAeSECESTWE9gGzbUmlBXUypBScARRroWezCe3aB8EoA+uTEOOUhd+Qga8eMYq5zHtSO9ecFBAWQ3NZucuEKxwVWNyNImg30svj2WhYiCBppZOYxfWNiNgiKuvh5hj8EwSAuj4ddHLH7GVFPd1uhrKXm2WA1a0ylPnHs0kKc2VuV0sH8DVIkgpofJs7NbszW27CzGA6Tp/G5NxNYL626TVN7cesU0oxPLXO5E9itSAF6rNuq184tpaEc0gQQb98Li+PSlWwJ3fh8a4YIu9QDigGxH2u+4YbAn1TjdVPDvNpC8OpUUNtzbzeYkKiR1PYet0KvH64tB05Yh3HJMkAY1ElE757mlCn6IIhCQ7XvxjuFCVRQKoSLv+GcMj892fAhJup9YkA5wlAUgvQmi2ZfatR0UbrNefvhu5AiegREi9r63p50SQUFZZZ84O0D+A2uACRFUtc0lBveJg1bE1c0miJqpu3KEArnYwCeVPa7MUOGUOKa756+8G9ka7Rgo9Ka3L3DOldg0bE2gb9x8YrgAyZRpac35k6LusKpoT17N60YDmsdWtQCoeIesN8LX4dh1UZNWUwAfJTTIiEmLXybNvXQ+HyhvOwow4x5yUoApsf3iJcnpTq19jTD6NRCUHvrxlS6/V2k1BIU8zzGU0IOygqWoPLQhCEpM1JafaGIaAi6KvEfd8UyMhDQ6U7DBBoUZcW2HItI6oW/Ls4yrKdGrZA0AicmXmLLoXT4GH2/DgSZSLXpLIoetp5Sh5nWoF4aihpmKlCYNWc/GPH83H6qWAsQJUpSqdEY0NorqjzfDM3apw4ignt7gKJeoJQO0lj9nTISkeTQ7UiqpzyuQhM0EwFj7uCKRJXZpyADyjiDE9Fu+4k3+jAAJ1rySPaM9Ece+F5CoFoKlCR1rH9DbUCE2NGiNMEaxTgUGwXh5rxhI7I7QKAfiqez4zaObXd0ugEtfLgOgWGUgRxoG91vAWIbvET0Fgd62tMCKgdIsWanyP5+c2CdKeZiNPuTob7m6LDRKELPku3AgJQ2AXd4PBqBMb0cLoOgQijYvSYb7BBgqDHjl84ztHz7Le+TXxjcXR60a2dJob3vHMgJHhevzjBQtg2XyR/RxE9ybakVUFryO/WNSL3ezIimqnfGHramNQkdNTrzr1McE2rMViaIvr1imdSGQoJYS9EPHjVgWYg+WNTXg01dGu5zejtFQJCLsf8AJHHcUZbPsGpQDrLu2YIDXASJY604pgjHU1SVAGWoiCjljNDoABIzTSa4GGpoDboiZMUJMVA0C5p9zznhSuINvBLy6WmAXQ7ZKOv+/wA4vmteET05XlPaYZSqHIKipZAsoexyQbu2djRQdBGiWjg7FrTmLL52vhfG8Ne6f7eXsgrsRDeDXhn0Aj6eYtV3gM4Aq8G/FYvLv5xojsIedMhhnhFkEKsXF2EwJH1KCfPhP4uLHTm7dUXetooLrWXXRSV7a0kieZPopxAJIwGRRUijzpM14THsIfIpr9ZUJ/IqA2azZow1Bc1ih7qDViKr3R5TG33fqanPB48bMg68VsKukYlj4cde2JARWax42Pi4qwhIGqorK0q6mb8qI0r8C1/eGtl32RX9Gl/XkxNkOyOgLhbidhtdn84zAUKzSX7+sLJvYCIAS92A/ONnbuSNJ4EU33twRNY1H2D2AYxNahgqrDzv1jdp7iUH3fXw4r5AxA6BNaBtj/MaM6F83EQnnT5LhpruqgNHAgAHgxNRokWoVRG849wDuUMYCoKutUBgC4AVIyKg4+fFDLJ7gI9aSEL1h6yhLNKSFstavNUebvvxHUEnrmFhUgRgqAOmhKhq4l3gEgNxjwPzhoKrJUhIdrTkD24AemMAorvsDf8A7hoLYo0igHXvfkmATDaDAHUAoyh5iYsO7nC6IN1FsM0YMAvCChrlj35+MDj0jYIhvYSsiB6YRd3OsPoRGqPETQIyQKW5GB8B6H7PqYhgWKnegYMS3AApvVJB75eABLio56wKMBIHyuWL4QeVX4EviYDYLU74ERWIxVbQygw4AQJZxJNQXhvIt3wQIq/JJ9uJLdPCcH96/vKCrFLzQmDCfDUNHw4QsagaJQewfxj0tEKAkOsUUa86xfBoKqjagaLsuecLFA7A+3fi/vNPJD4G+EpNesiwOItBJ4rDa9xMUnR8btY7AuhcSqoEtjlUegEOcxbp4CVF/wA4Z6phMqPKkRS38KMjh5ND3yTxGuKfakKSCOyrW597xV3VzQoVrRQEAaLkOukAr9AYgJOIg7GCy8vvzhzan5INCIgvHOOltefUzo6hqR0OgO+9hm6qJahYEdh2ah7xPJEazUippp0olF1gtU2UX+sYThQVPGNh0rrLM1FTc1wl5R8q6hcO1dPvFqLU1IXFi+F+K5T67+bAPQWfmfGaeUv0AKzoeKutpKAB8RDV0RPKJHaSddqqwIYkIqExu1pEbXqzbxdBhI0U+XfD/wAyNkPJLjKAA0m8ApTFz2oAtYRaDgWDbEXqSDEt0wKOVVgC8lH8WazRgbRDRKooTI7QWCjLKjzgKKVmvpN4xXQoEJYY6heXAm1SLBAy72EpFpHaQAyAKCKqp87wKbAESjAeKtzq+s07MmqQAPO5i1+7gMQNuyQJ2O8tFuU3SHvbB4uiObt643vtxk3jEOogSvNoKEc0JoKJ2wQsQUJrzkSxwYJ79VcN89tWu4SDUURCowmj8BLAF01XXxhdXVNAuV8uj+caIGXpdDoh19iuorTVuKrrtUJ5K6mdyEDQooGuyHAy1GQQw6LV22A6pZKo6nskoEUJQ1TxcRCLIlb0Qk4Pc80K21sV743hIowCIWBQRknpxfSL2CCwmpm3sVwj74EBdG14NbwzYA1h5QgXfL47jZzutQcrQMfznYLxWnw8EsWOC9RZkPRds2Xub1AHSOwEOh5J8DajYsgd0S2KCe8X5BCoTQ6A94njBGIewkkpJ8613AKqq34MBX07PWMaUCNq+LsvRGvnlagstHYHwbs/HvGNAgPAGr3k/GV00C1BWV1Up5dYFPiok3U76lV74w2hYLstiBT6o1zDViKIYlB4GjTqesh2JYcgmlB318ZWHjIu0NPM4sOhcaDimTQ7TroL8BjIGuEUHRQET37yeJN0OgvYBXXz4yaX0ERAbARpxd9uOlsWjZm4Qqz2+cYElYMEK1uz9mTsODZyBo4WKANrCJ5CL+8EOwMCIbSqeLvzrFce2DJ0iTsFpcT2alJUoMFle3GQyzfWtu4Ha4tlvnWq2eumEAQRnbNf4T95yCKZ2SP5yLUXUDRjWvGF8okBdhW0GvnnqLGdnAltA0Rl+BgrAg8v0RubufqiCG6nY9/pkXoBB0LAbotQ76x1Ruqpxe+AmrLJDd7cIUkUmj5r6M0gvLEdSPk5cD8cBRXNmmvJrjhVAwbDegTW1r4Mo7B1ndb7M6k7qYt39iFge+ofjO56VjoCXGzbo95VUoPRuij156x4KNaD5jr6+M8JSQVHniWfjBHbSmKolZNnvfvLnFSkBZEoj5+HET88sdLRhY+HEQQICDwpN3wPvEyOrjatOutPzj4CWwQx+8vLBfc2h82PrR4x3bg91atou5+D1g9I7aoQVgEI7iGnmFvJvUSOz0HoTuIVRiwDZuxnJKe4Q6KIaVZezYL3bvJXRrkxu7uFMAA0T5OUbjJ6NtAzu/8A4XEIA4Hg1ff3kISQA44Ep5b9/GGGpnZEK30c948wLaxY1dsB+Vc0PdHSsbJtDlwvREgAVqtH13xMAcCBlM2EdIGtuaLELBM0C2bV8vjHwdK9hGlOlncNdUgohDTHfrT9OFcOSCiKHTazdvnHJgqDuOpB13XPjNgIqnG1SbCxPZ8zAkaDaUehYGnzdyEwO6W4BENH4Hzh6yFDB269vjLJEL0MEFrtuTjkDwhapFHgsWbvlMdXPYAieeqhzk+cuqkBN2pAplU0pjWgEzqqrRVHd8GObjw+AHp3UYYqiKpdaWTehPC+Zjqo9Sly2I4WUckcG4Hy4L/IPRuxbheii3inXo+u51i4VPASk0xNu6b1uLG9B00dT9MJtlQl1beHB578ZYJvEIxYIPjvr5zRXbwIiqeAgV+8SAAkgL4FtN644MeoQRJ4/L/jHveMpNgIV379YzDchHR4daU0Y79uVLYo7K3e4wGkUAOyLzcpfOQ6BQEKoIQeZwwn1Cga1U2N9Ex20PUgEk8i9+Y48hlmB7K6qhq6VkuJp4zAvi/M9Q8u898tNaqvfL/BkzDusChXe9yfTMH1qpN5R2d70RhldoQAWMXRA99MZ2ANmwBtbdVOfbTIAJAPJB0GE1Jq3mi2eCv8Z2+8btgWD6h7xhoJInTognK3x8Y5IE2+W0qr54ZpnLYwAAB3qrUq6DQQlUa7RQ5qPifLjZCINodHib95GMQYCoNd6XwDjtVUe4xXy3rWzWTEtRRIlgk73195UpGxfY/jNjQRryJf84lDiMYsdsmzKczQjS74AhTy4jGIBzsnBqO/eIsmYe6mkvPXrNWzt1YaEABvN77g8oFkJVTfNrm8XzKd9ewR5rRl+oiwJ4OiIeZtx2pJEagAKlKnyG5h/UBjNVS0z55zFVhzW0ARNFATbgNsxkahNXQ+hvLmrnUyju6U1q6NI0GbdtGbNGvO48YegwurVA0xHrbKZ80A9wKTm9Yxvp01kAeC+btfxlfLAhFBXmaVWlK6dhooPAIuazQQVuCG1HOFZgP8LxFsadgTxa5rIAHVYTVHZ5O/nFisWXdBD5QxnV0zsifxiS82jgW9lX4CG8BUENrCgPJ7W+ZMm1VmhJqRZTV1iAL8sAALXYDzT2m8NOl0mt7vvw9wJpBVb2IPA76yi1SugXoekGz+clQggCaxW+fWa+EKIjSS6im99bakWcUAQFLs8D88wOuxoCNBCRcP1QeKXaMLPJNmKjwNZQfhuw4y4RABPhhpulTzc0Zj3JhZ56p6nnOr0LrCj4onNXU42+cTCokCDYB6O6xIQibKAFFNVfnmRrdL5gpuIXWrifkp6IHu32ePhziMIgBDUU2k/XjF3W5M4IBpOHwxh7O67sJRKkPfM9UwrChVT4/OdZJaFHUbANfH1lMOjgFFfDSb86ycixEApBBSX1rXDB1NjJoSeU7us9Yvjn5KhAjauy67kMEQEOA8624ghR2tnkymEfCCoVEXDTj5IdaYwPVpFQ8qs851MgwUhqNkf/MJJGIhoa6DyevWbhC42DB/mfPrA9I8GRFUoKUdiacoLUkDAXlQVakEwZaEKYI3GxEs05fZYglFIzdFm15+cAFxmAQrQ9+Z4RGZ6JA+UAErQSbSvnENYDiWGRoUp+XrJAWP76+QHSL1NTAU3YWzw5P7MPLVyAVHahgWdNa4pHmKBIIAgqIEwB2b5qYpIgiqbwL1JKS55WJ4C3fVyEHi8OL40GItisuSBuxLq0eHaaAY4lpS7AfWgDILtmqsbU1TZ7yGwbVGzXXufcyNsVlisD8j9OIjhWrRpBVtE7DfXBaIbht0IJUvEjPDq1LdVmbbs8z3hoFRNC+T+ofdzyQZYmbc2hAmk5mlJbm0zXpF4t9YVThNQhuJvr43M3WmOqmiU6Hiqb3MKM1jaAUisLrVwdSpBgYId5x+MF9+ja2UFrTgcS5tiWrSWDz2/ExOV/vUErUJ0w/2CyhEp/3vAedH93HxwwYCb06NceKP4xQQiBwTtl1xncFv5iUgRPv0fEzsIghFHpu5NZC1VAKe19nEIKo5AANUoR1zu8ZisISSgd6sYyfOJKBpq0mlIr1vX5hYZp3mHKT0lI2YoNISNimz0IbBt1kW6QIKxfZ7CffhOtrloiFE2UXbrxl0kiADbjRatknrHQMbWHojSGyujncVtA0jXiI+A8P24iy46AQIur4+t47tXsIgjyF0/rA2onSKBD6DB8nlh0iwgg33MNUWdzgw0DGrHmjDLtYUQ43mdfDveDnAmrTTBzE8PlmGN2vWmobbRoN/iQtkN4hDEnG1j7Boo0tr7MdaKseihVDBUR8Ga5QlNPWwm+e+5rgZXsWzrTk9tkHECxHemzNSMwaKHZq9jrbdwLkGqRBAWj3T4xzBA2A29Th7+MRigJgiLSKC+N2AzvD1ghZggC7xtKby/Z94FDiAN+PHPGHAXtShfBHgXFkxtUGawDQh5c7reO0gGBgRgQHZNj4xJrJHBtHI2dm2AUWhBczQkUaE034mR2Dwto22zYzfGhm1khRENkWLQ86dYuRrtRiIxHx4eZYuQ+CofQAH1nkntggq+/ScD7L9a7Wg6O9E1umFg2FwgC0asF3wW4ppSWFTR1/j/eXQBdVBGye6/Dgh4ni6tBVfDG2rJgSDYKk7kBNrC2Y/ncP3kWcKeLPGBS5XPRAk31AZjilC0jRWau239+FdUJaG3tb2c7gBTmMVEfMs18fGLaNgQyTjqKnF2ZmvdyjAU7EjwgwwFlGi+bX+zeQyUxbK717/AFhohSlWmMv1Tnn3jvWroR1GxN8PIarrNgi0jXQAZInFQxEkUpXT8n7x6YtZRWD4/tPODCCGHtgHQERdNMcR3kE3qpUHVb+SQ7D7UCgxFfQvpztQmWVbZ5gz5xP11mkdLwHbnuesaHwgC0DCdhxroxgQMy3hCXQQDUxTTJQIAoS6fQs/eAO73IRtH95aj4oddAX0AB6DNhEBOKgK7IoAL0FIh9ZQAEJ2rSEKatEclOBiMfD475mOrgyIDKebv6mOOjxqLoFgBFbooU+Z4BsTgA5oeA0ZuOfIENEfNAHwubfYDVE1fhQnn6ZuSCQTtRjQkQVvIAKBNUOg7Hzt948HdHHt9YTvA0FCyO6vPi3jQ+SwKYkapAtCsHIQbddtLZ43vJdmlDdeJvDRdhNKCeghZIAUM1WC3SYCpp3HG/esbXEXjbb+SfhwsWpVsfBf+8GI4QEAph9rqdzUsQsFUUY82ennwqWZR3iS1umRju6xBtrUFAEogBqYDVgBuQN1QER9vvKclhlJVfN8h95oBgCeBU3vsdcXeAzdML76ZOgO3klyKIMwHCklCMYPJqkNRqfkH4S/jxje1OKYGfJ+/wC88d8DBSqZTz47gkbOHjSBsGio8jzDDPIXqanaFL+8TeG7GAdobAaj9t7+cLg4rBSGrYMUdvEV1BUvh/zjiMPJvPGrxt8YD6pHpCJKBQdlNUuGd4jaUQeu8DYYShw7AQV53z4TvcWhBSCYNW7y7fFxGetJY6by1Qu1QAbojG6BoXQPgIKtAUEQBL1pvWLsQnMMqO6KL8fOaKSmLIt3gggT0Y0Hs6ZmMAVpO/zhnaEVlKyY0BhTjeNU/RQa0vQjAW2BHKqz+nG6H1WkbBBdv6TMtQrZ3UQJsbRGyzADg1fFH+8NENPAN1a6NaRPWISMlNqiPkNaJ7cb0hEEkFUAnm8/dHh2Ehdmpu1/F3gr5DDYHiuLNzYOGZUsb3UVV38uI3QgXUU7ofX9ZqgQIDqzp06HuMIkMoCdI2pqTQTALB0A0wD4WD5l85oDPFvryq1TScfBN7cKdXAsCM3T8HP1ULtVBSeNzS9gUlMEBDUN+PxjcsWoxiFtaNAC4Q2CjdMTYPyR5SuAMO8VCWF6bNg85ZhBWt1ERAxVpo1i4l6xGgAEoUGvXcjiJbQgkLyWFlxad5ta8NatslPbbTcY+kpAGnVED1cTqzVeAUNm7uVrwEBzLyJ1Pn8YFYbm0C0huuEazLI1qB0HwIPR0/eIZo2SUSBxsgIV04UaxS7sgtpKIdkoCtdsaoQRPH3j5OFFFDrxNP3nFf8AwNkGti6d6ncPBNE85doLBWg94FgxNqKEIRYBDAbN64YpD9NNi4h65B6hIGIhB8OYlJCzLAijcXdoBjyOi/ahGoBdplWX1QvPQKCEeOIQFm8BSPxvmA2RCjNjrXZH84XKRwMCBEd1ZueIP7iPBWuDwbGIU50R1VYPh8+PjBmXLDteeWvGzuKmxCiELggAKkjzHN1UhdIaQq8l4TVdVhSkOk1fpPGLV6pDtQ4IO/4R2EDaenWBAvntivp0cE+4uwP5MmQhUymlxPaUusS6WSAZO9uSicqZAI0TqBvdhhnh4O1MiPbNF3ji7bVIe+yhPTox0nsd4R4GxdB/OPBlkPAp41MdASJqBd/O1/eCGm16D/4yhFkHa1DAatY0Ut775iZbklItiLsQeim6JqIUSCg4qdUYlTyB4cR/PMHwFMZtAPBB8ecDIuDUoeBIO4eDeA4MkQqJGiQLeJ2Ua1CNCKYaKUUNisIEWTAnR531/jFJgxZV0gmLPH5MtNjAyNRb1f5blHksSBGbIJV486dVwP8AaY6QorTJ3KKoD0uocPOEESTXQR/nA8oaMAhb0rsUqXGTbSh+55+s2xNaRaWqFHvx7Lv5y4jAmaSWIj5GYXwqESq6iScJWYsnRwMwrvlV23KrBuGtSu4rqw38MMMJmxSd4L4+JPIUCbPFKezFFsmVRqzh5c0mOA2FESOoXfjZ3HMILW6iwwCAx1XTqhstkrYbTspT1R1zlvFlUYXSrrbL5EVbzOEnScg+QH0oNuoCrvMWUVoUD3pQNxIiFzKBxVG1eZtEClgm1pDzk5Txk3omQXWpGAVQVQsZkZxsRsaJVwJLXebAyFJUAbYTki8zJU8qTRqTcERAt8xdNDTLAJsGIpptFbtyU5nQBW4HVxekoqgnar5k+F3crtgAEADEWtMCw0TY7aTj0jFk9AVt5Yt+cDR+SME1Ro1JCrMpRRrBuC1HgmuQcYXWkFFLpQm/G6sWAlDJauv37wOwhTDALimotsg4EyANUApoUACeVj6c8Yg1vjq/p73HBFmkw07LGWaFiIrDPU2EWthJv4bAHVUYqsaFd/GX8v5ASohC6TzayugplKi1qwnHjM0sXAeSTr3k7j22YAcaGOyLrW004IBb5y9ghg4oIKtBXl1DqpmeQTdHQa/BkgMON7U4ApIq66Fuz/LBEASZlZegrhbPjDFBQHUErFuM2+vGHJSsY6bEr57OZVItkPwIQaLWZJpy2Er32/buXsxezqFdnRy+D4xKoUB54u6qlybNRJuAWDOLPznaOpKIhK33lVqqqkVDHthp7lpEgoFgFNaLskYmFvaLxo6PtxD8cyg1+IMooHohdpco2RRYSJAWoPxtyI7ZZDt3Ni/nIA9X1DQHlWtc8AGwrpoITQdKM0E8ZrwrEQANege19u1iLS12kV0pwd3rNRnwANu2PiQqb4irJAoWHtaR8l9YgaDVYpqQgdxpiRNKpBP2y8JsJKoiG1cuVCKFiYuvgeecT7nrdZKAoQ6PjRhobuxVdzjp47vLG3yA+AA+PWFGdyfJqT9Y9yDqPd39uFvwelaa+a6y2vrQp5L0/I4U2PDaqLZL5C7AIlIIjdfQgqNQ5pmAxtI3O0h94/QAQDztmqImMzBDvti78ENJenrcEXPaKNiO5BRZ7QKuYDvortbYdn1keg9BSya8G3+PnDHA+pPkjf8A5nd/zEIA6dHpk7Ms3l3tVJMzcORuRcIhjbihJXbPWMDMh7BQgW3TXkyzIsnZPIJ3JVr+kKBTh7mF0cUhE2b35M8fdnxNB3xppcsihwQCgqAFAeYvloVFUkb2H/BixVdxhUXJsz03lKDR3EWISAcG67cPBDPBtm9BGuzWV9iSjVXrp5+C5yowMlU3/wAZKkwUAIG6LRnTJ3BBB4o7StJ9LiebRxDIBBsl9LAuPVWOtqg+cfehpMCdtsODRRdu2+Y+vCBS6K9mIrlfqAwhNXbmlaZojBOhhCiaUANHGw/Znb7HE4hBPA3b62fJGikdQ6edbY5Bt2F7ZXYs+PXzlQ6uPOUwU3Sp84+hEcMZl7leT+VwtwLdHRGbGjXh7ptecqocW6ePLzD3yK6FDYkO7pNesCwyVYEhsgHTpu8J0lCS2p4Qj4/fqGZ3T3NjgybZOOIeGUA5qLQafXkxdzIgXRkVTTa9PqB2qIyyvvzD4mBSUJYdgBASGg8J3L9DSOPmruR+D6wtRx0Bad8NvziOv6ao2IobB2HMlIfP0YDmy6fWTtiFZqB8xryYkZSLQLKB8efZ7yW9jwwbm9G2hP6PtJAq2hWaH/lk6QZUJa8Quu1rWJbiUMhBd7NJ1LE0+OeqMBE6bfJ9YBcrONOhfH8j05TgU/0W9q6PM38YY52So0W0kdPd08s4HjI0ClQKNz7DgdgBwtDTa9l4ncmigIAkacl/Xolm9sOUaIkdCG8LXH21p2B49fnF5wgzFoB7xk9D606T6Mp3SCG+TXnDHCCtp6oaHWbOQHfBVvx+/nEVyDapAzyaJJiXgioVbZQCHi4bTnqEgjJdkAlFblG3oR8tTZJv3fyMg15KVOHBDfd4DNcEjHQGVNOxSO9AK4nyuggzQU19uUaOgAohMb9Pxij6MwKUIjcjlOSaKAIDZ1+XDxbXL09Nio186yksYr1FUUAO3ruD92CGToAqtvdYF4AgAwI+qfmfOAESqWxzZcWpP3y993O8SG1NsfGsQxekNlNNCdHtHCOGfCceflbv5njANX1oz5XXq19YtwzQHnvgVkTHG5WJb2hhB8/rKyQsITzQQTZ5fhw8QmQN3pr5Fcvnoz6vXxb7x2ezaumtM0GH+bj6TQaNq6773nRn1ZjiHQ/LzWA1hKrfADcv94B10luiUAiObXnHUYPDOh16miuAK5QIqFHj4whw2nU2Talut6nzgJMs292if0Pn9jgkvZtSXZdB2BVblegQLFbo5fub7gQ8hW/AXV/ziz+AShet+MSShqI+wwSG4Ie+TZiKFtE+cCplcu169zRUulS++FIE2leRcfwUeHUP958WBLvyY6ptlFXR+MVJaBBhnzASj2LhpkAIF4Fx2JNKo65haECUZvxil85VYavrbrHOmZiCsffD9YOdNCie/wCj9ZBIPAf4DhzPZGYimyuLTFJVp6wMSshsNs94wzIlL5xMCYhCgVo1h+QKQjV4+MYhPELsLvHWFUsUvWssWY3seF1jyq3Ve3ye1OkndYLiUMImxs8OCx9EMqh8Vf3iXICE0M7xOEpKgOBvRkXMBXTTGDrAw+CJjJy0Ytpv8H6xcdaKtw+NMUgljOmMjqCotx/bNVXh+MEAp4J5wjNuHNOk17rhyNoDajue8eAwNLevjDoAIB4knjJFu3uPnIxhBdBH1hMiYCo4CtoViEn6aNfGH/eIo6Lz4xxKoUnReM3W560rsesboRzh6PD8mWIJufcu8U77uuXfhcDHiNdQT+j9YgoEQN6Hk+8NQG8HvPK2WmecK+WHh6yMCBaG45xUyvoesBs02Pq/D8ZsRBI7vd+aH6MAmIrvWSb+MfmCho/BlUO3ekxNoLZ6eYsSxwdWnu7vbhAhwEVdnrNmSqq/mZ5gn/pjBECihvAgFkFuLX3w76MgX4GdANu+ax2Stat8cTe7yCVlhN8azjZClyaIHUNbvp+XCGGYQgml8Cn05Xe2IELH1CfRigXOCvNs0crBUEa1cdBvf5vFowfaC+rPMuDII0Jd+sVI5Kw4eDJkY0B17xSQog19usAMAg80GC/lxiHrwnxiCE3YPznL/wDAeGf/2Q==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import Image, display\n", + "\n", + "display(Image(\"./media/BE_banner.jpg\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "keywords" + ] + }, + "source": [ + "FirstKeyword, SecondKeyword, AlwaysSeparatedByAComma" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "abstract" + ] + }, + "source": [ + "This is an abstract (...)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Introduction" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "This is the first paragrah of running text with a citation example " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## asdf" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "metadata={\n", + " \"jdh\": {\n", + " \"module\": \"object\",\n", + " \"object\": {\n", + " \"type\": \"image\",\n", + " \"source\": [\n", + " \"...\"\n", + " ]\n", + " }\n", + " }\n", + "}\n", + "# display(Image(\"media/...\"), metadata=metadata)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hermeneutics" + ] + }, + "source": [ + "This is a hermeneutic paragraph" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "jdh": { + "module": "object", + "object": { + "source": [ + "table 1: label table 1" + ] + } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "table-1" + ] + }, + "source": [ + "Editor|1641|1798|1916\n", + "---|---|---|---\n", + "Senan|0.55|0.4|0.3\n", + "Henry|0.71|0.5|0.63" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hidden" + ] + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'3.12.8'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Check your Python version\n", + "from platform import python_version\n", + "python_version()\n", + "\n", + "#!python -V" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# pandas package needs to be added to the requirements.txt 's file \n", + "import pandas as pd\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NamePredominantDegreeHighestDegreeFundingModelRegionGeographyAdmissionRateACTMedianSATAverageAverageCostExpenditureAverageFacultySalaryMedianDebtAverageAgeofEntryMedianFamilyIncomeMedianEarnings
0Alabama A & M UniversityBachelor'sGraduatePublicSoutheastMid-size City0.898917823188887459707919500.020.62999929039.027000
1University of Alabama at BirminghamBachelor'sGraduatePublicSoutheastMid-size City0.867325114619990172081017016250.022.67000034909.037200
2University of Alabama in HuntsvilleBachelor'sGraduatePublicSoutheastMid-size City0.8062261180203069352934116500.023.19000139766.041500
3Alabama State UniversityBachelor'sGraduatePublicSoutheastMid-size City0.512517830174007393655715854.520.88999924029.522400
4The University of AlabamaBachelor'sGraduatePublicSoutheastSmall City0.5655261171267179817960517750.020.77000058976.039200
...................................................
1289University of Connecticut-Avery PointBachelor'sGraduatePublicNew EnglandMid-size Suburb0.594024102012946117301480318983.020.12000186510.049700
1290University of Connecticut-StamfordBachelor'sGraduatePublicNew EnglandMid-size City0.41072110171302849581480318983.020.12000186510.049700
1291California State University-Channel IslandsBachelor'sGraduatePublicFar WestMid-size Suburb0.6443209542257012026843412500.024.85000032103.035800
1292DigiPen Institute of TechnologyBachelor'sGraduatePrivate For-ProfitFar WestSmall City0.6635281225378485998765919000.021.20999968233.072800
1293Neumont UniversityBachelor'sBachelor'sPrivate For-ProfitRocky MountainsMid-size City0.7997251104373793298699122313.024.75000039241.037300
\n", + "

1294 rows × 16 columns

\n", + "
" + ], + "text/plain": [ + " Name PredominantDegree \\\n", + "0 Alabama A & M University Bachelor's \n", + "1 University of Alabama at Birmingham Bachelor's \n", + "2 University of Alabama in Huntsville Bachelor's \n", + "3 Alabama State University Bachelor's \n", + "4 The University of Alabama Bachelor's \n", + "... ... ... \n", + "1289 University of Connecticut-Avery Point Bachelor's \n", + "1290 University of Connecticut-Stamford Bachelor's \n", + "1291 California State University-Channel Islands Bachelor's \n", + "1292 DigiPen Institute of Technology Bachelor's \n", + "1293 Neumont University Bachelor's \n", + "\n", + " HighestDegree FundingModel Region Geography \\\n", + "0 Graduate Public Southeast Mid-size City \n", + "1 Graduate Public Southeast Mid-size City \n", + "2 Graduate Public Southeast Mid-size City \n", + "3 Graduate Public Southeast Mid-size City \n", + "4 Graduate Public Southeast Small City \n", + "... ... ... ... ... \n", + "1289 Graduate Public New England Mid-size Suburb \n", + "1290 Graduate Public New England Mid-size City \n", + "1291 Graduate Public Far West Mid-size Suburb \n", + "1292 Graduate Private For-Profit Far West Small City \n", + "1293 Bachelor's Private For-Profit Rocky Mountains Mid-size City \n", + "\n", + " AdmissionRate ACTMedian SATAverage AverageCost Expenditure \\\n", + "0 0.8989 17 823 18888 7459 \n", + "1 0.8673 25 1146 19990 17208 \n", + "2 0.8062 26 1180 20306 9352 \n", + "3 0.5125 17 830 17400 7393 \n", + "4 0.5655 26 1171 26717 9817 \n", + "... ... ... ... ... ... \n", + "1289 0.5940 24 1020 12946 11730 \n", + "1290 0.4107 21 1017 13028 4958 \n", + "1291 0.6443 20 954 22570 12026 \n", + "1292 0.6635 28 1225 37848 5998 \n", + "1293 0.7997 25 1104 37379 3298 \n", + "\n", + " AverageFacultySalary MedianDebt AverageAgeofEntry MedianFamilyIncome \\\n", + "0 7079 19500.0 20.629999 29039.0 \n", + "1 10170 16250.0 22.670000 34909.0 \n", + "2 9341 16500.0 23.190001 39766.0 \n", + "3 6557 15854.5 20.889999 24029.5 \n", + "4 9605 17750.0 20.770000 58976.0 \n", + "... ... ... ... ... \n", + "1289 14803 18983.0 20.120001 86510.0 \n", + "1290 14803 18983.0 20.120001 86510.0 \n", + "1291 8434 12500.0 24.850000 32103.0 \n", + "1292 7659 19000.0 21.209999 68233.0 \n", + "1293 6991 22313.0 24.750000 39241.0 \n", + "\n", + " MedianEarnings \n", + "0 27000 \n", + "1 37200 \n", + "2 41500 \n", + "3 22400 \n", + "4 39200 \n", + "... ... \n", + "1289 49700 \n", + "1290 49700 \n", + "1291 35800 \n", + "1292 72800 \n", + "1293 37300 \n", + "\n", + "[1294 rows x 16 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"https://raw.githubusercontent.com/lux-org/lux-datasets/master/data/college.csv\")\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "citation-manager": { + "citations": { + "k0rod": [ + { + "id": "9147593/SBCNHZG2", + "source": "zotero" + } + ] + } + } + }, + "source": [ + "(Krickl, Mayer, and Zangger 2022)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "citation-manager": { + "citations": { + "2wpzh": [ + { + "id": "9147593/UE2I2DNH", + "source": "zotero" + } + ], + "eruli": [ + { + "id": "9147593/SBCNHZG2", + "source": "zotero" + } + ] + } + } + }, + "source": [ + "(Mazal 1986)\n", + "(Krickl, Mayer, and Zangger 2022)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
Krickl, Martin, Simon Mayer, and Emanuel Zangger. 2022. “Mit Machine Learning auf der Suche nach Provenienzen – ein Use Case der Bildklassifikation an der Österreichischen Nationalbibliothek.” Bibliothek – Forschung und Praxis 46 (1): 227–38. https://doi.org/10.1515/bfp-2021-0090.
\n", + "
Mazal, Otto, ed. 1986. Bibliotheca Eugeniana. Ausstellung der Österreichischen Nationalbibliothek und der Graphischen Sammlung Albertina. Prunksaal, 15. Mai -- 3. Oktober 1986. Vienna: Österreichische Nationalbibliothek.
\n", + "
\n", + "" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "citation-manager": { + "items": { + "zotero": { + "9147593/SBCNHZG2": { + "DOI": "10.1515/bfp-2021-0090", + "author": [ + { + "family": "Krickl", + "given": "Martin" + }, + { + "family": "Mayer", + "given": "Simon" + }, + { + "family": "Zangger", + "given": "Emanuel" + } + ], + "container-title": "Bibliothek – Forschung und Praxis", + "id": "9147593/SBCNHZG2", + "issue": "1", + "issued": { + "date-parts": [ + [ + 2022 + ] + ] + }, + "language": "German", + "page": "227–238", + "system_id": "zotero|9147593/SBCNHZG2", + "title": "Mit Machine Learning auf der Suche nach Provenienzen – ein Use Case der Bildklassifikation an der Österreichischen Nationalbibliothek", + "type": "article-journal", + "volume": "46" + }, + "9147593/UE2I2DNH": { + "collection-title": "Ausstellung der Österreichischen Nationalbibliothek und der Graphischen Sammlung Albertina. Prunksaal, 15. Mai -- 3. Oktober 1986", + "editor": [ + { + "family": "Mazal", + "given": "Otto" + } + ], + "event-place": "Vienna", + "id": "9147593/UE2I2DNH", + "issued": { + "date-parts": [ + [ + 1986 + ] + ] + }, + "language": "German", + "publisher": "Österreichische Nationalbibliothek", + "publisher-place": "Vienna", + "system_id": "zotero|9147593/UE2I2DNH", + "title": "Bibliotheca Eugeniana", + "type": "book" + } + } + }, + "style": "chicago-author-date.csl" + }, + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.8" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/anonymous-article.ipynb b/anonymous-article.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c9ab6ddb1042be935e0ea4e635f259828d33a1d6 --- /dev/null +++ b/anonymous-article.ipynb @@ -0,0 +1,758 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "title" + ] + }, + "source": [ + "# Using fuzzy string matching on a historic book collection" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "copyright" + ] + }, + "source": [ + "[![cc-by](https://licensebuttons.net/l/by/4.0/88x31.png)](https://creativecommons.org/licenses/by/4.0/) \n", + "© Simon Mayer, Eva Mayr and Florian Windhager. Published by De Gruyter in cooperation with the University of Luxembourg Centre for Contemporary and Digital History. This is an Open Access article distributed under the terms of the [Creative Commons Attribution License CC-BY](https://creativecommons.org/licenses/by/4.0/)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "cover" + ] + }, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQIAOwA7AAD/4SeGRXhpZgAASUkqAAgAAAAHABIBAwABAAAAAQAAABoBBQABAAAAYgAAABsBBQABAAAAagAAACgBAwABAAAAAwAAADEBAgANAAAAcgAAADIBAgAUAAAAgAAAAGmHBAABAAAAlAAAAKYAAACdBAAAFAAAAJ0EAAAUAAAAR0lNUCAyLjEwLjIyAAAyMDIzOjAxOjMxIDEwOjMzOjQwAAEAAaADAAEAAAABAAAAAAAAAAgAAAEEAAEAAAAAAQAAAQEEAAEAAAB4AAAAAgEDAAMAAAAMAQAAAwEDAAEAAAAGAAAABgEDAAEAAAAGAAAAFQEDAAEAAAADAAAAAQIEAAEAAAASAQAAAgIEAAEAAABsJgAAAAAAAAgACAAIAP/Y/+AAEEpGSUYAAQEAAAEAAQAA/9sAQwAIBgYHBgUIBwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04MjwuMzQy/9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy/8AAEQgAeAEAAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A5XxrZGz+zB2JbMROHJ4J9WH8q7rQn1a50C2ggNuyAE7fMHDDk5JXg4rhvF5urqW186KMOXiXcJM9COpOMCu68Nahp2neHQqTxM7/ADsC65B7jr3rhW256nc5XXxPbR3UMsUCNGpEnlyBj656DP51q+GYbq98IeVbTgiKNd6LH90EZGS0gBPHYVk+IDFcyXEokRppIyFRCpHA+vWtzwveW1h4Qk3XEQleOM7GdVKkADHXJ4J6c0lsM8+lLnx7p25knJbI5IDZB45zW144WZfElgbhI1drkZZW3D0zzjp+XFYs7Rp4/wBNYMCituz0Hc+tb3j6aC58QWTpICn2hDjj7oJ/xqnuiej9f8jrJ7PzfCSXJvL5lD7Thk2/UDHI659MVyvhZkTxJdgmZyqw7fLYoWJ3ckjBwMV1E+sWy+EjZH7bIkk24yCEke43Y5HNcj4daBvE15I5JUrEyAEliQW7YJP5Gk9ioK09fM7PxhafZmRvNeVG+RYyz5XA65LHJ4rhPCFyTc35eWYOblgojcpn3Yjk/nXY+Jr22ncM3mqBn5fJcc45JJHua47wnHAuoagkjN/x9Fl8rLcYHOADQrFrRq56lq2nKvh1btZrjzFwcebIwb/x6vN/E0u/T7p3abzFTIy5YH1BBzXouq6rJJoxga3mSNiAG2OMD2yg/wAmvN/FDQppVyu1y7JjcysFHXvim7XIXwu5t/DWGO40K1im893eKTAWVkQKM44BGTVjXrWG0SCRHmbzDtdS7DHHrnr9RVT4ezrb+HbaZLV5ZFiYeYgwOc8Ekgd/ek1d2kMfnPM4XgISP0xnPWk0r/NlJ6L0Rxlu6f8ACeQsXmMQi3ZAAfAGeox6da9Z8S6XDDoEF6rXALRbhEZXYcnnnPp3ryWw8qTx/EPK3x7CPLwSenTBr1XxLPO+n2trJbTx28ajEWAoPp/ESacraGcf1PL2MTeOLEfvvLMTEruyw68A9e1esa5ptvHoNvdBplDICY3lkbd04yTx1rykGB/HVuXBgUQMCAhBUnI7/XrXpWt6jDLpVnaqwEcSKGYKSWwPYY9PyolsXT2+ZxOjuv8Awn0gdpo4ktxkoAXA3HOCQa9B1jT1TSpL6K9l2L5e1Dt3HI5529ef0NefaTHb/wDCcyl980JtVG2MFmPzHsvPau71zUW+wpZi3uYkwAzCFyzDGCMlR70tLfcOOyt3Z5VrsgPirSikruvmZDMAG6j0r11bO3urKFFWaL5N7SPJI/8A7Px6145rzIfE2mtEGChwArg7hg9x1r10zXD6ZDJHBNaRiPacFcNnv8x9zTl8KS7ChvL1POvGIjGj3YVZFdH2klyQ3zY7k4rt/BVjDfeFgzTTLJHAj7MqsfPbp6A1w3jciPR5EELqzuC0rtuMhznr0rvPBxmg8LqbezZt1uqPNlgBjGMcdsfrQrWXzH9qXyM/VrNLS5SF7udt6Eho1HynJ7Ec9Kz/AIeN5kepr/EHm6DAOAKv6tcPJJ588bybUOzap2jj0C/jWb8Np1EepZGV3XDEj/d4qErxfyKk7SRraBbodfaORJWMpLLtcqo+ZhyVwe1Q+KLNbWWPdPM+9SQm5gQPY7ual0uaJdXWR2kJjUlFjyxJEj5G0fWqniG4iurob2mKIhVU8hwQM55JFUrWF0Qvw/R721u7Y+cC8roJN7YHzYGQCATWPrsaWurW8SMZdk4G5skN3wRk+1afg+a2tdNuWUSvJ5km0xKz7QWJ5wDj+dZGoMX1S0aMsZzcht0iMinJ+lPS4nsvken6Tfm50SCKYxs287NilAwI4A6dOf51xWpXZ+3TFAhiLHYMFgRn1/Su0g0++1HSAE1KGRQ7ZhSINkgc4JK1x91bTW85t47mJZFzlNm3Bzg9Cf8AIpytoKNrszviDKt0baZp0dyYV2g5wN3X9a7jwh9rGktPdwEwxphCVG1Rjj26muW8RaHfa80fkPEGVkP7yXghcZ4C+xrq9CjutO0l7OWHDEEkxzblY+4IHFZpxSsw5JO9kcR4kmuJv7SkeIGAo21iv3Tg9DXReF/Ij8HXcc0MRWJEKgDaeR19+fWs3WfD2pX32l4441aVCgUzjjj0xj9av2MGrW+hNaPH+9VVUAOMHjtz70rxZfIzza6Ozxtp8gUIxXcQq45we1dL8Rmjk1q3eAsyC4jJJ45JI/DtVaTwzr0niu01IWeYoereameAe26tXxTpGs65qELx2MnlpPG3MifKARk9frVuUbrUzcJWenX/ACOgjeSTwhPdvcohSUBEVsqM9sEc5xXE6JM0Hi+7ZZgm6OM7gOvJ47Y9K9FFjNFoclmyWz+ZIsmcnggEf3cd65LS9OurHxtcXtxb5tJIVXcNpBOckYzU8yexVmp3aOh8bR20Athb+UkmCWkXJLDb369/pXC+EluHl1IQh8fbSZNncYHX2ru9bW0u5C9raEMRwAQcfga43w3pl/pepXdxeWMjI9wXC5HzD1xmnF7jtZo9T1uQr4LjjjhKswAbC9c968m8Qx3C6Hd5DCHYSc+oFd7qV7Jc2ESRgtghvK8puOc4Ncf4isr/AFOxuRDZNvkQgIg2jP51UrX0J5bRZc+HizHSNPlGTCkMmRnIzg9qs+KZ2vXhSON8hQeh64HH6Gqng2G40fTYI722ZJFiZcFSSDgjtmm3fnO0yJaEq/OTGQQf6UNdew1olfscjpEd1N4/ZYtxuRCdpBGc4Ar13xJczJ4Yhs/JkFywVCoUk9ckk/5615fp+jX1t4v+2NaSG38vG7PU8cdQa77XLpLxLZ4rOTKRBWj3ZGfru+lKXT5CgtPmzz23MkXxAjkc4eO1yS/zY7Z4+tes+JGVvC9jM53uUUJIznPJ6Dt0B7V5lpulajH43+3PayRWvlbPM6+nqc16Fr8yXlpaRwnzGhGPuZH1xmlJoIJ/ief6TLKPGt3NG8hb7MoDImT949vwNekeJbyGXQDiFEuMhS23DKwI/Hu1cLpdjqtp4ykvUikWEwqokCgZIJOMHvzXWa7dtcqPs0MpbjLFQecc96pNW+4cY7erPJtdeRvFulmVi7b0yWGCfmr2Gxka10yQ3G4rt3L5oGR6DBHoRXlut6DrF14gtLuKykkjjZSz5HY/nXqdzczT6HFCWaSSNQu0oCT+tDcWkvIKcXeS8zyvxi7Nokh+ba0wxx8o57V6d4Naa38MTu4LRtbIFDrkHAJOP0rg/Fmj61qumxwQWU0h3g7SVGP1rt/DzzWfhx7K4W5WYxBUGRgHH+9057Cmpx017lcrcpadjJ1+687Uh9l2oiIR+6Uc9T261k/DdS1vqRycb7n/ANBFad3a3oikHlvznGMd/wDgVZ/g3Tr6wivUngaHzTcFAcc7lAXvUxty2T7Cqq0loamiTtDrcSCXy1kHzKASW/evx7cVb8aQQ2l0ogMYYbjuX73GcmqegxXdhq0k9zDtTBxvG7ncSBgexqfVxc6hfNPHZlsg4bAHX2LUuaK0uNJ2RT8Asxiu4fMVlaSRzHtIyORn88Vma5BE3iCKGJo1TzwuOoHr+tdN4dSew027glt9kspfDMVPB6dO9Yl3pGou8AhtRtjlByXXkZ5J5zS9pHuHJKy0PQ9LszZaDEwFuZBIyllAA2lSDj36GuFurWY3bO0kYlfl89QfYjtXSC/uoNFjtYrNHkjbOQUGffH+TXOHTb65neY2gjLH/nomPwxVyqR095BGErvQy7fx/pqsCYboAdQFH+NX/wDhYukBf9Xdn22Af1rxgXEn9404Xcw4D4qnh0znjiWj2cfELRm6i4/74H+NSHx/ohQDM4Oc48sf414v9rmI5enrNMyMw24UZP54qfq6L+ss9mh8c6GB801x/wB8f/XqWLxvoi8CeTH/AFzrxH7S+c8CnC7f1pfVg+tM9y/4TfSDj/SJCPZDTD4q0Jjn7Swz1HlN/hXiYvJB3p41CT1/Wp+rtD+s3PaG8VaEf+Xwj/tk3+FA8T6HnIvj/wB+n/wrxj7e3f8AnS/bm9vzp+wkH1hHtP8AwluiAg/ai2D/AM82/wAKU+LdD6rc/wDkJv8ACvFPtp/yaPtzD/8AXSdBh9YPZz4r0Ut/x9Y/7ZN/hULeJNGYZ+2r7fu3/wAK8e+3NSG+Y0KgxPEJnrw8UaOoIF8D9Ym/wpT4m0Y9bsY9Qjf4V4+byj7UT3qvYsXtz2JvFOht/wAvK9eyMP6VA/iPRs5W+AOf7j/4V5Ibo+tIbk/3qXsGHtz13/hKNKQcamp9Mxsf/ZaZ/wAJbpig/wDEwQ/9s3/wryX7QcUef70LDh7c9cXxhpQPN6n/AHy3/wATTv8AhNdJB/4+14/2G/wryA3HvSfaT60/q6D6wz18eNdJA/4+yf8AgDf4Un/Cb6R1Nw2f+uZ/wryL7UaabtzU/VUP60z12TxrpDA/6SRn1jb/AAqxp/iW11S6EFg7TSgE4CFQB16nArxc3LnvXdfDEltUuGJ5Khf0aiWHjFXHHESlKx0914rsLO4MN3M8co6qYyf1GR3oTxnpBxi5b/v23+FcP46/caoiqehI/wDHUrmFunXocURw8ZRuhSxEoysew/8ACZ6V089+naNqD410zAw8p/7ZmvIhfyjo5pTqE398/nS+qof1pnrY8c6YCBtnP/bOmnx1poJ2xXH/AH7/APr15N/aE394/nTft0p/iP50fVEH1tlBuGpM0+UYY1HzXo9DzXoxwNXIl26bNI38bBV/D/8AXUug6YNZ1aKyLOocE5Rdx4HpV3xJp40horBSx2c5ZSpOSeoNRJq/KbU00nN7GFuo3UlSJBNIMpFIw65VSaqxnzMbuo3UhBBIIwfekpWHzDt1LuplW59Nv7WESz2c8UZGQzxkDFFgTZX3Ubqbip/sF5sD/ZJ9pGQfLOMevSiwXIt1JupGVkYqwKkdQRjFdxovgqyv9BTULma6V3XKhMBfzI/rUyajuXCMpuyOHJzQGI6V0GpeHobPU7W2jll2ztjLryPpXQz+ALKG3R/tF2WYZzt4H/jn9aTnFIapTb0OA3Gjca9I8J+EdMfWrqC8iN2scasu9WO0knnC49O9aeq+FdJtbyKSC0jjKzqoUI6nqPUkVm60U7GioSaueTAOVztbHrimbq+hr2yijghtZLeIM3AV7g/gfzrjf7GtJvGQtZtOWUm33rG/zYO4A+x60lXi+g3QelmeV5o3V7Tf+FNOViBogV1yxVYV6cdsAjrWRZ+CNE1Cynu3huY5FJ+WPJQEHGPb86pVosHhp9GeW7qN1d0vgiyvdSuYYLqW3WFA+11Bz9Mn/Giw+H0VzqMlpLfOgWISBlTdxz6ZPaq9pAh0ai6HCZr0X4ZjZdOxH3iOv/AhU+k+A7GLU/KlV77cuVVht24ySeoHp1rU8PWK6bry2yQeUrLkDII6npgn1rOrUjKOhpRpyjJNnJfET/kJxE8Zz/6Cv+FcXk123xFUnUogAScnGPotcX5Un9xv++a0ofw0YVr+0Ym40u6t/wAKeHYfEF5NFc3Rt0jA6DliT+lamt+CLbSxMEvyWjAPzkYPPI6dcVTnFOwRpzceZbHGZpd1ez2nhDQbdFgFhE7nH7yX5h+ZJqpN4f8AD/nyRHT45GjP8GFB/EYrL28bXsb/AFWfcyNV0yJvFdpb3lgYy279xKmNxwAOM+tdedD0kOE/4R2y3IvKMkO4n8BzXN6nPcal41s5NjK7Bgm04J6ev1rv2kKeFXsdric8MhTJLZz+X41hJy0VzeEVZu3U85treGx+KNh5dvHZx4G6ONAgxznjGP0qfX9EsNc8YXMJabyIUjVBE6gjlhjJBHbrREHi+I1gsuRKsJ6vjByepANa2nR3UnjG9kt0RmhhiA43ADc/PIBwPpVxlZp+RnKC5WvMwpPAWivZmaOS7hYMF2yyqSfcfLWx4P0o31g1vZfZ3+zhkk+1ueAGOANpHv2rstTtRYW2Lcq0FxlplKhiAe/t3rifAd69vLqrRBDHcPJgScDrxj8CacpuTYqa5UrEUei6XdXd+11bRSmKFAqscYJLZKg9sj61X0LwdpV3FLPLp7yIGbJDjH3iBgFh7Diug8OSNDrmrXOzzQloFbB/iYk8Y7Z/StDwHBKzCfJ2I8hcI3Rtxxx6deahTktEzTki9Wjg9Y8KaXbWd1PBZsAkZJJkHynGegbNdBNpS6zBpVlcxyPFcRrj5GUOQudoPTgr2xnPerXjstJZ6ndFZPLaFkDOSNxHHA9PrVzSTK2o+HLRpA/lKdm04Ylkcj6YJxSlOTjdsSjFaWOfvfh9YJK8SaXOpTk4f5gD04znFbzDZ4btlWzZsDCuzHLAcDj8D+Vdf4lW5FokMSgSqwZyFG4465br3/GuYUxx+FkEkEcjSD74nHHJI68p+H1rNTlJ+9qZyslojzjU/DC6ncXGoS3yw/Pt8vCk8DrywP6V2ngRIU0YxSeXOiW5GJEDANk9M9O1FjNJPoV9C7I0cUjsqlmUrkcn5eozjrS+G5lbw06EAouW5JBzkk/wHjOe9bOTlGzNYQitbHF61Ir+KtMxhVa4J29AoJH+NeglrY6ZczXUTTyKBtkbIIByAeOlcDrJLeLtJDKU2vlQuD7jqB7V3+r7Xt0laJicAYynPfnHWieyKhvL1MzwTczN4k1ELMS5t41OevLNxnseBzWt4nVbe9toUDBGnib5n3EnzF5BPOMf1rJ8IMw8Raobf92/lIHV8Y4zgDGfU1Jr0soSISqmxriMK4HIO7vxk/nWcl7yHHZnSWsc9hpF9DdrKs8g4DJvZsjA2nv+lcJZR30fjWGNA/2kWhA3EE/fHSuquDEbZQ10hyB8wjQDp7iuc0y5S18aZLLJMIPkkDFQQT0O0fT0oS1bFZ3v5nX6nII9LhRNhvSw3OqAzMR1BPXoe/XFQeFRHNpWqRSspVXLgbypX5jljg//AKqratPfCeSdFRC3DS73yfY8UzRbrOg3AigVgWLMZc9dxzjCnIz61NuxSTYvhWG2u9X1L7SS0jQ4WQk44znoRk1JpCQxeO1thFmGVNsinJ3YDcjJJH4GodD1NIb7UjJab5/KXG1gNo5yeQOPamaZqXn+K5mjiCs8QBDMR1J7hT19OKpJtkTdk7lx2tz4lnTymjjhjkGyPPBGM5xzj6/pWLpawnxiqWxHlBHI25I4x0z+NW4Lu6HiFYIvLjYRykMM4OcEjoPbvVLSJJR4wtQ6AF0cAgnpkdsmm01Fjpu9iK4tTceNIUDxoREzDzM8kBeOCOamvtKlRReTQCO2eTAk8obe/wDtk9jRLH5vjy0UzJD+7Y7nHX7vArW1bc9u1msWF38ynOMcYOBz6/nQm1BWYL4mZHhKNYvGsgWaM4jjCqpwHDM2QD24H6VH8SYIbW2mWMOquyNh5N3JZeR+Bp+gKkHi25Y/vnW2jCoI+W+Z+c5GOnrVTxqlvLZP5zyRHzUDmRcsBvGcYY+9Un7yE17jfqdzaT27eRb3FxmIpxCCUycdz3NYF6XGpzwROCinKxkE7RgcZP8An9a6WG+87TIojbGSOFsfeQNnHsaxb/UIlmdPIMQ3ZPzLkn345qH8Je7ZxV9cuPF9o2IyzowJADBeRyABj9DXe3F1ctp+WvJV44TYg/8AadcDdws/jG2O4hFVyXZivGQOpNd5cPYx6ecXw3kYwZDt6euaqVtBQtZ+pw6StP8AECwWZCzLG3zKAGYH17Vr6beXNp45ultVRZWRMtJJtAGWP8I571m2SufiDZSJNv3xMiNEd5yOwrW06B5PG15vZlIij3SPGMocsSMkYB/KnpohLXRd/wBDf1WTVbeKQPdWWxyN0cakZJ75zXE+CkgeO6k8mJyZHBDsDjkdiP1rt9W2eQI/PBk+8y7V5HsQK5T4fv5Vvdjy3c7n3AIgxye7EGhbu4NWSsT6FYxS3+qMflj8hSAjledzemKteD3PzRecwLFuFVePmIzkqc/nVfSbiOK91nc8seYFGM47+2R+NXvBMlvDaSTsXZ2LAMiOxHJ5yBilfqUrW1MbxlL/AMS68jErNiM8Mq++eiirENxtfQii7HCE78E/wN0yD/Wq/jaOP+zbp425ZCSXUrnr6961ntC1zoccbK4UIxdnCDlD15JXjocU9LGcutg1nU7hwVNzIcjncOnQddmB1/SkmggPh+B1EpdgSW3MP4Qem7H5U/XYJFlz9oTbjASO6c8fiuO1Vrg7dEt2FtclCgHmC2BTOB0O2m1FPQwpt298LKRv+EfuomhSQJNIAXY5xk+iHr9aZ4ViWXQJ90ce87sFnPynd39qfZQGXQbyYInzXDnkJnGT68+v5VBojq3h5tpZJkX5kSOMKMHHdSc0Rv0OmHkc1raqPF2kY24yfutn9a7XUM/ZIynRRyPO5/OuNu5I08ZaRubzFyTukXBUkd8Yzjr+Fd9q90ot4Ql0WideSIsD8t1OV7LQcL3l6/oYPg2Ez+K9SVhwIwxLN7DjP41Pr9vLb3dunyL/AKTHh1+Yfe/z+VS+Dhaz61qaSRckpGrxj5S23qSckduPajXrFbXU7SKdCsjzoW2MGBQn1HINQ5BFu1v63Ni+tp44I910MY3YCIcH8DXKWEZHjRmcCUJbZyRjHzZ7f55ruZra0vbCS8t4beKOIcrK8pZuM9c8VyGnSW0/i1gbh7WA24cMyrIwO7BA3A9fp2pXBPVGzqn2ffsRY5OrEsHU9TWdppj/ALNujtjCdNpLHHPfFa2q6YYl8+S+ljtZT8j+XCze25Qox0qv4btJdQ0a5EUzpKjkFYljVdoY/MdwPJxnA9aXN1LjO2plaDs/tbUtjjPlKBtl29+wIzT9MjR/FR3MoMce8sxV8YJHf69KteH7eO51rUrUXsqzFQYvLjRTIwz94kEDHt+tN0+ymXxbJbxXkjT+UAmVQMWJORnBXHfpVKaTMqvvRaILCNZfFa4ZSohkIPB6DH8I/nRpEQ/4TS2PyqQjttUFduMeoq4mlzWviNYby4kLtFJ8ieWx6DHzBcVVs4JLXxhZxuZVb5vMRyrehGCB6USlzRY6KtFIhvXWPx1pzyBjvDgAH6dfarurrHbyy5QMpJxgrkn34ziqer5j8Z6Yyx+Yy7yEwTu59ga0tVzNPK7wIJCclGGTn0wQDRHl5FcNpMxvD8kh8Xs1sDnyoxtZvvcyEj9P0ql47aWS2uCzOVNwvDMDj5hWh4TxL4wvUfy4nMcRDNG52/O3AUY9aj8bBdPUpc26yjzo3CSIVJG8c8MeDjFWpWaVhX9xr1/M620hAsJ283aFcfILgLuzn/OKwLtoxdOZcZLEgmTJ59cj2rqLeLzrFYLW833GM/Z44lAHc8k1y2peas00LXLfaUf545I1OPoV4NS5aI05tWYeseRH49hWxj/dxo/ljlsnA59a9A1GWP8A4RC3lVC10/JkJOMg8jHT9K8+u1kg8bWiPGYJAjlA6GHZ05I5PSu8u7nU/wCxjcKLVbUHHmhSR1xn72e+OlDtpcyX6nF2Ilk+JenSFPLlEBfCx4yR7e9aemrD/wAJxftfW6XUZWIssnRNxboOnHT8KztP33HxLsUxbvLJC+HyXQ56cH0rU0aSaz8d6lFDZi5k2pE6x7VjON3OW9eeMUnt8v1HH9f0Ol8UafpkDtBb2MHzIzBmQAqR6ECuQ+GUiLBqBnhjlG12XzEDY5OcZrqddvtX8iRH05EhMeXxIpl9uT2xXD+B0vpbS6NhE0gUvuCqzEAk9cOB2pJLW4WvFI3dDCy3espPM8KG2EgCcZA6DnPGD09q0fAkjiO2jlBNpIXLKyfITuP+cVk6PLKIdXLtAxIjC7iV5wcDGG5/HFaPhCS7udMjhtJ4w5B/0cK7u2Ccn7wHrR1LduVmV4/upJtL1NFXbbr8qqq4QEHnH49qvaetut94YUWoV0izMJAcMfLcjOfzFZHjgTrpN4LiZHZBtki+ZGQ57jJHpWpp8skes6DJb2907hQUjZRtkxG2cZI6DPeh/AzNbv5HReJEt/s0cpQs8w+4VUKnXpgZ/Os0SRR+DbON0ujPtGwYzjgcqegHrmrXiDVLljIP7LKSKpyNq/Jnk8BzisSW3u30W3lTVnEaoCYhH8sYwOCayglqZzWg/SIIL3wzqdxK5UwTyLnLEnk4A+YAcVX8O2s48NvMk3EiEFWPI+bPf69aSxaOPw1coFnBlkk3MgUKx3HsTk8jHFW/C1sL/RWQsItsKt5sis5YZwOM8dP0rZO2pvHucXqUTS+M9JiMmSQV3Yzjiuz1i3uYFWDfCwGMtleep78jrXIXYI8baYI1c5VwRG5y3GDjnvXcatFDJo636tIicAxebISegPzFqpytYItpv1/RGZ4Fjgh1XV/tV0sOJFKZYBWIUevpT/EUgudYhuhOJEE6bgCMKACeWOB6/wAqTwPNLJqmpqmSjSiP58FwmxTwT9TU3iOEW2tafGiiRVlBDSgbicPkHAHHFRJ6iT2/rqXL+8sViaCK5VYWRQclSVwOx3Y5HHOaw9Is7S88ZFUMn2cW4wyjeQd3tXYTStf6PJezpKZ0GY1DbUX5SeV5B5B69q4iwvol8YNLdWiTBrdf3PRCwJ5NF22ykndJbnU6tHNiOGaRxFBuKnY3zcnHBHHU1B4cMdlpVzK8wgmO4eVKQDyzFT69+lLqtlbWwiuZLe3kM/W3jh2eXkZ4Oe1J4VhD6BeRMpRAWbzMKxbliASQegHr6VFxrb+u6IPC629vrt7M16YxGFMbnADnv1/zzUuk+VP4wkuBcBmWIsDjIY8gD9RVXwtK48SaqhgQK6DzMABhgHoD0/KrGm2kWoeMZbYw4Z49sbg7dpyfmbbjPFDumTJf1949mFz4pMkk7xBkk+YdR0xyazlmlbxZBO0gmEhcM4HAOMfyH6VoCx/szxVHHC0UsgR9zsh24OOMMeoPeqHluvjCyikljkKh9rom0HI7ii/ujgnZMr6q03/CWaeYS4YrIAUHOM1s+J5EjsIrUJA0+QSyAFhznqOeQaxtXWQeItOZLgQMcjzGzx19CPSrurWl7FbfbJZGMBI/fMpz6dDJmtIW5FcX2mVPC7yjxrenkE2sW4kc8Mx+nbvVDx2891unVGyJYwoA5+8PT3/pVjwrPu8XXFvK3no8KFmjkaMN8zYJw2eOe/eqfjYzaYsn2e4cSGRG3JI+AN3A5J/OqV+ZEv8Ah/eeh2srQabHMojkZmBPyjdtx71xd2Hhlee6dA0jfNGDkiukiEDaYkf9npGFj3mdlMhbtgAnv7muJ1J1naUG2RVDf6wJsz9QDTs7IbbTZHrK3F/43tmnURF42GQC4UcY6fhXfXNpPH4b+xOoJGMyZOAvXP1z+FFFTfRGadzibCOOx+IVizTlEigb99gJyMf41s+Gik3jS/cTNJt8l2feMnBbIHY/Q0UUS+G/9bmkNF8/0Oq8YTCdprhHJSK2ZSzNgtx2HX161xHw4cW+k37NbyOSHII4z8xx/wDrooqI9Q2sjR0Fmgh1uYRDBQJtzyM8+nT3q34Bt2jsY70+UUWNhtyAw5znPf8Ap6UUU1qxt6M53x1Ft0vUJSYg8rA7FO5hyOp/DP410unyTPrHh62Db2jiMcZBwSTG/wCWOlFFE/hIXX5G94oglTTljMe2RPmchMMeMHJ//XmueutUtotBtLZLtGcKMoyZaPPUA9MfXNFFRSim5IylsirpNz5Hg3UEMiK8s8gj3qCep+7+Oah8PzLY+HABMEuGiCyRyOmOnBxuznB/WiitDqSS/r0ObkjWbxrpshlBiAbzJDIo+veut1iQLbrbW98jWxOeXXcBjGPvdPaiim+hMVq/Ug8DIom1ljbSTsJsI8eSV+RecgEVX1aUvr9hMsc5mafIaTczSYUgDsOn8qKKlv8Ar5Ep/wBfM3NWF4xXzLJ1Mm0tEu0B8dPlDnNc9pLWp8aSzajst40jRTG37sqSSRjr6GiipuVF3aNzWry0mlcy6lHNCMlEEgH03EdaTQH8nw9cGOOZ3HWa3VtuD2PGG6/rRRSuXaxW8MySnVNZ+yWw4jUyea3liMDocsM5z/8ArqbQ7z7N4rZ5I/LYQ8MhLjBJy3ygn1oooe5lfoOe/S78WRyMm4kMRG0b89OgA/Gs2FkPiy0ch45NzjEisC/yk9/TFFFL7LLhsvUTWY/O13T8Oq5c8sM/3q2fEJaS1NuERiQMvk8D6f5+lFFaRfuIlv3mc34cVbXxbc3E0/l24tkG/hMneSAAcZwR/nNVPFynVIyEvIGO9R99VCqGHJGfTH5UUVV7O4W/dnbm8ht9HjS2efeOr+U7p/KuF1OS3gicl3kkLfM7hgD+YoopxbdkxS0uf//Z/+EOkGh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNC40LjAtRXhpdjIiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczppcHRjRXh0PSJodHRwOi8vaXB0Yy5vcmcvc3RkL0lwdGM0eG1wRXh0LzIwMDgtMDItMjkvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RFdnQ9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZUV2ZW50IyIgeG1sbnM6cGx1cz0iaHR0cDovL25zLnVzZXBsdXMub3JnL2xkZi94bXAvMS4wLyIgeG1sbnM6R0lNUD0iaHR0cDovL3d3dy5naW1wLm9yZy94bXAvIiB4bWxuczpkYz0iaHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1wTU06RG9jdW1lbnRJRD0iZ2ltcDpkb2NpZDpnaW1wOjVkNDEzODNmLTEwNjctNDdmZi1iODBlLTg2NWYxNTQxMDM0OCIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDplNzQ0Nzk1ZS03MzU5LTQ1OWQtYTNiMy0xY2UxOTQ4ZTczYWEiIHhtcE1NOk9yaWdpbmFsRG9jdW1lbnRJRD0ieG1wLmRpZDoxOTNkOTc1MC1iZjMzLTRjNDgtYjZkMi1jOGQxOGQwZWI1MmIiIEdJTVA6QVBJPSIyLjAiIEdJTVA6UGxhdGZvcm09IkxpbnV4IiBHSU1QOlRpbWVTdGFtcD0iMTY3NTE1NzYyMTU2OTE0MCIgR0lNUDpWZXJzaW9uPSIyLjEwLjIyIiBkYzpGb3JtYXQ9ImltYWdlL2pwZWciIHhtcDpDcmVhdG9yVG9vbD0iR0lNUCAyLjEwIj4gPGlwdGNFeHQ6TG9jYXRpb25DcmVhdGVkPiA8cmRmOkJhZy8+IDwvaXB0Y0V4dDpMb2NhdGlvbkNyZWF0ZWQ+IDxpcHRjRXh0OkxvY2F0aW9uU2hvd24+IDxyZGY6QmFnLz4gPC9pcHRjRXh0OkxvY2F0aW9uU2hvd24+IDxpcHRjRXh0OkFydHdvcmtPck9iamVjdD4gPHJkZjpCYWcvPiA8L2lwdGNFeHQ6QXJ0d29ya09yT2JqZWN0PiA8aXB0Y0V4dDpSZWdpc3RyeUlkPiA8cmRmOkJhZy8+IDwvaXB0Y0V4dDpSZWdpc3RyeUlkPiA8eG1wTU06SGlzdG9yeT4gPHJkZjpTZXE+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJzYXZlZCIgc3RFdnQ6Y2hhbmdlZD0iLyIgc3RFdnQ6aW5zdGFuY2VJRD0ieG1wLmlpZDpjYjZhNTczMS0yZDlkLTQwYjktYThmNS02NDYzNzUyM2QyZWQiIHN0RXZ0OnNvZnR3YXJlQWdlbnQ9IkdpbXAgMi4xMCAoTGludXgpIiBzdEV2dDp3aGVuPSIrMDE6MDAiLz4gPC9yZGY6U2VxPiA8L3htcE1NOkhpc3Rvcnk+IDxwbHVzOkltYWdlU3VwcGxpZXI+IDxyZGY6U2VxLz4gPC9wbHVzOkltYWdlU3VwcGxpZXI+IDxwbHVzOkltYWdlQ3JlYXRvcj4gPHJkZjpTZXEvPiA8L3BsdXM6SW1hZ2VDcmVhdG9yPiA8cGx1czpDb3B5cmlnaHRPd25lcj4gPHJkZjpTZXEvPiA8L3BsdXM6Q29weXJpZ2h0T3duZXI+IDxwbHVzOkxpY2Vuc29yPiA8cmRmOlNlcS8+IDwvcGx1czpMaWNlbnNvcj4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/iArBJQ0NfUFJPRklMRQABAQAAAqBsY21zBDAAAG1udHJSR0IgWFlaIAfnAAEAHwAJABYAGGFjc3BBUFBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtbGNtcwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWRlc2MAAAEgAAAAQGNwcnQAAAFgAAAANnd0cHQAAAGYAAAAFGNoYWQAAAGsAAAALHJYWVoAAAHYAAAAFGJYWVoAAAHsAAAAFGdYWVoAAAIAAAAAFHJUUkMAAAIUAAAAIGdUUkMAAAIUAAAAIGJUUkMAAAIUAAAAIGNocm0AAAI0AAAAJGRtbmQAAAJYAAAAJGRtZGQAAAJ8AAAAJG1sdWMAAAAAAAAAAQAAAAxlblVTAAAAJAAAABwARwBJAE0AUAAgAGIAdQBpAGwAdAAtAGkAbgAgAHMAUgBHAEJtbHVjAAAAAAAAAAEAAAAMZW5VUwAAABoAAAAcAFAAdQBiAGwAaQBjACAARABvAG0AYQBpAG4AAFhZWiAAAAAAAAD21gABAAAAANMtc2YzMgAAAAAAAQxCAAAF3v//8yUAAAeTAAD9kP//+6H///2iAAAD3AAAwG5YWVogAAAAAAAAb6AAADj1AAADkFhZWiAAAAAAAAAknwAAD4QAALbEWFlaIAAAAAAAAGKXAAC3hwAAGNlwYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKW2Nocm0AAAAAAAMAAAAAo9cAAFR8AABMzQAAmZoAACZnAAAPXG1sdWMAAAAAAAAAAQAAAAxlblVTAAAACAAAABwARwBJAE0AUG1sdWMAAAAAAAAAAQAAAAxlblVTAAAACAAAABwAcwBSAEcAQv/bAEMAAwICAwICAwMDAwQDAwQFCAUFBAQFCgcHBggMCgwMCwoLCw0OEhANDhEOCwsQFhARExQVFRUMDxcYFhQYEhQVFP/bAEMBAwQEBQQFCQUFCRQNCw0UFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFP/CABEIAWIC7gMBEQACEQEDEQH/xAAcAAACAQUBAAAAAAAAAAAAAAAGBwUAAQIDBAj/xAAaAQACAwEBAAAAAAAAAAAAAAADBAABAgUG/9oADAMBAAIQAxAAAAEa5vphPIxM6jzTabbyooowFmrnVyviiMsuNnYQoRgjQE70UPSfM7UjQEE2mXZbPpnRLEs0IkWYCnbYQx4nEHAJB2Ff9FRpJ9IvsUznA7V6xXCb2KGGsuhx3lzfQG9DhauOquHWIUg1u6gSDZdSLNijF8XC7GuXUyAbzpVZ3ZgvVxdYWr/Kd6femSLR2NRQdxBhLN3mS4mXMs/JWtBDYhtahiLKLocZv8/0h1ic+hx+LirxxSgJzj+hOP3+yDT7yRZfRLgqDO4NSoXVZ3pwC2JHqFDgQOBrrPOtvmQ5SDqJw6j8tLTGtBmRrJwTVVeMsi5LuGzuA1QuZMkz0GNpcVwYP0FcP8x783t76wpWueZBbewsbCiWC5Vu0FlJ9RonHpENbEYFqXWr6Honj9uT7KjSEkGJtLtsukEjVlkV2+d6T4HfZ/RViJInnFXvQ12KKI/qpMNR5/a0RLhT+24oa6ifTMlnPRtHkBiVsdg8LIrrcz1Zxe8Z9FHUGlph2PWVRXa55EBn00o7ztY5eYQDcJkql587vJe3I9K/988YtqPRsMaNyDUSvY4/pbiei6bEm+lz2sj1C3oqwKNLtosYusOMR9RnalS7PgCImY11W0ylKZXikyKY/R3aA3+QFKdCK5pR387ps/rLSHCwDNEEZtfGTn9dZ4VzoNQisbtRv8v01yexNhz52fRKcNNYsPF1UVtgF2qZg7bqOCS5qioedDMBW76DbW9CwHEGmmgPKnVb7EXjUIAae6vG9A8j0TQ6aeKWeHmEVXXNw5CtGOWYgfezemjzkUVOkEHGuy88mB0/SFmJuegoj9AdsKT6XK9Dcv1Jd0eUweWmlG+oKVhWM8icEz6Az1pUal0MLHpt8gVkf1OI7eV6d5dPn1zJFpGVfU6Ngppvoef9I8f0E/nKgcVJx9Nw9PlQXF0pei1BCXhDT0BlicUWTrB19tE5x1GQ4t3gX5l9L3bvBrDMWVWFRZvLsgfU9Euo6ODoCZItWiDwueQzreiL5YcsdQM7VL3K9I83uT4RoB1AgE029kY4Od57O2D2mUi7biY33qqrMpRkQFo7zm8t6FlPpMYHNHlzKphmNCaHXAmutxvRfF9Ex+kpB1USloJcJyhGr2+WdrdB7WU40ihK6PMACkd55UDqP8zRgHnJfPUiBqpjocj0HzPUsXpcmW5yyjY6kAMKkd486Bv0or0edofOhkDcPgBRD9bjvPk+ncbq2heuZWls4/kJVKv8D09yPQSehJ5xWfD12f0ubE8zSucLDCFw3TtKxrABeaIGRJ1puHLSkSfQmufiDvTQOQhxOwCjCzwSbZry8SpoELrlWyvCgNMdN2GQXIThciY6nM9KcvsTwsINxQqG23BySMovBGVxljoXSb0vhLYovkZoai6XO9F87rlzS01YhwRR3G+MViMElO3zPS3F7xcYEJVR8kRquEQkv0kmIu47l2cGFxJfUPMKR9RhqOujLVGoJWJoCshOzzfVHI7pMwqLaKPh3HUBIdLmzQ2vQqL+3Y4/O+HFCu10d1+R6H5HomYPEZuRmCx0yNkGmenw/SHM7RLUTh12Gs8TMCGdwYzmPAAdZv0GqcTZuBCNbsqn4ugewOgmh8Ro/FxkGe4yAUEEcGw1nzbQuHFRc0ObkBtac04ZQY7jQzYlo/zHzze3KhwoHUJzLjGyTdYAvMDTqnCvSYAt6t5EK1F0uu+ig3ef1yUmJ7a8AI8RU48ZEyiV/V5T+4voCreIrYorO4bY+TIld0UDxXovbnl5i0E73EZXVfSRORdRuB1hgo0PXFS6z6XLeHK75q0gK6PCrbHdiWnQ5UmNl7czpTrYhOMR4cDmlE72OK9+N6lq2sPmMOAJz1iB2srelxPSPL7khoK23kgF0ifK4wTUDBRcFpLtoAPAnHAjwKGXcS7jB6K04MMAiVVmezgGzycoLqWuWU3vzeid9JIp4Ylf0GxkNr1lQzF1HlSC7GdenGoerzPRnN7M/WEWVKXwdtiamWFQhXSpaVLRdFtWUgXTVB34EC6z6vLdvP7ZP013OjzRVBtKdc2kBItVdKdrleieN6Mt6q5Rylh1RhU9mudXCq6fLZaPYdrG2JxE1OZ4IaEmXeU3ef1XcSpXIVJT8cJVF9blekeR6Vtdjh6+TaTa6fGssk+nyyMLbjX7LAKpz8rCk6zfIFRJdTh+gOR6p39TmYcwkYkZQdVmyqKV6vF9J8vsy+YpGAMZXqm/TVheZa+buMCAcOP0FpniUi6PYPpI7F0222pNFSFEGFkfo9mFjtca/DSj6SzBH1XM8gQcPKjfZD7JAB5heTsv5HnL2HWbWFJ0eX6J5XaO1B+c+mlv0wyRNt4fNSZGwDSUxjou2FMFeanidIWvCy6PIb6nfN2wOTPJAE2li2xxB3ArAUHY4/oLkelNOkGSQXHQmBHdRYsK/o8Zmo9lrsMMvl8xKNPQlUoXeMy0e69SgKVEk5vqQVBSvS4/ojn+nP8Ap8mQ5QlM70IFcScf5BMBx5rdwiOjXPGrOi7yLJJPrcL0FxfXODqoYI4GVTrnoOaAIqF/hemeV2pPEUjqJYt3W/0ubHcyK05hvI4Ag31G+4Cy7IwvNosYPSbT6OBhi4DCqrcfYzfAgAA1W+s+Ob03L2eTCIMLMzEWiNdsrH4+y3t85b7YDxiTvR5j6Q7ZRoahieve2nbTVHz0TboZEu2dBxkKVKLKjb49hdbdDj+ieP3JrpiZ2uYEBbAKPYFQQF0N3uV6U4PoTRwcXqhwRIu88YFkv2Oa6eX1XmMnMXKwslLAQXa5jVR7jfPk6XQRF9WLwBUP8h9870J31ufyK2vdu8qYEj0uKSrNei0utOdQQWroVho0SKV6nD9JcH1Tg6KAgVkVWNBwvELnp7qcP0/xu73bGomVJjHddDqXMiNRGPC5xEUB6lZ3KhWJDh9pOxB5kdDnataFAMBwi6YsWVtZ6ysXVGrjovNhHg5Rly7oNqxvKrOB1WKVYKGUJgE31OX6R5nbIsBRx1Nmtt0LzMPy1Mk2sGVZ0bb4TPEvWJBsbyqmOxzngj6FnYVmekqFiYz5VjZ9B9iTXW43oHmekZmAQRBi81vWoLNFb0uS0Uuz6AXkMxQipcHrCT6vIdXN7DwxWtrSyWJxZAjety/THJ9Gcs82H3oJExAVhLdLjTi7XqZLqzLSa8C5F4gltVMdPhehuV6tzn54vTIgIuGcjmgp/pcH0Zyu1uMuqiiZyPXbO0ww7IMPPMFeKPr0GlpYvGjAgCCgNb6bmc5XBIPqGWpmOgdFKmRiZBnAmy/RZLANwYAjJE6wElVKMdE80ESogxALXoch3c70Ejsa4tCVrLjTakKEK0Ratq7rY9CJsYSg+iBhgp/qctyqd80KoQkALDPABvmrUDgSc6/FfHL9SdMJx8wLj1oxXHiKXo8hlqdpviL2Sl/moeCTXU4rz5vbcwZpzlcsbjcCSPV5T75vp2WxzR+tBIjR8pMdHhTAGvTKnanTABM6GhQaIsqejw/QPI9c4meeM0YNzrWK4GwqXp+f9CKdPsrKpIJiJ9k7ghPdjmg6xTTemwA42YIkTAxAmmugbHTjNDFlz6sE3yjZK99zvEftEfbLqpp1nG6trOiVvl8O8bK1sxrOa1XnGZ6tTuxrmucewwZl9BM9V63jJol4yokoOzJNUm6pVXhJnV4VIgoZTLHNofPeefQ6q+2txOwSuG5zN2mY+t89YiCrTQWJke8rvjzNU1CFWKsOb9D5h7j5KzcWZapZbhvuxmNyTCtcEHxbBNYc7rq9Vqq+e8Q51uPQZ7BpGaixb14Je8dAybc7yl5VjordZu9y0lrrZm6usLls11ZLA9Pk3upMLXRjeUlS8c6z1jHVZzWcvksfNjXVW8rrn1jvmtkupMMSrvjKHXJfQ871hm9Ga2au11tl76uqrfgmiTKqtd80zfWdV506xo3nXdZ1e3O9lb11Wi8dVa2yct51S+TNXkvmb61s1WMm2XnV41M5e2Xli75JkPfLrHRjdXV95wq886vV6dZ594343q1ndL5JnWO9m87Zeya2XVZuq1Um2rwzdSbKu15yrWMmWbUvf4fTm+/BezO9uNaJOqXsubM3tzrfjXPK2XXdRNt1pkylbc6xkxuttX0VdtTPWbVLVd9ZylYyZ1vGZ1bzuxu49a7zjqsJL1q2awusKrEmaJnC6wmaq88bzkvLxkwkyl8g66aJhWdeq1bzhrOF52SW3WySpeFZvglhbykwvNtTZLrN41WNzVvOVXrJjRrO8Zdg7y3V5Kq7yY41jm8ZeUvn1mpWMmEmdXz6rC6SHX5OWdZVdVrZV3kyl1NXqVJUze6yxeUvKryzM6myrzq87vLMyqVctK1alpmqvOpervctVXl43LyXqWuWuYyVqZ1WFzCVq3nKpUvZUtJhJUmOpUza7tUtqYzOF1aStTCplUqSrmN1aS0vLMq5Vy1TG5aS8mMrC6w1RkE7tGZUWFYOK7x735vdjW6tXkvUzrVSr1LXdpMpdrzhJeULvpZ1eU3aVnm71edbvJa5eS9VVVa7xus83lV1cvUykzxeUvOTKrvUvJUqpdqlalrlqq0qrvKpVSpdXLSquVUxuWlWuVJaVaS1yqlSrXL3eMq0l5KktVVd2qr3dSWkqVV1VXUvKqtcvLqTGZtLxusNVa616y1ud0mqM4FayR6nPzzeedbc6yq85eWJlLtqYyVJeS8rC5aVjJBuo1N3l1KvUqryl1Uyl2l5yYXm9S9Spd5L3qpMqq9XeTKpVypMs3eS0l5KrVXVVL3LS7SqqXuWl3kqSqq1ypV5LVKu75q93UlpKur1dSWktJVypWUmN1erqVa5UlqmN1eXUlXLSsJKktcwlVcqVeW4eV1W2FpfkUQXX5dSZVMpd6mUlpKkvKtLxlVKtd2lXqVL5DL21eUu9S2d3kvLyzV5qqknlqM2rUlSWkqS9S8lSXkqXUlSXkqSpKkvJVS11Uuql5KurS7yWlVLxkvKqS0lSY3V5M83lLtJVy0lVVSXkyl3kxkvJaTGVUlrlSVJVy1SpLyVJaS0l5LSWuVJsqOHldZt4OB0FAdvj6pVVL1dS6kvJUlSVJUlSVJUlSXk0kDhrN5qpKzKrVXL1d5KqyEPVgy83CYvq7ZupVXLy6kqqqXUlVLXLyVJUl5LVL3KkqSpKkqSpLyWkqSrlVKktKxusN4yzrPN1LvKtNXqWkvcqSqlSWuVJVSpKuVJeS1yqlSVJUlpKkylY3KuWldg9t/k9dqjYCIt5+73G5ZmpKl3qXl1d3zV5KktLvdXq6qrSZXeGx6tYqXUl5VS6l1JeparK1O+LtcLG6qXVSpKkqXUl5KkqS8upLSryWkvLqpVy8lSVJUlVKuVJjKqS8lpKktKqS+s4yVUvW8pLy6kqqxuVJeXVSrl5WNTK5jJUlSVJaSpMpLSXktJUlpmrmUuWARp8zrNETIXFkF3+Jy6xaXbMqS8uqupL3dqu8lSVJeSpKkzzWgosdVfN5SWl3lVJUvfnZIr3hVvz9SVUqpaSpKkqSpd5qpVS7S7zF5MZMpq0l5dpVS6kqS8lSWlVJUqpdSVKqZqSpq8lS7y7SsqupKk2SEk3IjLF6qPvEZoWuS8lSVJaS0q8u0l5Vpd5VSrSVKtd51qfXKx0Om1ANh1qoDvcTj1i0l5Kq7yrSWrWWqti6kvNZS7S6ktK3YvnKLDeLZl5d5eUupMpJ0b1gOQLXEq5UlSVV1JUlSXl1V2qVJeSpLSr3KrVSVKqVa5e5apeS9zGpepUuZoklNx9SJ0DXqb867M6qa4rx1Vp1c3sXoowdXi0J1JvdmKhpY+TCsf5bSV68rvUdUg7CO2lzsj5b3x0MUKpVyql5ey6xlFQmjDLsdjBJzmmWJkM2ohe5xI/eKl1KqSpM6vZRMZWuqIAnYKvRJBMatXx3OHIFH0eRyFFhvGNVld2zeU1lK9D870MJjKpdRiT860l5KkqS9S13eVUlSVJVSpdSqmqqVLtUvdXkq7qSqq13Ul7lqrozt9c/0XbYx7QxfaYS2i/wDn9+UvI8DWnWAU6PoZHoYLlg9ZAWl2Gsz2ZFBkuOg1D00HSj6CRmOMdxmxwWwM85OGtBAxxjKptkgjU2YXZZMDSZhxghbswPkGAI3lHwIqKK7nGjCDvKqrq5Up7cjuMyOiY8jJVNOI0QdKxcddAFNN3VXR3c4cEUHAUdVV5LZu91Unp/hejhbyiuvxeAoryqkvUIxNTtn5cWPFTithxkqXeqtcvJepPCZcYX1zpUFZUtmVJPDKzVTxhBxVaAXFNWr6B69M8XvYHoYmxq0ADop+ieL3NJSQkmQ1wttL0eg1G5YgLoCZXdadwDGsR64hCQnZ53pPkdqUIAPtqaWAq3Mt+jQl6D6FGn0dYNDjqLtM/KMVW3yE2xiWu9DHsZcCfRAipJfs8iXvXNrWqt1WOLQWpz+w1YQIFsPOpvAZuYbswDjuxjFXWzoMup3US1d1uL9HTofUoQHMp5+7/B9ScfvcOIhuryO9lbuwWPGfilFK7TNA3mPQRpSYY1x5tesImGm5HEgti5cXH4G6EOqvTK4GBtlRt56REffLJBlGHbyjuwlHGH1UR6870br5iK7YYUL4Q9nmvbn+kKQA7FMqfpbFy8z0kv0sUsC5SAZlJ83QYKnMuHSdeaXLvFeHO9KSjVMVeem3unAxZx5JrDStb1NhCdXQngopJ6Lc5K/57S/IydNEAtjgBDcCXRCtpLbqrNbR4Ee+StdWchu1S3DTzMFdpNLxlXEFOPDNm5JJCV7R+xUMMyRfl5hsp1TUJOGTG6g4FL9njeo+R1+TGVX1ETdlXZLJ+d2gcOhwyzOhpAOFdoZkFuJ3QwYDRXZ6bBDVY9dgLajrF0BtYBwqwOEFw6xsu+xpGKKCGXLTjkzrS/oTTW6LHEqqGDAJEgdpD0ZyvSykFyjEvW9jmuX6MH1ZTnpAJ3QoqhSds6U58eE60aMsXeK5kvTnGUZVNdXPMjkE4htSq6aadaJ7Wbya6nI4ASejmeYrwNj0IfMEX9WPYXdKXUACIB7qTWXdHN65a12jCBsgPROM0wRhbagdUzHp4af6LX0p5AHGdKoWEmHzB3FWdz+ifCYIcrDV6gaH537vM9K83twNjCmkG+MkB0uYZ8brgA8qToV6aW1vWiOb0wBGuKw0g3IE2/Kwfs3HnKf6S3opIq6onoVBcT2TlHAw2iNlGFOOCXJ1mZ0FZXtiaQXSowQDegSkQhpD0ty/R8rEjxjGLgiXleo0ulivkGYMvCpu0UhSEia1YAkb1eb6o4vT3vYEMH7E8rZzLRj9RYCl7jR0LJLKnBOhPd9RWLmix2fmtYF1GrU8EeqAF5686qDrZb7uBmK0VedSh3CRJnpufQBRXaZeUl17ddtQLBCQAluTc3zxduh+euoicKdljUZnK8lQsvwYspPq8b03zO2NUIMf5bgFvrxOfL0OmHz/ANYXohdiVBSdPGOE0quNWsmYxWmUnyF2ZsaHpTdFH0QuyBBK70yTWuOsY6GGphbV7FNqpnN23DlW0k5G8uzNbCJ5i0YUCmk/TXK7d5B4lR2BADqfoRN+PAzx5XWTwT7DPRQ42tQF5FWEHwo/u2GAzuA2PgEVwrlgD0M0EkGMrJYeEggyNmmVCwlgdFI24LC3DCp287qARkFt00XC01M8KQ+iAfSuFEiXieZt6CJpeG5vZRvQyeuFmY61FKliMWD9Ua1vmMxDtGRdHAElyZmIDhGdbj+g+T3B3Q+BjnMijszCYDfVF08JXrc9yqvy9bAIqeZcir1BYE12NGIFFVp6MAFUdBF4L9CEVw7h1naa6yyH7h60nAVYbjXQ30C7FKa4ZibJNgD7gOVSIMk8uZ2pPOBjUiN4GGEn2s/DhOO3oHbQdSx9mxRY9wtxQP8APcaXbkawNbzw3jgqHdNxtUM7VnZmUuQEzCWBlFTEBWOEcacbA6ofwo/ub1wIqAc8j6Aw2Dm1EiL0rhAm0jxXsSRJyL6B2uf2VtiY3juuXOoKiY4zwMprJpFqc7qtjBMGpDKaGtA85drlel+V3huD59AeQBcTY7JMritJLqptJV+YHlcMAa4zxw9ipRvmLazbH0zh1iVPQVeiL4NWfSAVIOywK+gneiHoKxFDFhb7jPEkpNkpmCcJigFR6ACqCx0/QHP9BI7CH1fOPC+c5fo8XXiBE4Q4VznPao+j1bxA4kZmKpvkOdP0xJpOJzmDvY3oDS07EzAzlfOjH+wCA4IsclymVCMUJh6bWL0xAdCgUn/zuqvDc9W9VNp5PyALowTj0MbYUM1+g3diXQTLllCoVoE6ZNacLiDo9xFaIAppB9Bo8zsFw93KKJGSE0NRdbj+iUO+LwUMcTOrfIdGLExDpsKzpcp4pNyNRUGCYru80IOFy0BVJaDAi2L3S26ST5SfBaGxVc6CBH5qEu2IXYreBbIz7ZSCrSpaYGXi4gArJV7tIWOn6AS7/XYRm9QucATXN9J460SvcDRlyxyWvjoYXiOzIfFLRrk+ied3e1kMeIULjYwSGpOlhlQL0DtsxmTA0HAsXlNdtENWIK46riI+AZg+uo+Od0l6RBZ9ZD0EBofEXnHrhJgGOlKb7bnYTVi5wcnPkhRqzpdxQ8Q8QmN0GRBQqVvmMJHusOiTugiWILaynejxfRnP743YgdrmOwGyERYoLK/vSu6XPdQGu3cWw12iJvixoEJbKvU/eBMVDuhq11B2rdYRpI4a5NVQrm+hN1inaE8wTGGSK3Pi0nmQNcL5WdcaX2uCpirCr1T73eUIzWIcUAnOf6vw7ArGDbIDE5z2AathHcEh86TziD1S75adELwXjxBQtMLXQ4qWF7X24OdmCJiwLm5joZTXy+xnHTclvAI6HhLPNDpr7aKp7Cb6YPEBkIA8LqhrfNNA9hgsCCAlADcyZXOzzNl+1QwZhvG6FjgJhUN8tkc/usS66NYgsSDxlIdXjeo+b2A2oEtJvAPQld5iFdr+hqvpc18Cb780q4FnheiJAQm2mRoqGgttkhhhWznP9C8/pgGlTJ7k6cSAqtYHGHTsFmCOQS22526V5Rn+HSjQw3GwIiQ8wq+Of2ZCDhJkfmRJzn+jkmokZhUlrxgLQGzhiRWN8WxBTKDwV6nXkMDVx2qDC00MtxlQO0Dq3ZpBCtbHdc9qMKhC5OEbzYw6DaCOUJ0o9EFtNR9pJ/lYhxSEXNH3AwnONwdRnbACCMu2ed2jabOWOkq0dgsLjcXVa7EqnOYx0fQsWBkSjGpBbGlI9xvSXI7QlrEAeNCWSSQIWQrK6u6HNei7EvUTt4bNPC8sZobq1XTAg+CiRBrllL0Al0l9Fm4/xha4PB3uUeM9swMgsMM2d6b0JZyMNJqRKMZzAJpLAonRz+numBfWovdQREXwo2G6a4sLBDQPR6lwLRB8ZKUEmuou1UupLRSGwSCJODWWXgsPLC9Cn7orxQJrcIRdqbWDgGHiFZVNB+RiRlfQXP6gTF1T10PQYi8AqgcHjt5WbaTTQ7EsbI6MkDpCUyU+xracMNjUBDRWMSRF1I6g3eX2mZL6CBFM6G9YSnR5votDtjYlxFoj+FvEo4sGgEelg/z2ss3JDi3Ou0LbHByL1hq5zawxgSBpKCHFXqo4uqy3WufGZyHi3FYPJsjgJiPAY3OeUFpNGE0gv9z2BtYwTORBHz6e53S4HiCC++YCIE2v6LH196AF06QItJqFfOkuZECtWNtLlnmen+Z09Raiw1G0RWOKvQJ+cdrsuZCRlYwFYIEkA0CYiwQNKZhOuhYBidKPXn9YJtNVdnmHoW+4V66uE1A1lJoKvtEo14I6yPz5kR35m+F7AoqWDGXlELlaKsGuSfc3rHOMajYhMnjKCpupz/WfIfW+yDbFngy9pEh0DUNmwJ/nO5ZnvzautZiZeDr1jinQIPExXEnsDMNTdVR2L9uDTTZ6g+TYhCEhTYeNqgO6ERllmeleZX5gGw+gbmVBclAtpxhFm6t3SQiwdncBkUZrnvvPbnebylK64D7VZ53yZRKCxYQYwCfmNAfpmUtyo4QgNhsS2q3RsFayaGdb6aK/FuWsCNAVY9GbSEFzrU7Dduw/GgMoXPzuqH7TWPV5b8A5w7oWEbVga+aRP8dVvDVCxHRfSSKFmWOyUmGttRyluh0etMBwuv5v7abM5/YZ+lmGiohun0tKmUb1eT6f5vcXG8bKD6KAvsIMPV6K21lP9Zf1AlnvDnz46Zwqtjd4hJphN5bavHTZOkMACneoL2DydpPTT+TFFZGN5KFNAZ5BcQbUbVm2npfGUkyEw31So4hIRAW+fH2s3Bd+TIoJj1H5FD7R9JZ6cckBXPFGxJvnBBo0hhm6ABT7yL4W7OW64xjh60JkXZOHpmJKeyy1RnYXA9lEB4fpwAy+wExWQyYLzkaGq6uf1hGJKvsc9pl6DB5KwTo4c/Y3jnnYuuyCLAdEV5kJ0BnM6Xu0KD59rVlvsVAXLC89dZJhKddrlWJEcJ7pM6E4muhyPVfL7IFgYw0Jz00wBclSY74/hRP9NX0CMvaKKa6dIiBVEhpDtrTHFzErrpRqySl6gfRSTwSPDmVLLLoLEjMEUJv0E4AegPOy7XUbvP53lfrMvFA2bsFBbW5OfHHx6Y5bww2YfrUeJSAcX9OKFC8sjlhXjNO0ZIeTQHURdKl5H0jznecuB/BtOMLtrHohXY5ZQCwTN2y4FeUceGNxtYXoLFSba9EBNQEKs4kemPYAp+xz3MV8tAss6Yh90NYROV+oxNLgl7XxefJDP6DULA9LAvjeK1D28bdmVbPLcHO6h2eT5ABYSQi2UF2UfT/J7S70LDYnDlkjig2Jtc5ypOmg7cn7c7X4MMyOBsrcAbWKroNoXX0F2FYdED5T6Y+us7Mb48DBc7itDP2lxHOQLW58/aOVkUs1o0y1MQQ2My/Z52zQnOu9wTMDL46zEbC6FzDcPDUAPPTvXseIaFzrRgQW4qz1OjJ0Mbmo3Q4zVMvBIXUDdBmcaNhYD7IMnCwLHACuE2dnZ2LZoHOq50+mP5XV/U5jpWf4nxC4TdIAgx1mWl1eyFFiVG2hqLZ1Rtkzw5gxrMATDBWiY6HOP0uwdWHbdjOCcNZVfR53o9HsgNAtszxwDBkIOmcUwVZ9BBtrOb87ANruHLILK68WTEHusQ2PY3YRdsDpV6APhf0thWCCyKDyCHrF9WCvMcEzRw9ruKww3Cm5m6IZXtfHQ4ia9Jc/oRR8CGbiMrjreHpGujnYAmrCLG5SMyySg1RRcsVznP8AUfJ6MA7ocCQgVCnuiN3B6UXkS/Or2DI18ACIUdyBk62GYyPGth9B8GHkbDznMh1B2llN1+cfCems54x7HyCHDLMETrHNlYCICk5shln0mOx98YqAgyOQmRyOmlo1yWzzOocEyTjWWxC8ocofrqeu+R0lMWhopWiDOBMcy2wshQl7nt5Z7cPQUVFqgcXZMyQdNMq+BRwahgvQFb1KbIuvCq85loa45cBMxJsNFlIaCUN3ZRvo9mRKY9MCdJxJcdaFfUDyOqqac7DO5HJAGWF21jK1XZnpSfP56ybYCCYP9dBi87miO2Ahza4PzWot6hlLcPWG1i44PaVbumO1VZNuEkh7cYU15pkVGP0kRQbR2lHTt8rI6DKsZRd3M643pVU9bmOYD+RxRCxx8ohLaM1Ou7hBDg2lukhLgOzmyy64RSWGEYxCq8OPPLHoEzkHXZGxMfnrJZ9iHxSsa53rvldRPlvVRXsMBbOcms90TpZT9MPpZLdD2lW8O1Mi7JUXRWSWMxfj+f3unxKrrvoj9acfakJp4LVEBoZvQawFoNLwKpFc1D6dAgvCEJho56TKW5isO6smeZsrTQz1DjnJr1k4qUXGTD1juKPPVTpYoWXPGNWFxGmeSDUzqDjD6Znh4guAoGwwO7Xbtsdy6qhPoiDhk5yBb0Lh16ZY5wLz2VI6dhsPCsEDZSefM6g3aqh6/Oah3TtYAymVa9OoPCReB9nYuAHlOPpSAmnu/O9YIaAi+ZNoAI2BaL6POOleqwDCYaK6p6BI1TSjdR9Mq95bYW6QkdUGYj5iYv0AfFFn0VfTSl6BlSbWXukdXmHH0doHETgQVJ3IVcK86OPQyToYNdurknBoLSm4TeDV9MexFxNsUnVmRg8/NR2JOdrYg7BF6TlWvT/SeGWoKXvgEDs0B8B2C7NChAEtaeAqh5uGHvkzhSvpeo+T0Y57IiEu4A128P0GroKIUTpWWhyjeRjMix07GQAi2VuXbbG4GmsF2m7eX1x3aqf6/MZ53zgC8CqRfvUNYULQdBqEwuL2B6RmAn9ECsb6YgfF6lZA5sjoifc5bPR6TbMPAuh5aQGKSfSU9ModdY0DtGRwVnv1kUFat1a66CjyC5plr+l3gHoKci0mO3NMxTWIJOwawgDw3oo+HgWfczxCyGDMJmybdFMGqhYZTmdqawum2AtMDXZsI5gwGbnXJHMqxx1BuEitB17jYAQamhIg4i9tEe9FYgMliNihTLNMPR7crxWZB6nBez2yw1UCFXmx5YQhg0IMsDY9ULj1G3tiEbB5cJEXPzuoPWqpety3EJqRawJAJxDGGmWOlujMHJFL2LFS362Wa3GSuLNxliHTiciNpp1Rpcrqlxa4SaihVBWNT9JEjF34rSpQKPuyRrKMNxeosWE41hX0okyLFta7w1ZFBsZmRxwMIxAYtctCNri8ycpdXEfN9gm44sJ4I550/wBDAX0RY4mOduEPWGHNDgedROpIS4jAxE/Mkd02hdHgrA9VjtAYYFPQg9Jphzo5ywC2T0skBM9nod3PFJLg81dxc0X9BMAkXeeEoNox+t01VmZkBwtNFHNs6HlCjdi9GLACQnS/RnpBMgPjSR6ibv5nbiousenzGrpjbm9ajEAbMYVYEajGtsKHcBfPKhMemEBR7AwvBRm8hjtf/8QANRAAAQQBBAECBAQFBAMBAAAAAwECBAUABhESExQVISIjJDQQJTE1FiAwMjMHJkBCNkFEUP/aAAgBAQABBQIM8ijkSWMyKrG2enJUdXybiFKYSQELnRUc9QAG/UnLo0shlhMkyWCO9WOnSDNQ392lo263qOmS9Qt4nojCr4gdTRwsn6mQ7S2YnpdIpo1dLcEQ36hKOwfexyEFYFaaUWO2nULbCNflV0W3uEckq4e+TOs9/U5rlk2k1Ml2I9paIkiBZfLgv1DKE8Ns1CrZizyJDWusBcrVWKfT5kCOOW5kpPPctGb1J+PkyGMtzIcmny9UaAW3cslbpHyfUCuKQ8dZDRGvYVtHih9XiEx9rBa11vHEr7IRnX49jaYkrGWK66kPLAv2sey2bh0n7yJBBpN28qnkArgNvgOGWxjOclpDRX2w3Em2cYzAhYLUFWuxrLbtXqesSYYjircePIlWr2udYc5EyUPKiYqOi/xDKFOWw5nFY8JpC8KKDBZBo+ixBLQj5UyLO6+S9PERxh9RNFmOQza8jGSKe0tEwTr7iZLJmLOKxxpGy2iilRaOulWwv4SioItHHe6dXHitL8T6WwQGWcs2968b36aAM0GmbEGW1LDyUELo2oWIAelSMBRVch89s3TpjFNyrpVq5HRKlEfZDmsrxQu6W6OhXtvK5BgG9zXOlua63QckBvcmluI6insCSyPA2XZyaqH4/c5jyvjyUsm8JGikREprJJDLOuC5t3Fjws85DC1Bt6hod/BunZyyZMquknbYR3VcqVL7MF72GmxR2DeYZoVdWnYsjsr5s0MWQO4Z1yNJO4zqyx4JKVLDF0w7bzHQ5E4rJDZXvJ0cIXXVkC8kxsx8n0icgxTGidbRoqxa5fzio491qnGRPHvArZ7I4HGK+LLo98LH8eRKOhR6TL0HrpCy8lVDJEmSqxXWioQkNsqQOhYetOwXjy5xlUKCIYhwkQIHvDBk/f1/tZVFi2G47Q8VjQQxNREEMrZrTLqPjxqpDxwaKrhS6nUMWsDHmGc6KT9dIKnK3c9Hah27dNmQVdpcazSagZ5ApDHRM1E1yC0+NJFRpuO0cWT8Ybl/O0uBNaGp3SzA53KtdwHGY/ovBP6k23k/32DV6i/314t6jTOzklC6CnHyV6Kx5kV5bRFbK0yNCRdHta5twiI24YqxHbPy8+/0uPsiaUjujEnAcsS3IvfJD7x/v2RSdQd3VRZL1HcuSRJTs2uV3maXXaXThEhYsV7Db9Q5g3MldTdjLuXTrHErtOvRsO0/cJHNrC8uRhvbGg/ulPv5twm0uwanpEOvdJN2p6XPjr4MmS4kogGOTTI+zIMXpSzUbYMo/knsU4GjPOyPAjSZjSTTuLczBxDGEQ43dhMbKf6UeOgMqk3sYTeUmviK6HIVCCuWbxGKnZqBGpFr3I2tqhdFLYtfNGZ3yCfrolORtRNVoNQbKzSvwxtMSHBl35GQYbub26iTYdCMpabTp2tjyhsGCQXnYzgueyrXjZiR3OjYhcjTEK68fwAi/HI9yWQHoMn99VCZKg6dEWHLsJKx59lbqd3vuWOR2WX3OlY6SI2nagsRbe0bDbMeWWY1WuXbOufprdtdo/Z7pzWJhX9j3/KNG/cBxJBh0TSkisaI9dZWTpzOsiNt/u9Mfd1NaRmTpTo77S1B1PYewPMi+A0n+TTwFNA02A8OTOesbLayDHedzinnhWPHr1/M6/5Uy8avl2Dl9FQkjYPzKkxE9JY7kYwiOLpRj35Up4mSDdUfLFrhkpZDUiVtvHismzxHJJaJcYVoUdLRjG2f0kqZtkBw2WWnfGmEbMDBce1Y00hqHf1AjpqNUdH07DDKhUgnVgbURZpbOOIIn/rotRIXUCd59R8M0nwZCgFFysLKvR8w7FDqR3NukDbVcYr0yaj5UkomAJafFHq3cLSG7uZDjrHJHlTGrZySFc8Cucu0fLY73Nf/AH1SyIEIFijAulvOphc14qxZZyEZP+40l2jCEhmNsJLsWQXY5DJl4NzJujhCWuqZEaKadYukYOMmSuCDiJ+Y1KoIA7U4WHM1uNWK0k2ShctvutNtc6TCtDDAeS4rXcGo6wUeWRyPa/8AyaWaUcUc6Y5JKFMR0YrkEZwnWZ3vZAXaxri87S+e31Kw3WopZI0GCUNo58NzmthoN8hc0i5GyhnaMNoAkgnDoy53R9KO3lCiaXuJTT6RONTUiI8tUTkavmsxGWJoc8ySB0kiNGfWW8sbRXVoiGtJ5iElkHh5yq668aRArLCJBjj1FWbmvIyusJUWQMns6kkmek981EvTK/Kgpxx4Ea5mEtKS3G98awCy4dyi0kuSaDGhXAhyWzxukNlvd5cmK+AdobSFCspeRq05sbpPsWfSMjKoGrhIJy5YtmQ1IvzaurdZBFp2u7PSI+Sa6OHHRwPdJhy42TiKU+moTrAEHSFYVk3SsEOSKuGN8ihUeWiuWRp97gxYJrxWHJeKh22S4kmUB45TWahg1E+SxmnprWGrZBHJAlHaeJNDl0buk6cG40it0zFkotJThw8erbnpNfLSygLEaT3LR13njjaNr3MsKSqjtZXwn4tOLnZRZMRsV/KxrGKkm6fytFMNgqiVPI91faKCSKYudUs5Zb5kZtNZHcSPQWh2y4UgbCVZUbKaaOtfbpDgacmmKoDx7KTZwYGy2HTEjSHJHWZtHJs6TXJ+ZVdiOuHBKaU2QOOEd3M6CxTAlN1ONrGUEaKCDFGsmPZRSgy6igUBP10gdBSb5ZKzNRPYUWkuTmCnNiSLKXJTDyBnFqD+zSMtgKyvOSYM2lkMssSRLGYbui0v7wSe7jUJ25Ah9ALmQxzP+6FcMltKaYT/AO6DNWLA0vt3gc10maRyhd7qyXxSZ7n0tIZFgUZCWBZio1NTyFKAMnrfZrvM0TxbW0FqjpdlFnWLZwXQzSD9uQ1/Mg2wwrGC3rfBhw8tGeJKNYeQO0XeXpNvOfFsX8oxhOBIZAbkhfqLCR3gX++llLFiaXchY8lkeSVRQXMIV3dZy++PDX62E9fPufisZzdq+ttGRo0dpJUQ1SJW2ABxpciTyTS5WxrKuMpn2FOjySw+Oae5FyJFA5lTEjcxQxQbKfIRyuRnJyiakfyEhSILWJW+9pDcNpKovEMkw2CtlcYolTnqVqNDEAvi0zzOq9QynOjyB/Qv/XRvEdhqQjGg1A3YGnHm6KaOaatuMixDxkGXUQniZpcSSK3TURgpMsaNJa9/nzIjo+Uy8bf5XOpcjHxDObE1GRiYuP8A1k7PC7+6KRy12nNuwUzaXaPYAjkx6sYyT/k06RoqmgKoXuf5WXcsUsrS9OWruUzTcbupdOBLGlWivXLZXNmSQ/FD/ceIEJWnUYLQrfGu932HQ1UsF+p0ou08DGGPALzJOl7ld75ZOH4X/apUY6zT27a2Qoo9lKN8r/tYDagof30PZtlebefO3Wsq6/y1oxISJbiR+TmOUhwKXNPg7pUKC9pLBEflqj2ybACMfEqTlj6djcRXA3vsNQuYWSWG0sMUV5GBPLWJMnFlvrV/M6qEGUKnq2ICwZ48iVBMbBwo4c1R7ZFjkMGqkbQrfsI+xC4MR/66cjlVbp5Jj9Qx+iFpoijj1kl4yagtFHAL2vdfbvi6b7PTNLzRxz2FpGUcgnacnJzaj2t0jRiZWgYsiKHry+FzVwkTGgFlsqdS/wB1FIGGHWEAsw5OuVJa0+NjNySg+Er/ADaK4eFDrY3bYiOBrqhexRDFlkvKZp4J3UekUUM6zUKZJk+QZWr31Qu27iVBJeTI0iLks7G1h9ymkRyR2T/udKbOsa2mf1lRUlW8nuxkcp1tovjRP++n4QpsaLGfEg3ImklT5qTzsE4pLUPWGF7zYXH1a/ei2VivCGzsaPTxUEkmewLObnHktd5NG0iF0y1ziEnxdzSnFdMa5MqrHqDRSUMs6ayOebMjOU08DFSaj0dOVYE050JW7JZVcRJhohjQ48kopY7lGtQLOJdUfrTTjBiNkSPSrKUfhavI6I/9dIPIyPdWRNtScyC0girglCaTdR2HgBaMTNT/AAt0M7aLEgBnDs61AY+vYzLB42R4aq2wgxlKSNEDFExUSLamR+BjRli2AhCJYclCv6weKCpxRhLPWO9wWA3nRhOQgSc5P+XTISGiafpnMTUEJEeOrZ1mgHiZN9pGlSI2no3FV13zUaR2hfJK3nDdtaVt05iEVZEaUIhMdMe1xj8hWP3WmncZ9JalIOdKG4Ulfn+cdrLyYpYn/egkS2R61SJBsTGLIG4z3vLIdljyOkROM6KZB2d2/wDNbB/NlIVrWxEi8J4HqJkJULKejc0wrEm15IxBXfF5g9IhW5G4Lx8qhBIycaO2ZPMA+FcFxkIIeGky3RTinEZF0/aMkV0a5jOgWM0LrSQ4opfqBh8bJiXMWScVeZARhWpCxpUrd9hIG8bxu3qpXisurv1Al0dHQtGB7w+nzWlK+yIhAy2Jq8ao/RjmMDCsGNWTPcrTTd0tXsIKB+5hIoVi3DTM6PgnPZiuREeo9p7vlr+tf9rUzpUfJEvdTnYudqOZwXjOTjJ031+HT2o4zrSXDsZCGBHR713kruXSTRrWxmABGsPHWO9sVcMEPCKvCyr2ODiTosaBNmQjuKg+UjdjZ68pWn12m1yNEAooZBzvHYVDt5XpNgp/dUOE2PXTayOK5eCXL4i58Y3Cd18YXvMio1ba94+qF9wUD1XFexjZRRo5JAHPLJ99NyfDlhslI6YreTpnYlm/cdevy4ls8IbKe/CznMz1ApF5m4jkcic/iGqI1HIuIqJivbjl3VXqmJJdhvn4xiCayaI790fnFucWZwE7EixyIEAo+NXbFAzCIrWnjgk4GKKGjVK7Hvfwa0a4SEE2NoYA3rAC7EqQYlPDTPRoa4tTGZjayOmPp4pMfpOtXPTQq11HHVV09D3Jp+K3G08ZWtrRIj9LV5HRKiPBQS9TibFK+INziVkUzV0pWKsethxmMcFmPehG+IDHVkV+JpSsaQMcQEVyphIrTotVHVVqorldpSsfgtKwAFGFGJ2r1khRz4lVE2Pp6vO1dLVGCr4gMRRpmw3YseOuOjR+s1ZGLg9MwBODGaIpo7ZziVcRqenxlT0+MmJBj4kKLnjATGDGPPZy7JiccXiuLxzntnY5cUj8AZSsQi432Xs9xrun/pHe+OXsb+ibYjd8XduNcg2s5cUx+RxtAm++cts7N85bYr/Z4kcvxJiNTNsX9Gi2xWqufEzGLviNxUVzla3ZWpiJipjkRc9kQn6bJs5uK7bGvTEeJc47pwXNl32GwPUipwcmOZviiVE2cmNM9qpKXby0RvktXEMmdudq40quznnPOedmd5VKpc7PbnnLOe+K5c5cWck355zb2dvwKXHr2t3RVV6NzliuTOWyI9d/dXo7ZOaLnZiExH+6uRM39+eJrAGfxfGXB6yibJrKDn8ZQtm6zjpn8XQXY3Vdfiapr8bqmuz+J6xcXUtcuJfV+Nv4GPva92eqwFxtvCz1eDnqcLPVomJbQ34k+Lt3Rlzy423fGztBsjgbI4OK4edgUzvDiyhtzyxrnePFMxud7duxuI5rscPODsc1cRFTOY84pujW7bETGlfjl5pydiFcuO5LjmLtwXdRLnUuKPHCVU6MUaNzi/b5i4ikxxHpnaTdTrnlbZ5CYsxjc84eeaLbzx4kxjs7mOxZDG4SSPd0oLHLPFwZLC7PKDv5YcSaDbzY+LLAmLPjpiWMZc9WiZ6xD2W4h561Ebi6ggtz+IoO66kr9l1PAz+J4GLnw4vDNm515wdmz8+PObkztztXO9UzyM8jO9c71xJOJIzyM8hM7UzsTOxM552omdzc7m52tztbne3PIbnczO1md7c7m53NzuTOxudmdu2d+LIzu2zyM8jPJzvTO7O/O/bFPnkLnkrnkrnkLne7O52eQ/O5y4h3Z5D87353OXOx+c3Z2OztdnYq5y3xVXN1zmuc1zmuc1zT1ehj2xXMFqKEkkzfbN8R+2IuJvnF2cXZwdnB2da51LnQudLs6Vzq2zrTEMud7s8l2eRnkZ5OJJzyc8jPITO5q4hG4qpnZiEzsztztzuztxC4hs7c7M7M7M7M55zTOWcs3zlnPO3O3OzOzOzOec85ZzznnPOedmc855zznilztzszliuzlnLOWc9s55zzszsxH52Z2+/bnbndnZnZnPOzFcuac3SPbL2gsveZzzsznnbneud655C55K55DlzuztzuXO5cUudmdmb/ANDbNsaxXr+O+b5yzfOWcs3zkue+cnZ2OzsXOa5zXOa5zXOa52LnNc5rnNc5rnNc55zzmuc85ZyznnNc3dm65yxVzlnPOWcvw3XN1zliqucs5ZvnLN1zlnLOWcs5Zyzlm+brm6/gmaf2QEkewbNvGa7+7fOWb5vm+cs3zlnLOS5vm+b5vnJf6W+Qk3X+hvm+b5vm+b5vm+b5yzfN85Zvm+b5yzlm/wCG/wCO+b7Kjs3zlnLFXN/w3zfN85Zyzlm+cs5ZyzfN/wAN83zfN/w3/lZlI3lHku+iuGK2Yb2L/wAmG3aM/wBnf8Pf8d83/oL+G+b5v+O/9bfN/wCXf+SO3mWi+2lIni2znOJJ+4/DfN83zfN83/oO/Vf6KJ1xlXdfx3zfN83zfN/5t/62+b5v/T3zf8N/x3/pb/y16cpen9uiRybDtV+KX91/Xfi/0AM7TTnfD/8AhbZt+O2bfgILjvj6YspCN0XaPc/Ts1ivqJY8INwnbZt/RTNv5EypbvIo03iE+ytU2bN+8/m/9/0Hfy7/AI8VXKgSoecuw/8AmAp5srHaXsmI+lmDwgXiXGAITGVksmPrJg8cEjcgxHTJQdD1QVLpSlRsnTMBVgVaR7CvoWuxa6MXC0gWtmVLmCLD8++h0tTFV9TEV02lCmejwH5M02IzU0RYY7Sclqm03KYu347Z1uXFYqZSUPqqfwzBCNkAMN1O1AiJ8UO0Xllgm0/+VEV2IJ65xVPwp6cluSHpKAmCoaZirU12/oMF2JpGHIc7F/mTKxRBDLajhTnb/wDMjpueGyKo5BKxEVYmW/V0V6NdOrwSeMtrxNIhS4YJmsFue+geKGJZFihSRHiiYEfRcignFh6xZIWwjnCg5AhS1UFxGkECGQ+S/DTZDAmnKiiKqniMFKJZeN2Wb2JE07CiSBS9PqxsmsE0OnI6IOZAhxGeI1WRgDr8ky7JYBzyGAqHry2XwrZFTLL9w/l0XViFXshSXiswTB5Z1Sz4GkI6Nc+fLjGWVMsmOhmANbE7psq0luQ1JKHkmKWKv4bfimQ66OlRZRgOjSk9/wCStpCWUaPpVhEPpwTMPVyAJ/PRxRTLEumI/g29XHjw0/GmrUtZr9CRew+kIwUJpNOkonBJkb2kxwxBilGeuPInO8CNY9c3lLrqoRQzBQBveyI9qwBqIDFbqGLp6IkGTCjJHSEFRxW/7oW4FHERs+2zotKzHzWTYtxxS5p0a9LR0KAAktO44K+Xkj6a2rqiKWMeDFMa1gMGLSyFWPPjF4zZDwQaSPzBNDALjo4OAGN9TtrTxIS2A5DKz7v/AOG5/SZCNJs00hN4Jpwip6A9F/h4mEppIV0pD82IlWkGBICkwtwjokbRT3chVj5zy1KQlIVNvTCvaoiCDObHeC5GiDpq6O6HGgSBteA53eBwS9aLCM4O0vDPZQtQxCwmNgyJjRaStS5/A9vs7S85uOoZzc0vDfIFE9KFkhalw7uGsaLp+hjlh2dJHFkOk89Yek4jmP0pXtYXTAcXTYGjrwem3zSR5EibCdPQGjgcG6SiuQulBotRSOg2daOOsabGCiyNm5Y/fZG+5YxzDxZ/GDeH7w2nJA1K7TGuMuVwBSnS6uB45SuBkIiu1K6zceGTT6vJKUtSeOifxionBNQlIGJeySLXcHvdce98ywJ10LlHKNZCJHaYrTnXa70312o7ith8pR18fQ1cA0G0hV0Rs6pivFVSSwWeLEOK08eC2IDzrclcJw7OIEeViI2yfv4t0nywOal5Fm1IBms4+OljJjCQ3BtF4xdLGdEhmrWzYtjQGirerzgaFYqmdZq8cCC+ec9DEiY2a8R/JRWzLGc9t09HZVjaoxsKPPTWK4rPGdLfzGVPi0k1PF1KRHPoFUsRJDHCjyF7DrGSGb4wUMt8Q1fpwlqllpR9eG/kPfX08ALqaQIJG0b3dcIlo5kuRcrkt9obHCONA++op8vhEC8UiUV5Q4aRLI5yFY8EtQnqCeNEmj7M2ZtU1LJmTaXxy2MQHlKVHPjSVHCsXoR9w76Wv+8J1tbAcwZpspUETiuQffVnS2WOYJSOuGP8oC/7ydWnCKukJavtbEde5wDFbae9+EDtq3oG2aNzWFOgpZlR91plrg10xHmknVA5pCzKIR+iKy2kP74m6uBs+PbEXqrztiW8g6Pk3JmNfUbEujO+kvE+TTRRSNTEAKDj5kohDTpG7EjzW6iGwMTTghegAE8dbbD45qP4KvQ5ODi9LMCXuf2R0We1oJiI1B20eJ0XuaWYkQfqBLAo6axXJlgWM+yc08Y3sSiA6PXTxPkM0o/jDjRzvgCB9UlfLSJNQwnQZDmWOluS1ds3sDcr+X6P8mdGuKs1bF0yqsdHm/TLpQJRWMFaKbJmtkACTlqAdVBZR+OyPqEYBOjTIksxCseJ96wIV80MeBbEmjSQ0TwaYrTy6qZFAwlkx6ZX1juLp74YZavkyb0Kij13vLBAezCcGnt5LZxyicVlO1S6mhxvEiuso71kEkz8CVodUx7mMIZTxHvVw+yZYtMye9DXlO0KMto7IrZM2TZL6aGIGUxxb6laerZe2z5BJte8Y9PkRYp2v8qxVjRVMfyMPJDALKGyZZxwctRX9ORG+A9B0beF4VEWHfJ9PEkEiajQhXQq+xWKG/mrMhJvy1FyfXadUpKxZ3kCt7NrJV69fA0CnKQyh8kHp5IJHSSKFsEssgIzIT7WaAUbUDuRasGzalm8hZB25bPa+a8b2hINxplZBekG0V4Y+lF4hhWRXuJXIpH2siufYF7o8dq+qaUnduXlmxFvhEjwdB8WA1Y7xwacarkrIrSZKEiBvROzx2sYD31DAntWhqnJL1J4qR3llnAHUUxZB7Mj2gqquI2usVKUUqEyEXS1useKaJT9th801U6RtKjSyYdpQO1F2uDUscSdXmsemZ5kjCCIN0h73spwGXUEaY5I5SsxtkUqIvhahiWdg5j59s9DSLZ2GnTWqOElzd14oQBS2wNpDog8WS0qsgEkWlccwI8qS0BJrnPjaJEhauwhIhbHrRNOdpXrzWO4qq/s5W0mbEUTzRDZWNYC4Rfobv3jhN0agjuI+OLiaVYPGwSKrVv3KtRo44hwZz6+Q10WOx+pysdA0JzE6FaS4+GOWwPwKwbiHaMvk87Fd0v2q0tRHNIFVy3QjK8L4lzJWWcsQrMI9Ry6yrhSA3EUEePo8SuiUcZZs5hUkuvI7ocyfKEGthlQVxS8GFlxBEzUruVfpCEvpl0hJxNNMQjamG+sM6WFAypMicj4/QKm+PUVsJpxh4Bu40UgWlZ6i2yd5+To7xtDSPijnunkw8VYEfSERsnJEaJkwiw58GNDc41VVNSRFiK65D0D03JWJZVoLceEDbNZKZYopn2IErpKzrgNfUrFPFr8dAhudXmcmohOO9qq4ecXvScwg2EO6PfRoFVxk1tQ5paqDy9HgZClPrbCBDDKHJroAnSArHHR2KCiSpzlyVYLle4MxW0lUeDMr61joIo/qthGiRwPCDetbxt2p9DcrvGpGo7U4ogwxpgTMkygmKUII4BaoTarpbaPBqPW7BjfW5BVvZUOZXaQsDNqwNuzIaHdNf1XAlcOf27WA1lmjsTURUMTT0tY6OhGnZ6SXgovFdcNIopP+eqNKfHuHF4f6fEe2NIgCnDdNlRkHBYMeo0d4MCR41jWyrdyypV2rbKWdwtKSWirLSQ1Xaa8hmV8meg7NSmQchYzbCU4zKQxI99ObanjR+8drFuGiFMnAIR9gxBT5XI8O4MNs2zdIcYziA09B3r1sUSHYe7oUlGPPNVwEOjV1Htxof3GKUC4vWhHoN+S2NRlGVRXkawV0CTLcjyWJHthCcfUsesI1C17xNLBfh47hDmJxvq7ZDGkjHKfMEwBJLZLooXOu6ySzjNmoh7OQ0gtHnKgbQsgj5iOQdOc0ZgnSnRSEMroj3jt7OW5kQ1iYyxfmS2NT022/bxvYy/DY1fW+wr3v8yCjfNhZarGkVul3uSsOjkFJJ8zVSqkTR70YKtDzbMHGEktI6I/pcVo+10yRPlpdO4zotrOlOaW/XOq+RkiNbDx0yZGy1Iw9hURJXC27uGmo0eLDDfQhBNq2O5GanUiy5cadHrx9trWxRsWaNHx9QNd4mmqiPPrrepjgHVGlGjV8Oe9h66auSI89mTnTemCdCXiwuEERXBswCncZLZmxJExz2DOk2vramYkyLXoSSAYo2lWEFX2LuKagHsWuSP3mGJ0JqgfmpEb1UKbzokAbiSgpwWMjjSwOVtOv5nXgYSLOcNpTcO2G9R34ZZisdKkbuObkcxEHL976D4iGL1JLJIhjZtBe1gQpeVhAMdOfF7LLgoNJ1xijmwXOkSITuMApwAF5BIswMwQh9iWs/6IU+Skw1a3eYica62+wGzfUg14xT9oHGQ6NK17M1GNA1FQVGwOXbCMzguol3i6LFzYKF8K07HKeAOOJwhswcThkiAxXXreJ6JRbBViITxnJIaBcnezJH+aqJIQF407A0cRksNNpuGUDquA1k+uiCjXEYPgQX8ZlbXqNZEVpw3DPyzSsZR1V6PkzT7hsjV5IpMOg2x5xA8Z72FfTK31h0kI4UbZ1sDoUKugNc98MjIKIGZBsmvw53qSU/srdOxIMgEutrVW0EJhq2IilKBxhFhdRdSh6h0HtOixH7GjqdsiG5uSBlayq/cYMBy1cut3ZJiqFavizU8KJJdFm9qynKZmHcR4TM5ajE0LBrKhuIZ8UpnDAuQmdlnXhAIcoUfttxA6dJxCyRSoaukGjZS9zzqJw6s1aZzq9E9XtWx0iKOImVyJ6wVOMK2+xOR4tR1C9saRFIV0sbgK7seuo3EJXVAOyA8BxxUQrjajRzIujR9kSLCILJ9SuOiKo3RmKxBoDJggbXabHrehsSMWKiF6yLKSO1JTQrGL/nqnMbGvicg6bjlkRoDzIKUQvZIBMVtqisr68LjWNPBOmWEFyRr9FFB014bq+8dGypT6SmHuCWoWpLfj/wDFTCU1uftYPrcC8giivhnDXcVFXvytZ1zIp7AQSkmtWV2LV0HYlfZOO7LhzikroZXPkuk+O8ao+/RemgT6uMLi1yo7JLEah3k6tMwTSLEIZrI8lx+orm5GE2PattKxWPtq5XLYxFyRJgOb6d+digOOw9YQTH1a7kiNxIx2XECAiCmV28i4hlALTsMvgPRhFkhTekHzNIY90MkVuVsEyW8vyHJMCqrAA4Nkr+cK1+xlJ/uKlEr405xO94pBcQRFzUO7a2hkr4JpHGDuRSaoc/x9IuJ0xWrwmSO7FQCjLEC5Ht6nTnRmsuuLpFUwSx40WM/Ego9s5BJk1GMYjuudCbaSItySaEWk5Lo8cMeY5r2yVdM7+Ns13pNYZQz6ScIOWRYx26iRUjaWjGDE1DEMPKBrfEoxBcOdkzbhMezxKNG+rFaJsSSPx7WFXRhx5QY8iStUJ7YYuiWCNZsYeNPRZjiNp9OuN1WhJHfJnEjW0CNay8lQbQIiRbBUuJB2A0ecUUsaws9pc61fhJMtznT2sbp8bZ1qmkobBSYEMeHpWNSnZ5Wohx4Ao8udB5Ns4zyT6+KUUWW+vvoVdeSTHoLsWOrLdXEi27crbs4S1dZcFZPh2gsnusIeaYZZ3OS6m6GsmPZhynLLmPPD1B1SItqx0ccp9tP0jxYum3KgELGuAMX0u0/bpbf9y1b3OivZJRpPJHjZLg5qJ28WtnR4tM+bIeN804XW82Mar01ZJGphzb0jSyNRphyahKJX3A8lzp4mWM1ypafVy6iuMBoHAAIs0KNP0PbLihUU2O6JZAlsLEtDBWt0g9HRRxEOLoZHw5osnNQfKh1ktY8mvl3rsmHvSJcSivBp07Y8S2K1W6d6o0UVxWNwtnCXJM0LBTGMkC02/wAG+so9rKagSntwUMWKCRXV20iBBVY/0cglzIXH271yTMSRWaZiSnxptdO3thEHNFYEc6eNzwxyuim1KVpBab+/iWzRPtZBiE8skd84gpEfSZigsa2U6RHk6d7ZMlpas1A5Xaji2HdHqhxSw7dIBYjZTwjd/wCUjtwhVRSL507TxIAhXLjRw7O1XXyjWQyUs2M+6lI8OjLYVdAkV5rvJxHCbpiSOLLFQSZqSqAtYp5H59Z984JIs2rex/KwjbrDtP245I7NRRbAOOOpUaYyKaU1MuljGj6OkRw1k60eaBJPKju1O9pImgnNdgbloUmzCTySK6wIMdsaIs5/c2TJfyvDddjVQlnKSmr4zyVtQgkogylmUhYo5R3Hl6XIrYWqSuRKW4QNfHlXZ3oPUbcICzipLnSBCpFZ6nUhsFFaV9oxmqlD49JU1rYNvXxXZpaNFNESBBEAtcr08Gue26rYg49QVRW1rK8ljpr5V6KktXDkVE9HkgTQkD2htK+TChxbKUI0q1js9OhTa+tyRbQCvsJoCujgTuJGc6L4+7dSh6V0um8+GHaNKGU5ZgXgfObxXRG3qcVOGS9mBmk7rKiX8+rW+WOuksEK3lmNHV3UpPbVERdzVar2zZKgjCjqVkVvLUWmjvWPZSNyT1Qo6ICJDanKLc/46dPerX6K6mI4QE/Oo5geTeParuG1m1VGG0/bGtYup41iGEx9fMnEmQ50FkSaw7NWi4M0lDbJoopemHqKQ4iX7eMTRTQtipTkQsKK+DOs50gSPRDHcxBMt6+K2PeLuaHKdHjaZbyNNLGRlmVyTjWPbGIn1lGdAhvXvMPQC9QK+cGYSTQqklbNjn6ofuCAqebo0h2gvZhHRb9No1HEk2cPUMM1W3TTnCqqQhPIkTitHqKUsiVYneaDU/uBHtFSw29mrH2LeMvTZpLivdDkr7X1PRdQbkbbRbYDotLppWxYk8spW3Qmd8VF5maqw2i+dqBOLNNfcw9yR5ZiKZ73PWY5XJo2M6XIjxiBBK3fWO7ZBNPb+virUYjCrUziDfaS5NQwIET/AHVEq1VgzO8y6I1JIgEeODHaXUteEtW25Va5lnEeyJpWsNPixnq0hRmk5TsVphI5AXSqySiEPc2FeWsSeR8+UIjvP58h2S/l52uJqCuYaK+O8xo9zMQsSG3mup02iaRMjagJ3x2WjkabULt4ejmdgqyQZDWJjimXb/DVU5K3kg9TTO2Pc+0iK7mLTchI8icQnMzPi5qkcn3oHvLX6hftUaRAhoFAbjJsDtbLl8TzNVCRIVY3eXptSLl6TpLqIatjaMOg01XI5JprsSmqHqU80vdDmGckix5ugUyK6wk2DR1NV/5S9WjkyXfTzydsnq3uKaYepjW94STloNQaf0Z8JZ0o7Ms3ds6H48sEuOFoBhYMupHtcHSjkZYCDDlAkVr+S1y8p0Zgo+hmkHJQ8lmTETJkrmLT8aQ+e0pvHdKejnSC8TPMxrOYtT19qyOk8sexKjIwny7FxMrhHLqGDJXxpnAL9QEISJo1xgRLOYd6SpT1zSRmw7GUQcqOQjAyWvc/UJZchkcx1ajhlbYR3fSz/eDJ5+v0IHGeQHjyp713B/dqJr0haLILwbFrkEYDjG1QjEjaKI1jojBOSwjpzmiJKUEcMdk0rY+TUOXNQN4zNPPAaJEgdZJaeYN8ETXWcpjA8trGGG4JEuzTY4tBjRYqVZIqzZCOE6hUWaparYtK9Bz6CbEjmszgkZqWR3QamE6LHvGdrdInCKvRIEnHE+XyhwFuJQix9Ou67e0L5GAKM+rUq3dBNyQWQjSHMb1XjJ4GRXy4rc1G5PS9MooiXEhSRhLHW2g3DGZIsnkbInMRLyQEwtJrFYyNeQm4S2r3MPPhK5JcMq6divlyf4WGGItWjyHrZ0AlRztZoNGQXpLpaiO9tICQ6VQ+Oyulsj3cG3tnYe1vW4WzsuRrOXg708w9dpuYVZtCZhrccqsZpmJIumTtOeLk2ikjSqmqJX3/ACGW25OiyTyrCVp6asR1LJ4mmESexuwbH2jK5gtRss67azsIckxkEmRpAAZqR7HRKWbW1tLJva5Vk3UPe1k1syqp5kSHTgtX4k6bydJndZJMnJc1WsnraMDN+qsRyqyE8Gq4Ql/iZnEt61FlXMQqTet1m6UkysvTs9I0dHlxgeUJWkt+tF1B6g68D2iqSoM0G4nMbMu5xFtZziiqrAESHfSmSBV1wyNHZdzSqW0lqhbLYEq1imZQo4d1YgkKCIKSDUoLOawEw5HrJszKqd8mxj09sTJUOwESxU6VVUxsiFPENzZTeE2PZCiJOnTzo2c9j9UonXpEbSS6yVFhtlTCuwszka4AFYujpDo7Y5HSSLpUhDnlJFPpY3TYjtSSWVlVEsIt7XRqwa2SmBF3dqeJaDiAsrKXYv7ZMIizBTYkJvXqqG99hlhUGjZeyWlg6QtUhV5K1k1kxzIZtHqFLWwlmAYkqUppqpEv7OYSfXjM8JV+OYrdo9kn0k4nVdV5rNMkFvslSbkmHPYc7Ce5Y3+nzxjgWlqD03zPnapaiC0OREMy3HHbOtyzSzGWbcS1QrbIvayachFvyKSfp1omBYbyyPo7DjIOsSTNCEgf/v08GO6o1mMImUUefagFpBhAu0rB2forZ1vXkrG0eyT64U4g5rLGOuqNlFFhQo1dewgPj6RM9IDLPvdJDbcS2eX4mJB08RWWM4zy5DdIsLtmnbJGSq+YPCRJ2VvYKzdZRYgphJEUVydrItTKupjZT7xj5MuS2w8dwJpZ6ii3cp8w2om/J0kFDya1ygxLD5GopZJKS1erdCbKyCEjXuTZxovGfpNOc+H2K4DWgkWMbnB4ojh8m6kjbnWkKsSJeWBHwmMcja4KyNQaZXrSWjlDcJ9JpyJ5EGSPrdYI546D3mwFdEg381/Sjd78LBxxXW3Au/nu+KFP+zkJxvwz+obq6VOSyoJMMUWzexuo9ljaTavpxHMjV1ydSDvk2jaQ/vfFciVxHQG2NjJej2uR0pqjBcTHpCuvuYakaOoM1DKeQmWO3lIMih2/MdNyhtqtUnGeLpJ3XS0MtsshvHMNk/rXVi8QVLeUnSxyhrr2SV4rlEUVJWNsIeq46QhUcZ5qfTadM09jMHk3kaXZo5tZp/2ny1GKtp0azWRrJOsmmzyFkq6DIau9lX1sNKeR2omooyRKrTyJZgtNNOAlqVH24JTDWzmEMOc4ZE1GRHRtFKjZsaU0kgXI+WBglEb/AAaPY90OCQkPD2MQdZImmkSdH7ElelOjgrLdsRkyaSWWRXl2B/5JVR/mERjktDgY5DOYOqRzrqmsFhQ7lwI4LxSyI+ia5J8SxK+C+VGI9+nPhnufvDuOsUrn1Xg2PGG0md5Gr9e1Po56/R2Tey2qQ7EUrxMuXPINBK5boPTA0YRoqhVUkO26hnvXc4Oj3cHwpTJQy8FDZuBEOhlQs93aK1tmubc/cxQFcKoP4ayuoVfZmWZIWvOwSpxtBQ1DUagiKKt0eVgqXTsQRBlHyUjwx5urvfKVu8iieyWO1lBE63Rd9PGajNWPY5lR2upNPS2xwymsgjsZXfOuEelZp1iksJktra2jd/up7GFkHe5cthqsyIjPV4dbIrQ2U+dKy/Z49PpIXXKtHvRJCbWo6R5WmNIg4wRCu1INBi0gNpZTqHcLyS4SbEMSwC4UbQUoUcE2dXnCQEXJ0mOFuk3K0o5U/Y4yERhCRlnzDlHAby1JVwGGBZVsgJvBkGIcMeMGokdV2IkCVEnsDz1FKa6Hpdj6wMuzXc0rkPToGRrNJTiw7NZJXSJbAXxLmO6KpwsUv7m37WWnKFZbpZ0TVR8g6kSwsGCMz4n3gnjh6GCw8ebBkxASGyJiaiB1g0UxFWJB72WcRwsmCKXARBsbcr1NmVT2svmokqisGxxMguOw0A7hKMsF9m8pGMjEfcwpe8XUbnHg6ERVrhDSG+1kksmAiRoTNUkRxqYnXJo5oRNsuJSXBUewIxAi3zEWPpUgQQo8aEZ08IzqniQmagdyi6QVW3FqFX5Ckc9XirHCETr6pKHntir1XCXkkEWdKK99+rn0mn+wDbqcHyHQSzLevRqrIKwmPTil/CNIj6PAPr9ShcZEyI/HdO9oBTA0oZ4oXfdPac9qbJxJY20Bzzhs05YuafTU52OrpgMlgmhbUtFZWMKzrmsfJqVwsivehpULqiyY1a2sk3MlLI9xGdYT5A26Rqm3jrHTVdDFOoI6spTjiq+9rXBJZxlWFdBBLW1tPElT7HeRbI5EdtGP9pYcUs4NjDe+bLiHw7AkxJDIzb9zXQtKQI8akPeRlYaRD3sqwR4Wm5VdX1nrsNcNbBcsi1iqw1pHesqdHIjmo6NPanrEJyobyCtCGQXonPc59o5eVn7Wgfcc32jaMVeuqajo8w5EKx7uWpXKs3TbGrCo2p41sm59QNTppTPdA1a5VTTYBrXV8cTyFhR9rJqNNOanRpZVbiSCq+vXfVYk+TZBGqy3KqlT6spHc+buuZ+2oiJSmXc0hVbNjsaqNExUkMaizFVqUCcsAAa48TMKNuSF4O/02TdZL3JD7iJPt2NzRPssNPrOSkXT7l9Qv2N6huVtlGRMexu72phmN2037zKzEcpC6p94X+mSbiuvnWsZETNIoi3h4oVFPjiY6R++xURQSmo4Fv8AuzfsjfbmTe0iEcIMyQVzZC7GkuXuVqOyj+YiRQ+AcTOZvhbohqONAjiQcv7LijjSGNzUTUTP/8QAOBEAAgIBBAEDAwMDAwQCAQUAAAECEQMEEiExQRMiMhAzUSAjYRRCcTA0UgVAQ4EkRFBikaGx0f/aAAgBAwEBPwFxvyTpoxKspKa8ix/gVIfY5WZK2EFJYuilPtFUNMn2Sk3i2i4VszO+TCqxpEsbZCFeBwMq4MNLGhxxKXPkhjx1cENx8oZpUvVJbH4JrH1dGyDXyIxUVVlL8nFHky/Iht2JUT2LlnBS/JSXkZmNLzA2xiVGyl5JRXgzGiUVj3SGsfS4IqFUh0WVecnibPSyJ9npzPS/glF+TUo0dUShGqFLEmxRjV2Ul5GnfZl+4Y4/tjhLwRxyRLE+xwl+BQ/JVZyHwRIilLJ7jbFFxRwJ/ktGn20ySxoXt6Q3G+SXaOV0Zm4Mg21yJs+Q40xxjabZJeUYGt/I4qXgeaC7IzhJcFj2MzfHgxy9ibHllfxN3HRKVk+WV7UUqM5gdY0Zptxsx32NtGV+001vEkjLUOI9kM68I+asmqiYPuo22hpI2q+iEuBEkNGTsh9tGpitq3EHx9JJD4MxpPiajijE0+DgkqZlNEnKBqYpQe4hnUeCMlkQ4kfvGRvbwe/elJmTL/ahfuL2km0zUcmi6M2Pc7IrZZ6i/A1aJcE/uGL7aZncoq2RyWkz1LdEofgk2LnKY2thI/8AIUOkze6O0S4NJFyXBliodibUKoyKyXyihVRmSlC49nPBBtsukb1Y2SftMP3DxYv4PdfBDnslEycRMEVLEZZSjOkY3L8k15JDT2WU0uTL0adXBGoiosxcM4qjJ0aR1iRq37oivyR+PBJtxo09eqrG0ZDoh/AhkifZhftSNZ0QfFCl+Rj4Mxo29vBqX+THX4ESMzP+nS2Js1clKN0Y5VJkOhy8EPvCpIy8ZbEkmQ4ROjUGiM1rtEpcUy/DL4Jk/maf7aNT82jDfppSIcvsryTpkF+4RXtGx9jkiV7yDtngk2aGW2zUckO3RLoyP9yLIpUTcY8SHFfKJiT8kZJcDpdm132TZg+6S4RkfuKrkTp0PozfEwL9tGWV5HRj47MiJE5fsxIszmkV4zUR9lxMdNkuODJwjROKx8moV82Q9z/grbHgm1t4NP8AeRJrwZORwlFcMhzwJcV9JMn2YmlA1fMSKpC+jkjMaTiJqHwjGne5C/LJPngyn/TnSao1fVNcELUrFwidIh943Rr3GopS7LcZLgUaMjNR2aQzSXTNm5WRg/J8UTdkvmYHWNGrcZQ3IhG/cuzFGT+ZwkTkQ+4KX7Z2iXZwS4lQvl0S6JS4NDSbbM9TYo8kybTnElNUZPcY78nKOXyO75HH+SSoxfcPUQ6l0KkbkbzK/aY57cfBlj6jtEPaOVkyac8dIcdhm5RpeMZldcIxxbtyJcsy9Gmr07HKPTYqSqJNvo7iYvuonJ0XL+4lF1yyHEei3+D3Mpk+yO7aqJqV8o9wmx39Mppr9Pgbk1TRG14o3P6ZjSuoGRucaiyMeORykO2YvvGSSl7ZEowl2xP+TcNs1Jo0S58Cuy2+R3XP0l8yF+mnRkivwKTrsUmyTs5IfcIv20RdxRP8kpoat2U/BJSKNL00P/lZHJftRNS8kvki4rtEs+NeCOWL6iSa/A2kujdH8Dit1k1Rp63M9su0NQXk2pLhlodMzL2ix+yrHhdJIeMlGiZacUNpGblGnV4yUYrlkZY5K4lrozL2mn+0iWzpijDwiSj5R7a4MDSyl2OSo9ZdbTcblRu4HJMn8hS9pkm0rNzOWSstGY0nwJScbFkcjbxZZnNGoLFySjjX8EUhyobsg/3yUtq5JZsafMROH/E9n4JOBquzSDntFmkzcyUn5JND+RjbUEZNS4dIhKczn8EmvKG0Q5mJewT9vB/dySp9obRY39ME1yZJIV9olk/JJ1yOG+jNCiTljSojKUuzbZND5JfE0/3H9JqK8EOfBElGjL8THexJGWVO9wnfTJNkxxfp2Rj7eTPwjSP9slDcRiqJIy/E0t+lwS4+ItQ76L3xtjjXJj+4iuCfCslkvhMjdERko0T+RCNmpXs4Ru2q2J/RxMxo47sZne3hEJ1JC7Y42Z+zSxfoqjNj3QMc1DiJxOPJJUQ5zGzciT91NG+U/aiD3R5Jppmfs0RKFk1tkKTfJ2jJHaf3GKO/Gax7XSMblFW2XLcvwTiShRH5EfgJVFIlwOLfRKVOjePkcaNJy2ZlRFko2TXvSZGTS6M0pJWSk5wsx/yeOB7iUbk2iTMHGQrgmrMcXutkSRm6MXxMsYKashEmTLfokXaSNRZoUq5Jz4sg4+C/LMvRoZP0jUy9hF9cCpRpEp3Ex/dQ7JptUSgnOmQ6EMkT7MXRqvibPbyxRsokZjRK4GWNoapqRGLKszmiltxI1G3bJsx8dEPiSk6oxfdLdcGZbp35MUfcY+jIZ+zRHK/wZI+URi0uRdGWz+4wfBUaz5poSbi+CCJIyXVEPmL4Hgm+Rz44NQ9pB0l9HLwaPhszSTtiRftJu5JiaSNQ93CMS9hiW1URdOiTSZLvhk+OTB9xlmXI0yFyW7yIlPcZfiRfsMsfdyQXkmSIyXooXBqHaNH8aHB0Y4++iaVGXo0P22amEpxMeNxOKJ1Rj+6iydbSTXBDr6SY+iXZDozXKL3EejronIcmzKaV+zgeR9MTU2OVG6zOaOUVjW41fMW0Yot06OiVNGL75LIopbiG2V2iMZb0xcLkk7ZqOzR9snmUeJdHDh7TFGhukZZWj+4xzlGHBklGeTczHKUlyQTgSkZJWiPyIXKCE/ZRkVEWqM0Ny5PSfgapDquTR/ORqaoSkv8ABLrgny0NccGo9pjargVlNkoux/gmrRgf7g3XZKKk3YoJKiuRpJ2jO7jybfYiUff9J0SIxrEiKM6VGjftY34Rj4yNEnZk+Jo/gSl6b7Iz3c0Sbrgp+SDrKiUl2OmuT+4ss3Jk3wS7IJ7CbN1cG4UrJdGU0LSx8mfKvwQdqzdRcTMaZOWNGogkqkYY8cErZRj+8Tw32z3btpGVcdG1M2PwzUdmh5lRnxI2TUuDrizaZY0mL5EIxeNWZF7+FwQ21ZaGoMnFbSPzFOoEeODI7Z4MsmRn/BPJ+D/Jp4+6RO+jcSk2PwW6M03W1kG1FI/wKz3DHHjsw42p2zaTw7iOJxEuD0+DPB1SI7nBI2O7somuCSZH4Lgiti6M/RpG6ZKVcsio+BwaMi4NCm4seNS4Fjp9FHJBXmRJKQ4Uzcm6v6UUT+I++SNqKM6T8lFcFMZlNFxjMkVLwYlUKY4jqujKaZ1iJvd8iHBbLZj+8ZJcdE4uU1JEY0vpx+DP8maD7hlly1RJt8Cki/4Mr9vQvkR+yqXJlx5ZrrsxYXGO02tcUck37XwR+RHlUIl+RVtQ+HweBmwxfJocUhpjj+CSoeRVVk47+aIRs2igzYxP6QXH1v6Mv8kluIx2m5S+iiijjoai/AoRPTg/A8a8DjsJJTFHZ0Ld+Tc12bmNNnoxTujk2t9s2I2DiclM9CJvn0PcymS3CLaJYlPsxSlijtih5JPtEXt6PUbN1jwQkQfpKkKVllfRaeCluHUlTHFMXBRyS08JdohhWOW6Jul5Nquyl+BRRLGpcH9NjXgUmuCxUM8ElYtLH8EcKXRHBGuj0YpdGz8Hp/kWOKPTh+DbESS8FJ9lI4KQ4oooZB7l9KLZF8DE/pwxlFHJtXdCTK+ijRRX6HjT5KZRRVmw2nXZ2bTaykUvpQ0UNFG05QmvJ7GVfRtY4iivJt/BTK/JtNrPcjebzcbizczcyxNCkjcjc7NyLNxZYy67OCziy+DcN2qFSN1G4v6Wcs5RZZf0TPN/T1T1BZUeqj1keqeqeqj1RZUerE9WJ6qPVierE9SJvib4m6J6iPUib4lr8lxLiXH8l/yWvyWn5OPyWvyb0b0y0WbjcWn+ng4KOV5N0h8n/stots/9l/VocUbEbEUe4uRbNzN4p/wbz1D1Eeqj1keqj1Eb0eqj1Y2eqiOSJ6iN6N8fybl+TcvyepH8m9fk9RHqxPVietE9eB60T1ofk9aJ66P/AEL9HJz9LLNxuN5vNxuNxZZaOC19bNxuNxuNxuNyN5uNxuNxuLLNxuNxuNxuN5vNxuNxZuNxuNxbLZuZuZuZuZZZbLZbLZZZbLZuZbNxhh6j5FBRdGWKZZYmWWcnJyclMplDTNpRQps9Q9Q9Q9Q9Q9Q9U9Q9Q3m5Fo3CkWWWbizcbiyy/pZZf6rLLLL+llll/SyyyyzcbiyzcWWbjcWWbjcWbjcbjcbjcbi/pZZpuifY+i+Tcbjcbjcbjebjcbjcbzebzd/p9/ossTLLLLZZZuZuZuZuLLNxZZZZZuNxuNxuNxZZZf0X1sssv9Fl/Syyyyyyyyy/rf6NN0JckkPv639LLLLLL/TY/wDSwR3W/wDSv/uLL/77Trg6ZkXI/wDtbLLL+mkj7Gyfy/8AwS/71Gm6JfIkN8llll/6r/Rf6LMS2YlY5clllllll/qv/Wsssssv/Wv9V/pssssv6R7NKSXuJ9Euy/02WX/oP/RgtzM/txv/AEbF+h/ov6X+qyzg4OB/Wv0L9HfCFCTFgmz0JjxTXg/h/Sy/p/n6dF/Tj6P9MOzTcoZLol3/AKa/T3+i/wBFWaSF5L/BrHUP1WX9b/XZf+msU34PQmejP8DTXZ5oUWKMvwbJrwckI7pKJHQx8yP6PFRLSL+1mLF6eShs9Q3DkSW/KkR0kOz0IjwQ8olpsZk0/iItLMemmiWnyVf6O/rhxepbsWnxo9KMTTKhjJ/L9e2XhG1/TFieV0iGiiuZMWlxLs/pcXY9NifSHo4Pp/R/rjBbOET9nRqp70v+8j2jmujkluRlvbyY1c0jbFdkdjfQ4x7PbIpeskSi7IqW27PdIj903xfDN1dHCfA3Q/vWKNo2o2jiKPvonFRT5Ix49xkSUTFhxuO5mzHL4ksOOuhQjGHBFX4FGNco0+Pa2jZG3IyRRp37qGkSMnyf6tFhWzf5L91E1tMuJZI8dmkht4OJElFDZdonL8HpS/BNND+lP9ClLhRZkk6pmS/04sDyq0f0rXY9J+GTxyh3/oYYLJPbIeCK4SMmNRjx+jFD1JVZPTqMuGPEh6fi0zz9IfJEt3hi/knFPoy3tMHOVDm1wJMceORv8o/8yHqJepRuldjm+y08x6dy9otmJ8jlCfBJUP7qJOl2Y45JO26R6ddSPcuyEnviZMrUqFKaXKMkrVUaZL0bqy68E+VTFa6IuVcjbox9ii+ScTB9waJkoOc2kf00l2f00vyLSP8AI9LJeR4pxfJp3sxcCybpcIm/4Ju0abtkp7fBHI5f2j45oWQ3DszJmnxQcU5I9OCXQlD8GyH4MsINVQ1tdDlHEotolUo7iS4LIwc+mf0uSyWDJFdGj4i0Nz8ITn5RlftZDDBRtoljx10Q03qN8i0a/JLS40j0In9NCuzFHbmUWST8GSG/2+R6WvJ/TryPTrwzDhakTcVxZcRO5GTiT+kPkh9Gyp8C7M1bDT/cRSMknHo3klYucyI4knuZ/ULmkKskbiVWYi+DPzPkxK2mT6H95CxRfuZqehY2vI1wQj+7E1Kli90DHOVWyceGzFklDClEhkyyfJOUuDHHciWScZVZBt/IxXdkp+YnZgf7ozJ5MX3WNTZtNo4mXowRuAsjg68G7cjLUI2aZtpsUXJ8mSexNoWSU0beCVjSZm4MLrGhSUvI6XbIu0TXBNWZPhEV7CKe3glBojLZKxN5OUuCXC5MCuTiZMyxVAx51M1EfaQlcVBGThcmlSt2Zdv5IuP9rFQ0kJXmRs/5Cj7xwNo4mN7Se0ai+jHViw45K5dixwRPDC00RjxY4P1EyjP8TB91C4MpCJPrgiv3zc4r3i46MTW2kPnN/wCjfHoyR2NyMceOCbQ/vITVUZt26vBF/wDEdtckOM8Uapr1FHyY+I20ZeiGNPCpMjz2UmjF5Mi93BEx8ukNUUadfvk/Jk8mPjI/pGCRtS5GZH7TA/YqMjSmQ6NS/azSfEjuJquGU6I8xskKzU8GL4JI2pLcx5sbXKIxT5iTRMtUotE3UaMUqiTcJ+OTa3KiDhCJLJ7jTv8Aeo1XzRDaaj4m6OLDHJXIp7+0aeKW49Pc+R52ntog9y5RJUYXeclll6jVl20NzcntN0I8Nm5PmJFWycq48lOt0iPJ6qjFcEHKXLRMc6SsrdyPgzu4M0/3EOSHdEI7FTJNIx/fsct8vcenK/aRUcZF3mJ4sl3Rtl5HY4Mf3zI66I53LiaI7Y8ocmzG6zRZqHDLx5MWPYuTJk4owRrDZw1YjFw2hxc40LhGF1NkMt8Dn+DTffJ9syGPnK/o42R4GZ/iaWliVk8WxuUSEaVM1fwNJHiyWXY6aL3G03KJJ2KzUmH4Im6gJR6Rj+NGQkrlRdGQj0RfkSSZHDGcVJdm1p8mJ1nMyfzgY4yXDM79nBL7MUYuTTf3f5JSpWzdzwYXwTZh/wBwZYfu7kJe5Ixz3R5RVytmLizdTHK2cOkRXuIYt2JTXYt/5JrjkltXDE4LodWZq2mn+4h7PyKvA5IogqzEX7vieDtkI1maJQi+2VG/kbIvpkoDjeaJkjJdUW3dxF1ybmQjunFmaF+76SVofEFyRbkuS/7TmnRynVlsxx7FilfA8bRg9uUZk5MXOVlG7jkVjNRxjMKfpJoSkv8AA26NRagaVXAy41LtkPbGtwn7ttiibExVyakhNLGrJw9SJtnu/ghHauTJJEuJWSultJv29GOPttk4LHjsft//AGMGTfGkib91Efvkmi7RlXtZHJ7IwLUODT/3f5Jy9WNHpzXRGEY8k5GL7wuGK96N8ZJ4ehrY0mRtCW7onGnwW2iCoi9uCze/BPlDddIc5/gZmXsNL8yS/IoxscYlIg7zEJTunI56sZjf7zJNR5aGk/7T49I4E61CHvb64Pf0x2U/JB3l2k04cJHi6MnCtCgpQIwUR0PIon9Rzwh578GmbySOYurJXXZiv1bYyZDjMx8kThEmZ3+2afb6SbP25Su//wCRtGprY2aN1Als3cn7f4N8U7RwxtItmoIrdGhSjF3Y8sL5Y+ScWT+RKGPt9k1HbwYEpYeRycPZXDFjj2b97pdDX4MfOUlD8s20uGZI0mRg3FcleGzB1IytcmOaXFm5MkjD98/bbqxcSSsyQlKfLIrw+RmOW0mpNjjIinRjl+2kNO7Rl6GuBR5GvJnvYaPnITUrHbXH0ZhW7PTPRimekj0tvKMb25mz1InqI3xGx/7hEo+2hwdUbG5pnBji3qlRnxvnk2OqMiqLMaXoxtXZFRXEY0PvoyFy8fTSVupmxXaHCKIr91j8E+iK/cbNs/BGEjaypeTP8OTDXoIVLhfTVqoGi6MgnJ7kRcv7hWS4EopMzcMx/EdeRbSvwOjL8x5IKHJNx2GnW2BNt/ii5yb4NLHJGTckZJflEF+6Sb/H0y/EhPbBWS5NL8WSlH8Fx/4sjtkTowK9RwSlz2N7Zpkp4vIsuJm/E/JF30ZLjwbXRykJVBCskuCW6jzRyalvYaT7hKb8ikOQ5cGn/wBwTb8EVO+TxyY/vMUI9IcYlRGf/YRkWSolTqhrJuOTC36/HdGRTrkqZkTptmPPCOCKFLyORlb52nLKZoleTk+Uv8CjtVEPvMZLoh9wfImWSNR8DSc4Strch8ms+2aThWPIPJ2Rm2Jy4TJOyzUv8FNY1QmxOf8AcXLka45J9ktsUmZa2OiDl6W4d1+CpRfy6Me6RkVGH75OVl0aj4nLhFbTx0aS6lROE7NsimT4iaf76oyRuRnvgdG6JcTT8cE4c3Y+iXxZHdtTQt3ky8Uxy4G65FktGolcKNJ8yWRXTHIsbRp/vjy+/jwes2z1N3BiX70hyinwLYo1ZUX0cC/3CMkpKXHQ/UZ7qHZgdagySk30XJ+DLe1mKcY4I8CkuyUjL2Ubf5NBanwXLc1Q2zF98ycEujFXrEhOhOx9GpXBpXtwWSlFuyVI1fMDR1VslJdkMu4ssbLZqmRUnBG2RcoFyZJsmvcTtutpkT29Gmitty6LwyvgWzbdcCnBcRMjswcZmzI0RmujO7ge/amuiKlXJoP7jIxbq+mQ07rMh/4MjLXYttHsNKT9OXbGo0TXtZGlBWJJdMyKqHKlyKpPs5M/wNH8hv8AgtHfgdGK/UbI1ffJta5s3Pow/dZJT/tP3PJ7iW4jC8yZklTps3fiQ5ui3XZhtZ7M2af9pGc5RtoytuLMeXbhjEjJ2Nko7rFi5HgNNj2yNzfBNuJiv1rMjtsl0Y/vEhL8iaJGq6MLTwJNCVyY2ujU/bNFShbJyX4I/mvp7h7jzwanlltRRKUqVIc/c0KTG+B/MyShGrJtV2aBKcJRkSSh8UOUF/bZFQtKuTIqMK/dkZFfRCMvJqF7CTThGJFquDSNqEjLKXgX8s5SJGnv1uBuTZk7GoxYkjZE0/HRL02KUSbW1nHpxEokqi40TyRj2KWN9Emn2Zvg6NF2ybiuyGzqLNv8lUYX+5KiOVuW1IakyT55MMrysnOUuIshGa+bHvS4Y5yMc/3zJlikLNjfFC2PoaiY5JZNpllBKmQyRkrok12boemnIjLH4HSE76HKCl0L3GKVTFnT4JNfgi6y0NEumRdZCXHNnqR6LTHyap+1Gn+0j2p1uJPg1H22aV1j6G4Sdm7F+TfjTLj2SlY78mXlqiMXtXJ7l2NOT6NoyS/cEmnbMqu2f9OdQlRcoyVxRkbjzRgy7l7EZVL+4wfKSHtT5ZUfDMy9nZ/arGaaPtJ4pno/wbXRI07/AHhZce7gkt7SRPTe4/pq8i06MUNnBK7Nw0nFnqRWNKRGUJdGV9I2X2JUySTRnTUTRcyJ4txjil4JJMkmjSpSyNMlGOJbkhan2q0cZI7jSqssycIqW6Jkct9JkZNPklGzH/uCWGcnXge3T8JEcynLbRLGQX/yUZUou5I9WM+0TjUHRDC8uBUR24ntiiSMS3OVEskV2KSl0Yopzpi242yTjPoSrKPwT6Z/5CUU+jbXYqHXgz8wMSk8So2Lf72bYV7TUfA0rezgcL8EUocs3ws2Jlcm1Mz+xoi3tRJy8Cc77LaJTsk7mapcxHXptmkyRWLg9l2jJCK7MUI440T/AIZhTeVmVwT5I5IPoz/EvLJLYS3Je40/27N89z5PUj/zLlV2Skab3ahEYLGtqOYZETyQuiOSL8HCL54MsqfBfiR/bQ4bkqZ6brkyUmN8G/mhyZqX7DRfIm9ro3oU7Vknwab5uifvjyLlt0dY6RpfuSJVEyp3ZjjXJNcGP/cD5RqkY42yTZilWpNXXDZjjwZr9M0kv2KJvbLj6af5SMy9/JGG0x/cMu7tiFzlJ8NEuhfdJKy0uBJMlGjUfE00tuNWTX7hFcGqftNJ8ByJ1KJCEfAuES5ZGb7NT2RXsTMsqRFS4bIdEoj+Zmx7qrsyxUcdI0cd2FozRliW7wLU741Q8LS3eB8I0nOaRq0r5MeNWtpqPiZJwwbXXIprKrNMl6XJnVp0iMY3VmGO2BM0f+4SE36zTH80SwPlsjkiukNccEfkTpEuVyX7GfOFN0RUP+Rk8f5GJcj6NX9s0HyMgoIqh9Gk4lJkckZHCzbUTqKo0/3J0PK4OmS/djUWL2LklMx/7glnSqDMitGJOuSUvBg41NmVwz2YV6i93gyyWxow5Y48C3E9s2mvJIwfKRkiuxdGGvUtjlHL8StioT/dMjuiQvvIkrHSkR7JGo+BpoXiTMsLdi6s1a9ppXUCfQoqUeCFfSTVmOPg1HzP7UZU5RoVJKhMl0P5jltl0ZbaNJJxhaNV74JtcmGDqyFrH7CXPZpPuyNQkzDykzO+DWJuEGjGvY2aZ/tqyavhEY1NquSuCZo3WdEsa9VtdDdZF/ge54/eRXLtHSEvcZPZLkc3PoqsZkj+1EhBX2ZVxH/Jkb7RGd9olPwah+00RPJKL9qFO+Ry4JNs0qdyaIQuXZK2+GPdZpr3SMuKPlWRxw7oqPZ7WY1/8gywc+KMaywVDcuqKMSf9RaM0HvckJScScXtdCUlhXBigq9pKLMfDlZvirUUblRh5kxRd9kk/IlUz8E/JH7yJ8EZWrEr5JGo5gYW1gsU/BdKjUN7DTfAm/wKdFobLLSM73NM7SE/AmocIuiTP/IiVJ2ZWqNNG8VnrqS9PMYYctZI8H9Rufs6JGD7kjLKzGzKvaSmppRZKVKkYWliQss4PhDyc/EcnQzTq8xHizn1EPPctsh3GXC4HSIfIyO+BPwS+DJK8KMf/FEuXFMlBMiq8/TU3sNElySw3dPkeOW7scGKzB7ZSFnldKJy10ORp3bkTztfDohPI17kPJXyJZF+DFP/AOQT2+RRh4Gm+mbX+TFP9zaZs23ohPi2ib4Mc36dkct+BzItSs2rw/phfuoWfmiTtWXeRIaJ+R/dQ3wJ8EXx0SkzNzjNN9lWcX2Paajb6bRp69M4rsteJG7+RyP/AGSjRk5kkbbVDw2uzYl5+ng/8ootTbNQntbNJifo8ksUueP/AOh7ZOvwaeSnzIy7fBp1cpEoL+4UVXDMnxJ3wTXHZiUXjRKMapmyC8m2ibNM9uVnHPB3PglDG3+CLVdjiyEWnyStM5/uG/YSltojJ90NconG2KMYjj5Rn+BoPJKE5Phj/lnjgba4NEt0pWSjs5SP6ryP3KzSK3IjhUTJllGe0hKUuGSgYeNQZcbySpGPHHH8uxxjLocdpp4ueqM0VgW5q2eq8ngzKoNmDBv06Yva9qJKzFw5UUq54NqaNOv3aPSjjm15JxTQo1lJEz/yontlH3C2VwLalSG0ZGlBmFv0FQsc1Ll8E4/g1PwNK7hRLGpOjbtESgI4ZnW2QnSOuWepCXSEr6GR+4jNPIpVHoyOUsTs02SfoonlyOVG1x91EM0fwTe5GnV5JUZPTXzIelVRMyaJ7pNJOjLwjTv9pWOC7yC9E28WmSNEt2bkcNvCG9mQc42WmN0J8k5c0h1GPJdKzJKFbpEHBrglPlD5Qou9zIRSNW1so/6fxbMkuD+6yHkydGl4UqM79lSOS/aaXjdIk6Vj9y3rgh7ZcmTo0/OpJwilSM0bmvBCPuTJNGmdaqzXW2uTG6bs1P2zSSrTkWu/H003GSVmo92WomOPFmP7qJ5N5fkj9wn0TGv3EP8Ak3JcEJJmSJl+2aKnp0ibqdC5NV8aNIqiSbR30JjpkiJqPkjjaiS4Pb0iPRIirypfyZ8cnJGaLjiZoo3h4NXj9ONt8sinHmx4lXtJLg0P3JGanOmYopM1HSNRleNpRXJKW6Ds0tRxJs1XuhSFGNcEeiZovumNtzdk/uV/A8DXMhZY9JHElaF8hy91I56GqgOTww3Pkw6nfaoyqnEnF7faL/8AV2JM1XCNCZYtKkcLhkYmZUaBJ7rM0IzVCjLfyUkqNLfuaFnviRkxOTVdCSjzLsnM0/8AuTI0+jy2zHbfBJGmr+odmrxKctyMScr3GaS9NxMWRw0/C4FX/jHKjSu8kin6j3CujF91EnfRVLka/dVEukTG/wBxEuTaQ6Jsz/Bmlt4UO22yNmqXts0fRkXJzdlWNWiqEueTUfI3LakS5XAlzZDqjeQf7q/ySy7pGolcKNDFvFw6Ne3BqBClck/JzOCd0T+PBovnMyWpWRUuGjNzVfk1a9yY17GaVr01ZqMTm1I90rX5IRajyTNC6zcmz3uUeibrNx+Byl6fuZFIXRH5k1UrLm+x/A1FejExVyaj5RHkrhlqfJKSRqZXE0Pknm55E0xtIyStGkXsYvUg6StClL8DvyaRXGRPGm/kRi10+iSscbMK/fM05RacSM1Ps3qPRKVmD77JKSm3jN0vwT6ZjxtYkRx/wSh+TF+22ZJRTd+RSTXBi5yKySe64kt3k53on0iZL7iJnmyPRIzfbZp5NafgWVPgtRVGpdwNJ8LMjr6Wl5HMtDnRm5ZVo3c8fRIpiX7qNm6XZnj7WaV/sE8rnFwyIw4vRVicr9xLo03ykSasUtpNdMcvd7nwZZe1mL7aRunFU1YpfwMfRpU3kdEXJXGhRvMrJ5Yyfp5CnHhHCIv3E7crOfI/gZIqWJV2Y4Sivd2ZfdOCRkhJeLIQ2+BxiaiK2cGhjujZLDz0LE0uhxoceDSUoux+knZcPBx2aSSUW0S1OM/qMb6QpRJbTCrzMnjb9wscq5RsNlGGlN0ZNi7FKL6JVtZHJWGyOVzlwSlIxtNvcelTu/phlU+UShBskxySlRk6RIyfNDnwcHRLd+DL8GjSw34Vyf02OLJQiZsacDT7XjHCJSXk4Gh8HgfyX0SVkuyQx/dR4M322aT7JniridZDato/iaftmVD6H8UZktxP4GFL0zPJqPAu1/gpUZOzRfNkviR+4T+Zgb2j6IdkuyPQ/tiJEvmhfXP0zRfEf08kjB8JGJXPkkl9NJ0zN0iPCRkJeDT/AHn9WM0/3Wan/wDwlxRP4yP/AK5DjGqGYle4yNp8C+Bi+4jM+WS+JL5xMngkS+4iSt8iS3/SXRP4mm+2i3YzN8WaX7Zl7Y+xDEf/xAA0EQACAgEDAwMDAwIGAwEBAAAAAQIRAxIhMRMiQQQyURAjMyBCYRRSMEBDYnGBNERQcoL/2gAIAQIBAT8B1qK3I2+CabxkcWW9URZ5pVKJlubToeb+Cc5s9P7jJjjOb3Ix0KozGtS3kKC8C4OpplT4NcYKomDe2ZEnIjV8EqvYr/aYaUqJy3tsWbekPW+Uaqe4lq4ZlvRSIuUVeoU/KZf8EpKe/k2T5KT8iTI8EnKLtyNd8C+aE0za9md3/JjMzoeX+RM4F/tZjMzqR/UVua9W9Grbg1J8CvpbiUeXE7PES47lJ+BRVcHpzP8AJ1VHydTUhTRqXyaiPtJ7yvSWjUvBch7ii14HbxD/ACMe7IWoWPJpVWLJq7bFH+DbyJLwzJa9zOouEb+RNLYiSlJuiGJp2zN08fKNeOT4JLuSiOMkLLhUXCytL7eDIm4qhTjj5Zd8DnW1l7CcvkxbS4MmiMtyC1q4olcOURnGRHgfNtGxhMsmp0iEZyexkhftZbVmDeW5nTlkaRjUcSbW4/VSfgpTVkU4yVmb2MhjeSVtkccUeoy9KtiOZ5JU4miPwTxKX8EbiyHBm7sjSPTYVDc9VOUI3EhnyN00OCY4TxmLdHqr1Uj03pl7pcnqM2aEtMeDDknlTUyeLS7R6d9h6z3JIw4kncjJ6qvBF9WO4sdD9g9TZDAoxbmavTrdocIZI3jI64e4wnquDFg1vfgzzWGFpH9Xb9pPEpr4FFxILtM8nfJ6fA5d0z1HSw8ox5sLlVE8d+xkJZLoltjJb5WS5MX4jpuciKjig3E/qm/Apa1uinGRnW9EIqO5L1UnwiPerZj8kXCPJjyRlLSj1FXTNoyvgb09xGcGtzp278Mvt2Mn4yGDW9xYoxRNTvZnp4txeonirgwe40rqMy6/2GOWVyqZKKiyPA1u3Pg042/tnp73szRuYprGqHJRepHbNOR6fkzPTkbRjuWN2iMG72KUY9pFvUrMnsZBfBAzNOXaRatWc/SXuILYusj2MSPUyt6UhfMvpL+TBwZ/eiLdWZk33cGH3V5J7LYw+09RtNMwvXZKDsxxpDd7EvxmJq6Mkqxs0pw3RjvTuTowcHqeDA5fuPVNe03E04k74aI+0m9OQx8HrWpNIhpTTSr6T0+CX4x/kJruMPtFl0clXjtEd5PYhHYbd00ZtmmY5a03Q9UiC0xIcMgoPZ8m0EZYtrWhY3PaQ3FPScGvE+/ydXVsjJ+Mwom3ptEnbVmFtPSkSVGD3iT6jZJtxsvTJeTInaFwSb3Rj9yswcszvvpkayLc6Mpdt7DpbHp+TNJLI7MflkIS6jtEubNXcjL+NmLikRMuPUtiGGl3/Rmq5EeB5XCbRgnGe6Zmgsi25MeBRtS+jkrow8HqJ6JGH1UJS0nqMPUKhjHnt7GH22ZveY1KzLDv2RLbgdeSX4zHljB0PGs0KNMtdf8ARjx9Im4swe09S+0xepUXUzLGOVakYvTy/eNxxI6msj7SctM7MGWM+D1OJq5x5MeFvtkPtLUuCf4zTeYyrRIwe0g4+SCekcGsvGx/wSkvJmdNGGW5OLU7XBZHdSOlkluiEZSacic8l7Mcsr8olFye7Hjl5Z2URMibxihlvtFkkvcjLFZJaqNWlcEnOXJ6e9ZknpyEcqku5CnDFwhTcnuIcnGTsUtqij09+TPbnsRxTMyk9oig1yen5ozwcp7GKOTHuPK+WTuYo0zJvjaIYpXydy21F77SJavkv5ZLu8kYbi4JQxyluRhCPtO2x0bfJo0vYx8GeMW9xRxJ0icYIax/2miDMNVR6m3Mxzlj5HnROTfBTvcf4x4ZyMcMmJbSPvPeyfUkqsUZx3MPBnSex0Md8mmK8mn+SWKL8kYJPYXBkinK2yOOPKZOK8sVJ1qJRvyQjXkn7D/UszqpGHgljk+DHLLBUdVvklK+GaTOtkLHNPY1yrcdyfJBOmSmuLIO9kOLN73RqS8HUR1cNaDRpdozqUkkhdn7hZPljl5bFL/cJ/yYnLXuhyk3aQpS/cNzYr+BcDlpdtmqLZi5uyb7nua48WTkk6Zqj8mL3WZlpk3Jkcl7RHGf9pxyitbpE03jHOMRRm1cUPFJb2U/B05jahzyY3GQuCc9MjCp5v4ROOl90hO1szuSFOL2Ma2ozy0yFOeSVJDlp2czU+Y7iyfJirTsZpVI/qU9hzfwa/Bs+GU+jTNcE+CF5F2oqXGklPTzEU72MPBn2Os14IQyS34NE/knKeP3EZahcE5xTpGFPK+B45x4Kn4Q5afeiEoyJewv7pl9xiXbsSlp9zITc32oUH/aNafAqkZI8WzqGidbo1U+CPdwRxOTI409jJKce0jPJqp8Dx3K2PCp8EMTU6JWomT8QsLyyHiWODceSeuRgxqUNycZR8npvdRk1Sk1EjLFFVLdicJ/jZjlJOmLg0R1OU+CcsOV1EwR0yaPVLuIQ17k445ul4Om4mDk9RHVkoxxWOL08k/Uy+CPfG5ChpkZNsbMOPyyKM+FzkQjUlv9JJS5I49EthcCxqcnZjSPVxuW5CK1oROHdsYuDPDXkow44wXaZcScm7PSRq6MkE3Zh9qPVbzow4tHdLkn6xfAmpxsUaJ7YyGHXu+Cb6UO0WbInuR74dxLFodmBdp6pbGPGr1M9TJqPaXlu2xJSVGnS9jwaNcnZjikqR62c1UYMxPLe72GrVHT0u0S9o190y+8xCx6mY8ajB6CfqMl7Ixtyjchwp2jPdJGOMYuyXqZfAt1bIrkjKXEUYOp+4yrdCjuS1V2kXk+Dr43U/KHmc2ZNsZisq0TVzMa7UiVtbI9N7myL7mZlLwYIVLZE9ppCMi1KVmKNyWxg1a3Zm06tyctCsmkpaiM7VmBpvYzvTMhJzhuSTvYx1poU9Rk9jMV13CMzcFqIRtp0bD5H7rQuBaeo9zHyeqV9zMS1VItEudiGyM0dWTkjsZY6clfJji4E1q5MXtM7rIY5at+Cf8AwY/bRqJ/jMGpv+Ca7Ge5bsS2oytrYxcHqeDApGaOqBjgrv6K73PAlqm6Mbo9ZG6owx4YyTbdEvaSf3TJ7jDwLJoIVotj2a0mL+0ct6RmdJMhkUl3IfNJEWq2Iy5shmjHZnVUVt5GpSjQouKpjyNScWdWMRww+w6UYboy/jFKUXcTFk1Lgy/l1WPLGhzlI9Ly2QyKEqZmlFLUmLTDus1JyQjWtTgyoYUzC7lZmScjTGSSaJY23uOuDEqnsZa6m5D/AHcE8T12NaeDZOjJ+NmOU09iMn8Em5xpxL0LQompvwTnPwRu9xcE4uTdGBzWzJty2aFceImuXwXMhweqtTdGHNOPO5NxlvKI/UXtFFyvcxe1GVqORtmOpmXFJS28ChoWw6Mn4mQzKPJrU12nSqbkSdbslk17RMXtPVe0x5/DLUlcfJHF0nyZJqIp6pHgnklCWxhzrIjMlJOKZjh0o1ZKSQpamNdpPtymRd1mBbEGr3Me/JlwapXE00qiNr9xlftIVPbwZcU7Eq2FW9HRb4MOORPFmu7Hiy/I8WTyLG/gXpoPe9ioNVEy/jMSX7ic2o9pqm5X5IS27mS4MG8mPHGUnZHFj0mjE9hRinsInji5NnSinyYElLY9U90RcoGXK9KHb8mD3Hq+SGSUH2jyvyiWWT4FFtkl2MvSthZMl7EXKu4nfgnLJrIan7h8r6QluyTm/BHqsl1PBFyRL5MZlkozdn9Rv2iy3yiWZ+BZIyRj4M6ubMb0yslmk/BJykU0TV4hYY8yYsMYq1IcUleseOMt3I0JGL2nqVcSGCKdtihBeSUFfJLEr5I49MluP2jhC7kRWKJNY0NY0OMDSoj9pKH3DLuYdtiSbMOSeP3cDzIeUp8sz76S5RdxNTa3GpSZjTRBTa2MUZ+WZo5L2ZCM/wDglfgi5mhfIoK7RPJBxpsSxEcmOKoebHPwdjKh8mFpPkt6tmPX8nd8i1MTNUtWw5TkYl37nqnuiL2Jy3o1o9NR6rkVjS4NBj2fJN/bFNrhGuX9p9wes7xufwJ2zwKM72IKS5Y1L5O4pjvyY/aZffsaHe6JynF7Idz5Q69tGPZIy3rdEZTsUZ2UzfyS/GL402XlSrSN5OKRcl7ojl/Bi9pn9hGV/tFq8RJOT8D/AOCNWjai3q2RHJNconPI+DVk+BvJ5QnY+CVajKr7UQ2Y3pKvwVT2Q0zT8mVJpFKhbfSPPIoSfkjFLlj0/I9J2fJ2/P1k/wBVCekcmypJDtGpmplyNUhyb5+mojT4ItxHLUWkUufpZ1G9mazqM1y+TqSNbY5Gtn9RIUzqHUFMcqHIWWS2JTbZrY8kn5NTLZ15olKU39NRqOoz+onVH9RNH9TMfqJnWkdaQvVTXkfqZPZnXl4P6jJ8nXn8nXn8n9RNOz+qyfJ1pnWmPNkfkWWfydWV8iyMfqZDzNjzyfI8svDFnkPPL5OtI6szqSHKXya5cmpvyWy2Kcvktllk7i9i2Iol+jj6WWbGobL+mr6X+hTNRZZZqNRaf0bLLNX0sTLFI1GstD34N0Wa0aht+C/ktGo1FlI0mg0mk0mlDiaSiiilX0V/pe/H0ZuhEkLZ2clWUUP6JotfSv0bjOiPGdJnSY8TOmzpM6bOmzps6cjps6bOmzps0M0lFM0GhmllMpm5ubm5v8F/wbso0MoRpKKOP0Ibf0pGmP05KRsjb62WKRrZqLNhpGlGlDxnTZoOmzps6bOnI6TR0mLGx4pHSkRw1ySxyOnL4Om/g0P4NL5o0v4NEvg6cn4OlL4OjI6MjozOhM6EjoT+D+mmf08hfp1FlIpGk0mlGg0Gg0Gg0Gk00aWUzf6UUaTSaWaDQaWaTQaDQaSvpRpKNJpZTNLNJpKKNJpNJpNKNKNJpNJpNKNJpRRRRSKK+tIopCRnnoSMk3KBjlT3H9K+ljaLRaLRaNSNSNSLNRZoNKNCNBoOmdM6Z0zQaGaWUaTSaTSaTSaTSaTSaTSaTSaSqK/Q0KJpNJpKNJRRRRX0ooooooor619aKKKKKKNJRRpKKKNJR6rweCO00UaTSaDpo0Gg0Gg0Gk0mk0mkr/KUUV9KRpRpRpNJpRpRRRpNJpNJpNJpRpNJRpNJRRQ0UUUUUUUUUUUiiivpRRX0or9fqiftTFyv1UUV9KKK+tFC/XX1lt/8Kv8AOV9fUsl7EQPH+QX6H+mifP0r9Ff5tfR/Sv8AL0V9Weq4P9NC5oS2/RX63+mP+DRLeQkUV/j1/wDMoZLg9XwL2JH7kR4/RRX1r/AX+CyK7v8A5V0WPJGPJriWjn/IMmep4HtFD5iR4/yC/wAGeyMfP66KK/xa+tfotFo1L9Dkkao/P0k9KsfqZtWkR9RkfKI5peSeXt1D9S1ydZrehZnLwLNvRGWnG5HVnIUmdRnUmiPqH+86sTWdRef1ylTpDciW56rdH7B+CPH6mWi19MuVYuR58j9pKebwyMp/3DyzXEiXqXEX1f6epTOpvwY1/l3+mXkU34Q9fwWyMu4eyFOK3bHJMuIp/Bf22ZIzUNQlNqyEsjJO8dnUT7ZI6jXB1FH2kpLkx74jTZpoeM0/yfJrurG1+1iu+Rzp8nUrdiy77Mnl7tyU/I8smzV1KbLj5Yqvk9T7C+0+CHtX6vU5Xr0eB6VC6MbhIhk6eQ9XK6FGMlsaFHdkHH4MmKNWkdNUWkyMr+jL/RqcpONlyi9LZB/plkUWomtHVQpp/wCBkk4xbRHNGhZLlX6MuTpx1EPU2t0dc/qVdNC33X0lwxa58HThFd0jp7djMTeqmZOByf7RRyCUxzldMv7LaNbjudR3Zrd7E3eGxQlPkvHj2ZrxZNjQ4S3MX4iTfgStbkkpKomrJF0yHsbYsk/gySnHkhkd0ZGtfBqfwKNz1Ep1Imsl7FO7ZquGxH06e8x4XDeJn/EJ9onwQkkkLIpGujqHVQskXwZZ1K6IznKOxqePlEJKTPV+LI5FFUanLeJG48RJZadSJbsUlfJibsy5Ja3uOS+WWl5Hk/kwyk3eoTvcclB3RCUcr7SPJpY9jWjXH5M8knZqlXBrl8GOalIeY6vkeWqOoKcm9zUPJJeCcupisftWgU1B6n4I+pvwSzS8IWZ+UZsylAqXwaZjToxexfSXDMLtGbFbPTw0vk2czJ7SCjyeplOPtZHJlsq+Rr7LOktFks6j4IrqLVQ/wkXaszRjKW5ijFZOwnwY/wAJCBmVpI0d1+CWlrcguySQ04bRNU7ocDNNxy7F5WrRHJNck1ckyXchJz95q6cf+zJmlS0GOcn7z1H4kxLtI+BexG9bjX8lP5O8x++iaUsm5knHDG2R9QpuqIJatj1dWkyHp9t+Cd449p1cqqzJHWt+Rxo0QXCMXLJ+52OuLNX8jp/BwyL2MqswqhyUGjVaOVsOenlEpeTJFTSPatPwdTfTRiilMerqNJlNcsySpJizRW1inHncco82dRftYvwmPEtO5JShqsWR/Jqvlmr4ZKN8kW/DNUltZNyqmQyKKpkpp8MjKW56eNdzPUJcsxqhfkMntMCfJ6hNxMcbdsf8E/wbDf2u4l4Rj9o/wmOaexkj0/8AsjB5O8lKK2Mf4SDRO2/4Iu/acrcS+3KhvwTaTTY/B04yyOzLBuXJije0iapol/JCO9jhr2/kzw0xoxxfk9T+Ei+wj4MjaxqiEJ5CUIrZsULWzGskT08m5E3LrOjK9SIVaZid5T1fKMOuv4M07elItotyjY3vuRlPVvIxcmbvdCwrHvI1479o8Sl3RIrTyR4FPVPQ0OajLQZYpyTZBxjI1LTZmyQlO2ioyj2kl2ovemPlEK1onUZOVCyLLKmjPTUUyHp73Hn032kPvxtocHAS+0ZJT/aTb6ds0L9x2/A4vlGNujFjlN34F059sHuNtT0sTWvTRO06oj/wQzaXTMmOHqFyLTBUQlqyGX2sx5knpJrVF6THDRGmN6TK/s2LJHJHTkJ456rQlHHwSWrCKEns2KM0qHCbVHSkY1WGjf4FO1pmbY+CWRye5CulIjKM1XkWKMN5Eclsr7jZk33kY71fwZXVUZMblpaMklHejX9vUiPqE9pHUXCPVW8BD2EfBtoViXweojqyNo9PDTJ2Oq3MFdQk4rI2Z4PTqiQxOu4xL7h6xmLKmqZPHqMfp2nqZlmo7eSctfJDDJSMOzLWom6G9/4F7STI7Qs0KT1JmhOS3J8jxLlmudcjhqQu2SQ66ZoW8kLG2qkYpKU1RmvejDuzPzEjJ6dUiSp7GNrgk22cYjIntpM/biZBbFKqZDiiK1SofUF2u0anOm0OHc2hvOR+WdPG/caILZGmL8mKKTMu8R+ni+WLGo7KRp/k6VeSVdLSx48aGkpDxJO7P9JUar5kV/JsvIqfk1aMT1EckX4L22QpX+0dfBrWlxZHGpukx4/EmKKjLkyP7rHOT96E2SjF1qY4xrYlFfJjqHaNx/tHzweod4qEu0iuCtUFYvbSMtxXetzDGXMeDkwr7pmxylN0Q6kESc5cIwRksm56mOp8kccEzePDNbSuycVeps7fklsjC02NqMhpSFFvYUFjWxrvYjvE1OyLla1Iz+5UOTr5OSnpEnrRKN4xauEfc8mGEoztmu8jgSax7IzveLMU45O2Rmxd3aaY49yUk/BP8JjnKMaaJ3olZHuimNvUfj5Iz7jDni4acgljg75HPXKhyqTOpctItyMZeEaXe6KfwY+TOrjQ6vY2LhR2SJrTiJQ2VSND+Raia+0hRV8HTiuEaV8C/gilLDuVaGpfJ3cGuUhx1x1PwKD5HrQlbponLTIctXBEcGzoyrlChPwO4mlv9xUq9xn/ABEH2i/aZbWJUYvUSW0kZMuKQpwiqHKU2em95kjPqXZKNqrOnp9rMCnGa3PUwudyEo8I3+B49Sqh1W8TTF+Co+D06onG26ZBSx+T7iRJOfkil8kfaVCyldo9U+9GLJpdmpXqsnlbMbuRNXA7Y+STg3yQXciULk2maf7mZYRlW5jwRXklH+SeO3vI6TJ/iFPSiVTgzFiaVjU0dGd8ix1tIhjhp3KgOMdSo1/c0jxJPVYmmyMHLydHhseNkE9Zm9hGMjRLclfgt+TMvtJDxxcaJRVbCxk/xoclyWaiyH4Rb7DhtQ13WRjpRf26I40xwXBGNNbmStRNv9yP+jZ0aIDVdqZNJoUY1aOmvBl2xkeGfAn9tOjUkiTvg7hSl4Mcpa0ZK6hpvlCW3tPT+4z7yRuuDJfJTZv5JmnGuEYeHQ4Rj7hKKew5Fx+DRGWyMO0KYpxLXgyNOVGmF+0rHXBmWOS2Fs9iT+2i78HHgxbzMsmpNEJSfkyqCdsXdwiSae52/BGiX4jUSjcGxLIlshvJ+5CUuWh8Mx4Zyjeo6c4vk31pM7HJktFmOvBDWOGTwyeq9jH79zN7RSl4HkknQ5NRT+TVaJ+xE42tjuREmrxpGzHT3O1Doj+AUZPgcWOMipi/GJSfDHGfyRTT3G/uMlNM6n8EUm9z7cUaoa+CXHaSx66McdOxn9hDezyh/jEoNahxh4Q1HYSjaVHp3c2V9xjlp2FK2Y/eeodTTFKVjbXApSbobe1mvUar5Rh3JxbYoyQlISdOxcEPaJxQnGT2JJaqRK09mNrgd/ItpckvahZUlZObi0Q/KTfdwLbwZbtEYy+SUPhmiVC2iZPxGnbY9qdi1tDjlXA+oZVdtmKMVFNscY3aZVZIju3RXwyN+RSaHOVbHUZidzsz7RFOkPJXJrG03RP2InJxgxyfBF2ZNsaIyiuRtFxsdO6YvwEL8FOx2i5H+mQb+CUpeCLfkltNk5/wav4NlydRNcHUj5Rl9vad9DeQz30tzHwfAvxkYom0paaKUiKRgpZGjVUm2a1THS3MXuM/5ERmmZG0a3wiUvBqZc/KMRTcha9iKkNSO5Ij7RN/2kW2+DLJRmn9G0Sa5FvkJ7YyE0kPIjHvkH1NT0ndVsybtEeDQ0t/pPgyfjGrjYt4lTW6Gs1j6iPUttvUY9Gkeg26qoqLkxKEeCCFGVdpJzrktmL3bmdbUVL4O7+0t/2nPgyVpSbJJtbS2OfJpkv3EvxoT8US/wCDcVrwKS6TTFG+JFfyL/8AR/8A0baKI67HKUeSE9Q76jZJz8ik14G2qo6kq5OoTlGS3Y4RS5FX9x6j8dGPaJ8EfYiMkT03ZcUKSMX5GOLU3RVR4P8Aow1q2M8blZ1K/aPM34Nc/Brkblt8sxOy92JyrcWppseqxcbi3iKTV0Y2eo96FKK2NUfgbS2Fp1k94IjJp+0nJ+ImK9dscop7ia4MvuFFv9xpS4YnvyeOTLtjNTIytOzHkyNWkSnNcHVle6Mrcm2QyRSqhzg3uhU8qoqCfcS0mm1sNqJq1LyaoIxJSdnqVJpJDdeRyV7sv4Z3P2syvTBajvfBocTqvzEytxxJoXUOm35JY5LhinO9yUOpiTZ9tcE+3wXFftE8ZLEq12RyQ8DlBPcjpmTkoSoeZN7kckJk6jyaXp2ZqTLjp1I11+06y4oyU8RDhnlEX9sjNJaUOrvSal8C0swe9scZ9Vysepji3+4xLIsiZng3kbFpW1mjyhJbj0GiHyLR+0xdqZKSbsuDViUassU1wQerHsY1pe4otz1eD1KlqTRpnQlJmWGRGO3LcyxuKO1fuO2+TEu7keNN22KKT5MzV8WKUa9o5peDtv2ia+DN3Y+S+xWy0k3ZDNKuR5Ju9zrZI8kpatyOmhxtnGRCcbdkp41sRaa2MeFcyK7aRLGnyYouMz1HtMeK95GhJUiWOLNLgzOk4xsfbGkS9S74Irqco9R+KJj2iZ9b9rMevVuycUf+uQxWZJrDtRHP1NpIeGntwc+nI/YWqRLPHI0mQjUkTx3mbZk9RpdURjq7oozr2WPJoikx5epsQj2OyTjijuXD1HBPbGQ9rPgV9MTcdpH/AGf9icvkwuSkZV9yiOPHijchxhJ9rPTxaker5IYHP/gySx4FpP6jG3RPCn3REqJQRij26WZJafaRlKTF1OVROUsfIskXyQilHYnvsjCZIvXbY8vhkc9E8qm7YlbuJm3xo6mOK3R1cc3wenTU9yM3OTQnJPc9TKSnUSCnPkaSZLWnsQn4Mm+OiqjRKCjjdil8DlOKOrYqcWzHilPngUEreJ2YpPqbkZS8ocp+COp8kcjOs+KHPcxvvPUPYUt6HkSNSasu90eo3UaJqoFfwJVEz/jiQW1GZdxjilKyStH+gQ2PULjYgiTrZEtsNk1cbNLW6RdOKL+60ZI99UYfJ6j9hNaUJbkl2s9Sm8UbMCatmR3j3Me8T4H+Iw4XN6pcGXLhxvTRCeLJwiWNrdM9Ldk5acp6mN1ZgglLYxu8h6i9aMUtWx6uOyciMFzQ9kPcx5JNrcxeSONTlueojfBpS8jSqh464I+wcNapEUrR6z3JEIeWZLhwzJGzDV7GT2InG5WyHu4IfkNUY7kZrJuZ/wAiIbR7Scf7kR43Q4q9ia7DLDyZPwsjxZPLJciWvwR/GxTeRaeDG+k+0jUsyaFKsncxqD/cYm9yHAzzZD3nqOCLT3GkUhquD1EtGlkppws0NZP4LS2PUeyJjzUS0zXJqjCNMeVyP/XIZF5MtSVowrt3JTS2G/sIUozVMjFb2dRSmkic6ytGanK8fIpLGZ5LtZl/HqQt0mN0m2NrLGhJYlROnjZBdrPgTrHuQknwepSWTcxY6lxRaS3MDubJq8256iKq2Y1xIxqsh6j3owyjVRM6ckYvuDHTMWOnbMfkxruMibWxjjq4Q0TSsj7CDlBt0Yk+pbR6l96FdbmV2zetjDevcybRRLZaiMdrRCSc9jaNtmOO1mank3MdaaRNtz0jVKmbalRP2koOdNcHqPxMgu0d8IhtuJ1BkFHPGlsyHp44t58kO7NZONp2KEXuyGyI9SD7ULLKt4jyy+D07eu2ep3VIx9XG+Drbboef4FNyZ6imkmyUK4YtVVqNBl06YpkNF0iWizRCzTBnOCkRwfuYrx+1knOZHFJEl9nSyOPbuZPXxIhHuTZkxxllb1EoVLdnTS4Z6mLaioiclBR0krl4Iw1QaZ062Ujp/7iddOiPDFtRGumYmnweshp7kR41F7WzC08mxntTtCm5JKa2HPSqgjA25bnqU2xPLHeIs83HuidWuIk3KQrJZIvgwu02S1J2hZdUamQlCG6J5ZS9goPyL2Ual4MdOWx6uVSIZNRXdqZORidzszexEJNKtJOT+DFGpmP7jpnD0LgzwlPJsjFjyxNL1atJOOWb7iMXa2MyvGXJR06TJawOzFVWx1Y5pbIS1RZjxTjuSxSvUzBFrIR3teSEf2/B47RSkhytcnd8mJPUj1GrZRNeRbM1y4E5EnLmjLKlFyQpa/ahtxW8RZIS5RmrHBEcg4z8Dk48oWS/BKN4lRpXFkqfkUY8WUPEox1yISUtqJS0vuRDTNmdqEqQnKRHLHgn200XJrc0fLKSWqRrUV7TqpP2ko1jckR4FwmVqwsxrJCWpEs18Ic38EoTmzBFqZljklkekjjnXIoTXkxLKsi+CWvqtlvyxyiy18n/YlYnFu2Y32WhdRuzqy8mr+R2/Io5Pkjejcx49DshB9TUZ+nOW5DHiXDOhFdxmwxhuiOzMq2QlXkaT8mNb2KMXuRgk7J6tfInO+Tve9jb1XqI6zK/tpsvZMnpliZGGmI4+BQjfJtGPIssK3Z1Ivgh+TYinGdouS4QuGQxSybyPtpUx41PeB6e9dM9U2lsQhOb5HDEuWaL9jIOUX3GeOpxQ3047EvVX4OnfcepXbFGKGky5ckZOjDlnldSRLHW8Sf/jmNTvY7Ma3Y+nPaxwcCfd6Yj9qNiz63wQx6ZKjNj1ZmyebItoojHqR1M9TemCI6YKpMej9pDuxtGOGiJJRkTVY2iHtF7SK+2alB7MklfJUfkjKMdrILutGVN5diOKOm5cko37WemvVTPU7MhBt7EpY8W0jq4Zk8VbxEqHJS2RhVRcTIm3SFiUFqyGrFe8SWK1cNha4vcX4yeSUXSMDbrUZtMZbikN5KJZZLkxyUzN7ELQjskzD7jHc21ZByjKmepX3GYoKPcx5cbJ4qepGNyvkyxuFM2UaJRjHGzqJIT+Uao+DZxsxYbWrJsjtyzehmKL11Igku1ElG9yKjpbRhlqiZMal5PTw0EH9w9W6VmN+SePVJtnpoqNodbHqL1RoySpUPl7Gvs2M/ERS0xsk73MTqe/JPjYf4DH/BnjGT3MONKWxKib04EWnGmN7kfciX5mjL/tIOu2tz1XsiPGtNyIxqRxBkrlhR6fZ2S/GzHwLgW+NoxYNT1S4M2WGJ7oj6jHN1RLDF7owLTKmTlpymda+GYYKMuTH+Q9R7kY3GSpGfGpSSkRwwW6Q6W5ZjhUkYuCDuRlfbRtw0Q4snJC9hki+TFFxas9SvuGnyiWpslGzDyZeEThrZGOh7Ij7jU47oxPVuzK6ysu4jSvSN1FNlpzVGX27GSNyuzM/sGNLSTzPezSRfZv8AJ3Jd4kuUYpOWWxJwbkZMul8EF2shDTHYytRdMx3f8GJfcPVq1Qo9lRJ9jWrkxqS/4H7kZ2lOLY9MiOGV7jglHSeo20kMsV7jJiU7aEowVseXbYk/sGKmeoi8aIqUqa2JRVE66SI6WtSIxlP3ClHVGKMk9OZomlPZCmo8cnq/ZAy7YrYlb7SuyQ1GcNmQgoK2ZPYzFwxcGP8AHZjle56mnPcxUpL6Y5ashmjqy0ZItLvIW94GPadmf3Iw0kZ4uDcyGqaopPYYsOj3GIjJJksayCTnOjQoIlli9kf6ZjlqIZFKek9Sry7HdVktS4JRZg2Zn4RvFbkYue6F7tiUe22Yk2ZdsrZVoitb2NKjGmRrWqMrqI4uVNcHqFeF18kFSok3IxvwcQMeSOWOmZHHhx7p2Ym5ZbLV0TV8ifazHmr3Eo4pqxzjEwS1TtnqW4q0YvUadpEljnuxyjFCnb2PVRbaoh1USnPwipy9xnjbSFiiluUvkeNPyLGZNsJGdP8Ak60ZKpjyxSpCk58k4XhVEVkiTnOS0vYxJuaMixynbJKB2vweoucYqJFOWNQaKrZIhjl02hY5RHGbGqxsw8MRi/GzHp8GfC4pyRjw32stQW5jac9jNJxyWa45dpFxx8GKWqZ6raSIZZQ9osyku46kVwiU5S/4+nVUtjBvFkoSb5MeqB1X4Mly9woIVdMqME2YktaPVushCenZmpXqMuTUYTOrii5NVR3fBBO2Ysn9zIy7+0zxm8jpGHqR8Gp+IEupLdox6tSs9RvCjuUdJO44H/yY1cLHGTlZai6iQWuFEcEdNWdJVsYlpyCcXKvI4tv+CMlGLbF0ieSHhDavgwySkeolXKFL+B6b4LXFEdK8GdvVdim3tZq+SNfJnpVqE4Vyao+DXAi4snJ44JLyLI1s0SyPwjXP4FOb8EtU18URkl5Go3ZCPlMyycZ6Ine+COR8NE72aHkm1wd3klCbVpi25ZFRXkcHTkYVszwYk+m6McJp2mSyTOrJkoSk7Zhi1NGfJLraaG7W5b5USGWpLYyOfU2Fqe7JSO4UZCUiRH2MRew+BCMfsPAuT1HJh4JJaRpGHg9R4G9hvdmLgglTMfJP3EeRvZkWzyep4Q+DL/47PT/jM21i9xD2f9kPafuF+ZGH8pLyQ4/RDkyc/RD+nrOYmLlGfgxnquV9K4PUcIgS/Gvp5I8fTL+M9PvJHqtmen96M3/kIRkM77YFuhN6hfiYxe4X4mYfJ4IfiZDgysj4MPI/eNdzELk/cjPyJsXP0i2QP//EAEwQAAEDAwEFAwYLBAgGAgMBAAEAAhEDEiExBBMiQVEyYXEjQoGRobEFEBQzUmJywdHh8CQ0gpIVIDBAc6Ky8SU1Q1Nj0kTCUGCDk//aAAgBAQAGPwL/AJExzXN658Ud7s9SnnSMKQeHKdJDhgyToofVGmDKJbWpVQ/WdYQtqs0RtIfU6vRmInkqIY2x3JzsBVQ1uzme0d4ITXCjTu5EOUljfRqiqO0FzjDcg9IhNB4WU5ycXehAKnvau7cQHcIkoBlbbdZ4cIBlbbnN/wDIQtag+0m1WkPph0SmU9g2feU4EOTYFGkxrtX5hTX2+gHWxhunsTX79lSNDanGsxtrtSMqpVqnhbkAc1Gy7JdPUIH+j6ThEC+IQqH4M2SR3hP3mxUIPJrmhVv+Ftl+kHRcewW45BW1KDqbo84IxoqLPg7YcNbFzhJKLKe7DfrwnDe0Sriyg7EQgX7AwtA5FRU2d1LvClhkFN3dLfVjOOiFWnSoBo0B5KyodmYPsxCc6aD51grymy8PWmU10Q7QyvJtc+oXZDUyzYaRxw75oTr6GyMgWwGjC4hs/oQ3+ziOrChuoYxzgfBFgqOf0IE/cjPy9ojzEWCptxn9BPtr145XUwoNfwvbCDw4Pa7QhHd0t5XJ4f16lc3Z6IP14QJOzMbnEJ7XU9nffqjdstHphEVNnsEcsp9ukqmKjnVH9qxvJfu+01XT2d4QPeqh/o7aG8OBMwU2/Zq7YImE6G1mt5XZRDrx6IVNtN97C8EFH7aOIwqm9IDBVnxgIHZ9jdVYDqWahB/yTZtmp/XeAn3Vtnbcrmmg+By6Ly1ER3Jzdj2beVXOnwTyalOkO0bggam3SQO1Yg47QCIxcE2lWAkuw8JlSrSGG3OqETCvpUabWtxFuSns2Z1jRzLlJ2lvLUo1dpqOzO7bPaQNvoiULdkgmIMD9ck9tWmGVRhwVWad9TzEG7JTpMA83r4hQdmpWfRc059ieanwfQM9BCmp8HUrYgi8etTV2JzG9Wp9lRwc3Nruapn5SaLTGAqhrfCr72iXNIH4otpbY51ToWwrt57Ue8oU6Gy1Np4Y4WynX7FtFJvIPCmkCG96a5zN4/TPiqVF9CkHvzhgce9PD6AZTYeGpuwJV9IMc0zy6Qi1gtBdB71stV5tw4TE+cU/fC2nHk2P5hO3u1C9x0xpy5o0mP3rQBeW6KsRMZ96pNOQeSDKdNo2jk76IRN7nucefVHygpuDemiNUbQCPBdorPlG/Rci9rQBGiKplzhSBHbOuvJVRT8m3zY1KLK4I5m3T0qo9tRzQ0drUa6+pODHEt+sNVAZa7o04TgNFUe7DW5mFtDKM8Ai7S5HflxBiB9LCpO2d75LZBGnjKAeGzPrT7dFtBOgI4uiG7HDzc7RxTi00mBytbUDqg5dFx6nVpQ+2uOkN2M3lVauztDWDhuJzKc+vcS4DN2hW72pt3MjnCD2iR4K0aJkdCi0O3tXnI0j71SAqDe1eZ1lPDdp4mA68lUscK1KYg6EJjmxxdE/xTXuph7iOfimtpsm4wSNIVbZ6T23dDrHJPe+qyMTMjCiuwPYeY1W9bBxyCpf4icCfOKOFtFSII2tseoIeaHeaOacxz92/EYxCh+0EQW4xpzW7Y8PfztVrncYwQVvLiCHYIRp3BlGL+M4ce8qa+2tbJHALcdeafTY/eRrjRbK76+qp0wH1abYAtCFCuC2hWdZ6VtJbe4HArO5Ko2DVDgBuhrPX9dFaO10OE0BvPkg51Y0SABGsdyr7xsSZtXrQbDajjy5DvTXvebtQg6tRNzg6erfSmfJGvYx3FfJAPcAnX0272NeqlojMLZ2jhlmoRqbQyXDEEnPPCe+hSIe15BDDEE9U1h1A1+KmGs3sNBcByCq1atD9n+l0QjmqcSXydMx3r5RBBp61G5lWQGDMuaJj0JzMYbiOapytha95DeJvhxLa7Xb+3DZ5qkG1t4Xtb83wzqfuXNrIA8RyVQtMyFSjXKdd2ivVquKym2PpTKrNHGTiD9yKCkHQI+K2U71rQGjgPNPgSbcgqvVPk6eZF2vrTdzG+FBgDX6QiDgjBRsx6U+dVWuNrcZRa18NuPFp0UuOQ1x6RhUXMcHbO2AANWkj26JrS+xVOa2hswL2/ehTdUkOZe2PwQILWni4R4gc0AHOtZ2XO1/X4JlQuD+9N+2m1iRu9YJhGn84ypVbwsOYzKL2VY7EC7TK2naLXNlwHF6fwUtmCU5N8CqtjuPzmFsBuiu8ym7dh58eSplhJgOcyZAdpzlPYWbs/QPJNdeCebRyTk0NNr+pMDmqJe6bOn2lXqUAWXCw1SdMSf13Jzc1GuY0Gm08+qgiDpC+pklU/8AERn6SPRbaem1U/cuBwBOjXeGVc5oe7AaevcmObVvMZFPBMuJ+5Bx5Dh8FIfLpynjncPvT2728hl4Y0exUOKoDGGM4POzlPcHQw9knotnH/klU3C9tI9DhM2miN5Ua8FfJdoaKTbo3rXdidU2vRGc0ocdC3Qo7TdvC53HGo70IlxTKHDvYtuuEePVPL3hz9ZDl60IZu0HOd6IVUBheW03HTEdEK8lmltJ3thePRCM8WCtlHVqpCd5fEenotpbTduQ1zi+6bTpzKd1IRRdJHk2zaqzWAkAi+7HPHvVKO9B7TFQHHd3rd1XugtzLeyRpHoTXc4MSNU6o28VM8XJU5gE6gLZt20vEuwPFcNMmpBDh6Vu3RvgAbSNNYj9c059bjJ6mIVUvmN2TlUozlcc+lVGW3YHoRbUoxSZDZj9dybXZwVamHdfyRXei7THxbLDrX2AZ00Tm1WAODeZV2rHRewHDk2pS4KkOaXQOzOPivHCOpKeqmuoiOWqc+8OokazCosfc7Ik/URHG/Jtb0TDUNrvohVGzMdVtDg62agCqvDzvBmDzCezRmtk+mfYuI40x0UA8CZ9tAtbeG8uaphoB4iJ7o0VWX7t7nOcRf2beXuVhaGsblrQg6DbPVPTPSnVaV1VxPE12vrT2tNpdAcHZQ+TBk0iG05bPDHP0ynO4qjzqVddceaKYy8MBH3rc1WOOIxzC3VUhuz1Kh68InOipVNlgvzT7RMBp4SnYl5dK8W5HRMP11bz3hVukAStvZy+VUz7ETDt0AMjoqhp3WujBMqpfWaXgcLSNLeXtVzsqWtNl2qrtYQDI1RL6bg5zTk85VVtR721M7q7OBy9Mp+JJGi2a/6aphzmOFmlTQp43bgJ0pNJCe7dbTcc9jl6kLqFeCccJTg2lVseIII1QFOkWgLdn4Iq3a73KdfTr0weRRIm20pzHQ7oiN8Y6F2JRdTr0oc4OIjonTWYJKNvb+kcpp53clQFQgEtAB5hVKW8FRnmu0jHRPufumQ0QSSHOCNj7rQQDPxUieF4aM/inOfVuHTl+abYPGEwuMZ56HKDqrpAFvE2cJraXlG0wQ0VGnhKcAbQ7SRATT5sqkJcLbtPFF42VzXEfOCcp1Q7y4jTdlF72F7x9IKq5rT82QSqR7yuLZhUAGrtUNxszrjnNQLyewtbmOJye2vQY2w5F3NFo2dot1NyBZTFzhPX9aJ0tm4cvio32022jUpzm/CFKnjsvaVdvaLsxcnlrqTwOawym5HhjEAJ/JXsfY2dSg7+kadMelAH4ToVTb5jZKMbSwiYTrnyNPFPLo4siE8moLnVMs6LeQ1v1eUqsaTaLd4I+d5I3kXDzQU7FozyTPtrfMpuuGS4Aog7DtLi/wA4UolA/JNopxNxLevpVxY50jAforBp4JyaWjSSg3e02eJQe/atkJOIJMhOG+2MxnXVbtgoiR5sLLbjyz8VLgAkQ2TCcRubed1UJ7Ts2zOs18pPNNt2KiRE8LkbdnaC7EtOUfJOATD9dXvz5RPaF8ICf/kUz7F2iGnknU6FGqJxwMMe1OAZVFpy0gDKlzXkxIBC8BpotpGZJ4fWhT+TPfnzgTK3jw5g1HD1z1TxaLgMyqJIkSm/J7Nnp64UVPhY0GnzQTCG/wDhipd6fxTR/TD8HvQDPhB9SNF+8E+hBo2INEyX25KqNc1rXtJ4QtrNalvauLG+9BlLYAafOVw/BdItPUpu8+DKZLe/VNu+DT0xlEu2Qt9CuYXNqtyWlMp/OR5sSuL4ODxEfRQLaL6QnzVq6/vRTdxsLHstiHYlOHyOi0OzqfZhQ6iKecQqDdmaxxs1UM2htOfNjROFba2vPPiHROy0jmgH093VB9ao0tiojDALzpIRrO2ulsrZzHVNe/4W4rccHJH9tNWfqq6pFRnnEIuYy6SbAu1u2noof8I1BEDybl/zCq+M9pEOr1+8yv32tK8jtb3gexC928a1E96pVNorPddGJhGmKRrVA2SLjj2otp/B5iJwXaetE1NlqMAI0J/FeTNSlPMlXNeXD62QU5zu1zVhqFtNvKYTTV3hkfTTt3sld4GkuPSVa6jV2dxyJcvJ1Xa9ZRDzc5uFT3FI1nHLoC4dgo1JGDVAwFxDZKTYjCuuoPHcUN9s3ANS1GtTYCC8kNhNd8sLBMwxuipj+lNoDyevd09as/pOq6Zx4R+K8nt95byjRZeHt7wuwGOGDC3bTbd0Qvdfj6SP7OX8PaJX7q6PFeQaWv8AouKcWPPDI1RTXV67mi2QA5XVjUd/ErmUn2+a4c8L5+vT1xKLdmr1DHep37njXiTXdXyiQJO81VXudC2vfNJpb5kx6Ufk1O0OzLjy8Apdt7GN5AUyUS/4Se4/4P59yAG3Eu7IlikvZWb4Qnt2RjW1navPRS7am0vBRV26rYY7IV7dsgHqrahD7jg96pwbqgbDW/iqji66RLriqrHtNo0PU93rTrKTt7ww3QnkjTYCHPm8k6hcyJ5oNNU3xo0clVkRLpAGicNdUOEXnzWGDPUovqPruxpTlAl1QNwS6+NP4kbHPg3QS6670J4FCyqG+ade9NLZiYgqhVrUw4kSSQiGfB9FgOG3x6/ep2nZKdhbM04xlF1NobAn4tnpbsuIbLwMp9enRt2YDs/rwTHtEOuhQPrYTGtAL77TcMctVtFc0xboMY0iVhpbUYI7tUMZ6oXlzQHkcJV1SG03dicgBTV2w3QODExCdSbV3ka2jEqq062qh9o+5bmi91p7TpQZrKaXUw21uZTmtZBi697cLRYNp7k+e3HxbO1g4jTGSNFXDn7sFmSqjKfE0Ah0cQbj8iqmd0AL95jWPfy+J1N5dZy7k896e9zbyXgALf1H87fBOimTDrbvQfwhUbvJkn5mfaoiRy6hVfFVHuwGu7REqxguYBgu5lS4U6bXaDJ5oMva9xzDOSeXEydWqn9tMYxt9Q46Ad6p1WvNeB2geZW8doDg+yNeqO5BpCJabpnvUPPH/qVTxQ8CtywCm0nMjJXGyWgg3EaTojRNEGo4WMaY6p0QLT5mnoVQkAOAzjX4qBAk24J0CpvqFznT95Qp7rybcNB5kpwbRbvsOa2Rkegoua4tM8lxYcc9xVP7aMY8oqx+svhL/Fp59ap7wkm1pDWanhRq1brhBt6BXVdodxNuEDv/AARpUnOfHUaLdVLg8FVnHsh+ibeLdncx0E9UBU2g6AxAEjJ96ewO3oHaxiVs8cqv3Jl9fcTHCGk+lFtN9WoJ06hU2uu4ngtbdz6rgYKY3cB5GWi2de+YQvus+qhZUcB1CoUg+beEPBxH6Ke5z5eNc6J3pWJPiqefUqQDbXQQS/iji6LePwSwcIEQjLi0dQqMG7Pa6qg6eGAPYjuWO3cACH8+aLazm1n3EU7XE2Ku92luPi2UnV9H0gwtrc0l0y2OWqp2jHVOFCb+odBCqU7alOi03EdIVj4gYnTkn02lz25LB3ePVC+JnzVaZxUOiNJtcVsg6YJ6KsC+Zc2ceHf1+9NrG1hcIDmc08EybZVDxPuXkwWt7011oqN6IkS10GGuMqq0kFzvNHVD4qoLM2ni+KgN0C2wcfTCrcG9dbgWXKoxjHNqPljQwRqOa2ii+X1DytwdMytE65gM805Oc6nvJfGdEzWDmAtpotJsaL38xlsQm7ppETk+MwneGQqp703iLW70z6lQpmoHRnhEwn5AFhjPZz3K/d7s9Z170033Tqqf21RLri8ARbpqrS6o5tR4tb0PX2KjFMS4B9j+Pq6I8U50iCMRyHRAzLtQFU8UMxgoWsc6vg3TiI6JrajcYEOOMH806zyVO4jh0Ikyfcifaqu7Dgz63xUS9m804ZhVGQeNstg/r6Sozu+1nOmNVaCKILByyOEenOQnKZk+Gip/bTiM8fJVbRzXwtjSpTz/ADKlL7JY3i5DCsm/NsqvcM7qXW8xKbU4TT7LbUam8BdK2hpMeUVFuK8svAafeqt0taGsmRJaA4p5JGcS3mqWZ8rqqb6ZFV0AhjdYV75Y4HQ6j1oQHenUqmWttIwemNFvaZy2bwVOGt6uTeB2PPRZ2W+cTlOPiorcstNMCVS8oZGmAqtJ1MGnU5h2dMe1CQAOsiAovFZ86nAVMRbnRUS2DbTHCqbew5vbuxAHX2J9BtNxf53uVWXNyNEVse0O4mFjRg5iFWZbNnCCNFxEXGpyVR1t5aYHcnPFRrrX8Tp7eVQgfODFpyi+8Avzqg5zbU+26N5mPBaEcnT1lVKbmzd3TPRN3rnWDpyVT6MFUZ+kgXOFN2ewE1oe1zT0dqqjd7c4c3ahcVZpjCEVAi6q+e4KoJhtuB8VG55wIg6IHZ6pY467uSnu35a9p1jKBdtDTAgDSFJfA+rlcAn7Wqf4ptxiHdJTamzOyJ8mThBza7WmS7LvQrqu0UwwnNkkqGNmebtVW+0VQ3GpqPnPKAm0qjHirJu8IVXfE2v4IBOGf7oF+GDEM6JuCGkqgwZmqi6nWuqg4YTlUCahewEOtt0PL2p9B+HM4rvrHT0YQtF2B7k29wGstVTxQB5gq/Zql9QcVpGYUVAWFzpdGo1Vm7a3dm0R0jRQymSq3lLsRA+KlcHSGASxbngqYcLm+A/BBzRcwWtie1qhVsLTEfr2IhgLu5cT5d9FU/tJwHKpzVRvKV8LNu86n/8AZUxxbosBHTReTvItEh3VVjUYSahgnujT1ptzja3A8E7cyttskuvjCM7zeR2e4p3yph3tRxa+Ro0ae1cXEG4A0wqeCPKSJ9KY17qYFuHdE+am98R+SsID3DnCl7Bno0omnLJkdlZq6dQhVtZcOSNSrw3jlEIzpmUdzUqWx5/3Ki1rSI1I5yi8kl2hu7RXk6dQdMYhC9z2gpsZBMyqb20RBbAc/Rb17g528xB5QhUmmbvrhcTGhvVvxbP5HeNtAMp5psa6mXSHNCLnNLYf70+3tTiEJADg70lbE97KsM5MbDlO5IqTrGitVXLRD54lloO0BuXNOe6QEHX0x/F+SLnvvPRk4T2sI0OFSjW9Q6oG9bim1DLCMh3VNNRmTxX9JRaXFw+kFjjGJ7kbHk90dyceTQfip5B4RhEtcHuGZ6J1znydd2FxuJPTRSPJGBHJFgdIGpCf4qiKYLyakW9VUuqGnULMEHRNpfKBw44kSal5g9koOD+EmAVU8VRBcRl2nNA7umC3z3ahPa6qCZza381cZd9pF2ucKmR/3E2nQ2W7OVvAxrzI4XNlM8nSqTTyA3slOa3ZxTecGzVG+THXVVfFA9MprTTaKdpbKYLWvf0PejGzttJ1sXYbb9VsBVJiSPiZ8naTDcwFVLnjfkYnktyXtaaeHXv16rhtlv1gvRmExmk800cw5VW8t4qg8PcvhIcsH3qkDVFHhbBPgnmnbxcrce1GmHMyYxyKl0FoPIpwpiB0C24Ex5QODlcA99h1sP3LDjAJ1COC530yMBD7Y19Kpurbx1QxIZEaIPpU+AGY1lOL2OBdzI+5ab4xozGPUiS1wZ0BXAXd63fycNnUSiNy0j0KpV+Su4tOIIx+zt8JX7S5zxGooSnvpscwyTw0ymWPqdzDTIRJ2N7/ABplfu1Vpu7O7KYHbFXqVoHKAgz+h8N61HL9yjweU62lUY6Igo8J9SofP1HNHZY3Ca52z1mRGC2AiADmpMu5YW0CCYM4Ep+62S4EaaKhVq02uPZDHO5+hEOoQJ6xlT48+9VTU0v5juW8pCtFtpO6MIZdnXg5ckAab3RjIRdaZ6kKnieJAEieeLkKZovP2GxKv+RVg2JE1Wrh2SozxcoIcOoXnepOIOI0PxNO7dUdA0xCc6jsDHYz5Up1+zUh4VZU/J48HoCyoCO9SXetVRrxFUt5V3bZJJAT272tUDgMW6+Cc7ePoY/6zLUSzai0+Cv328jvT/FUt4S1oaTqidnfSDwIvJHF60BW3HdGJRBaMcw45UjhjvwmHpUQL9p3d5OhTqD7ql47UJzuOlcABDIR3deSTzC4aoc7xVQ/WQ8EwO2xsOjAcrt9z5c062u4fwrh2m3xwiG1RUFvI/E0O2iyQOEZVDjc60z82dU/aBebjMRC4r+Jdt93S1RveFU/tJ1oLgKw4VUcOyvhI6S37180KuAWyRjCl1tDHYFWco/tDHzrxKDY5EBg7iFtVVrd468cNsq5mzbS46bw4HtRc6k9xOpu/NcdN6BDS2CMQrvkm8Eduo/RboNpM9MKam20ifojiVzKt/gxQ5s//wAyuHZ7v4Ciyc6wot9KHx9UNRC4fiHERHQpoyY6qoxsOezUdFlrZ8F2R6llrY7lnjnkVmi2J0c1HdtFOfohYcR4FSIDusLj4wpdSY4/WajuqYYT9DCneu8JVrnOj7Sy31rNNvqV7Nmph3WF2VlgWaM+lfNn1lYZ/mKPB/mK4qd38RX7qB/E78UGgYHeVmm70VHfiuy7wvd+KndujuqO/FcN4/8A6OUcf8yuNAyc/OlW0aTgO9yuaCwjot48F7+9ZYVDmH0EqTRcZ+u5MZubmt0DzohFKl/KFBayPBdiV81HgYQf8nMzPzjk0UwWx0Kw5wPXVeUuqHqShwH+Y/ivmQR9srOy567x34oVKVEsP2yfeotlWCWtXGyT9sr5ofzOUO2YehzvxWdib/O78VwUAI8Sptwj5ML5oYWKAlBpojj7yg4bK37UlFzGw+dZ1W8rN3jzzKI+S0zdrjVAblgA5Bfu7PUs0GH+EL5in/IF8yz+VSyixp7moEtEhHhCwxvqWW+xdj2LAhdorB9aaZzGQipXP4sLPxEH49fifDQHO1Kzz5dPjgSczkzH9Tr8U6LQFaQsfEYOq19a09S0+JsY641Wn9S3QnmB8WI9Pxd/ciss9Sw70FYPxDhQc90nnCkSuyVketfmtStJRwUJn0rUfFr8WnrWn9QQ4WToRla/FqpXX4hc653XT+ofiLTiehWnq/q8kTOvL4+X9SQcrmv3ep6wh5Gp7FBp1h4AL5vaPUPxWGV572hZoVPQtKrf4FrU/kK7b/5CvnXD+Ar50/yFdtx/gKBFf2FfvLfUV+8t9q/emL96pr97petY2ul/Mv3ml/Mv3ql/Mv3ml/OFI2il/OF8/SP8QXz9L+cI/tFP+cL94p/zBYr0v5gvnqf84Xz1P+ZfOsP8S7bP5go3jP5l84z1rtt9a7Q9a7TfWtQtVy+LK1HoK19ahuo6FYf61yd4LQLVYMrJPpWo+PRafFkLWP4lgyvy+LJDSuRQ4CstPitD8Wq1XaXaWq5etRLfWjLmj0okvwvnAJ6lfOt/mC+dZ/MvnWfzBfP0/wCYL94p/wA4X71S/nX71S//ANF+90v51+90/wCZfvVP1r95pr94afBfPj1H8F+8D+Q/gvnj/IV867//ADK7Ky2FrCw5a/Hofj0/ttFoFotF+S0HqWgWi7K09n9XVdpdormfi19q5+tan1rU+tfmtT61z9a5+tc/WvO9a871rtO9a7bvWu271rtu9a1XaPrWp9a19q7R9a1K1PrXaWq1+LX4+XxckyoYMidNFSmIDY01CosbDS7nC5LkuXqWvsXa9i1X5LVarX2LtLtexdpdtdtdv4+S0C0Wi5rmua0+PDv7fT+tr/fNP7aj1P4qlnLWLZPEf2Gq1Wvx6lc/7WAP7lqtVqtf7DVarX+/6rX4qE6ZTLh2mjK2LvKP9vr/AGdV3Rn/AOg7N/EtmmZAhbA7qnjv/vTjGXFEf/n2t6rZT3uWzme0IWwT5phVftH+9U29GyZ//QG+k+xbPOlxVHnEkLZftBVvtn3/AN5Y3qYVT/8AFWsaXOPIIFuzkA83EIDdMEicvCiwT4rNB3oRa4Fp6H+4u+wVs/2iqN3UhbHiP91X+273/wB40T6uW7ppcPHQKO/++jd7M8g89FxbPH8QXzJP2cqHsLT3j4uGm53gFw7LVP8AAVDtlqj+BcTHDxCp0QbbjrGiZvvhB20O5tpwE57KlUjSLl5LaarPthOp0am94IJj1pzd7Lm6hpEju1TQXhtVwgCo/wBHRFzqoA/XgnW/r2qnsrnbu90F3Rbs7F8sfzdcSiKXwIwT6UHO+DKNIHlCAfsJH+HUyqY2EvNdzrd05cRos55qBCalLPQo7u2vAngP9XDSsiE976ppsaY4WySjcNrc/wCsGhFzG1ROMwmBpvDXGCmx3rZB0P3raR/5He/+tgSe5YafUtD8Tw14Y1gkuKmrW2iuP/G2F/y7a6niVj4ErT1kwg2p8GVmu1lj+SIu2jZ45RP9jRc6q2gCzDGAY9ae9tT7X+yZ/fKf2gga9UXcwc+5QwOOOQP4LMeoqoGnGoVAPFzbxIQsrbinpw9E1h+Ei7EgD/YKPlDne9Fz33H6NTmtjBAZyJaI9KptJa0OcWgutzHoTaVQWDuhUw82l4kOOVVYztmnLfWhUond1xq8u7Sc6tVAr1OI1A7RW7S+8MBttOPFOoPIdRmQZzCGciBKsZTYIg3ehBzncpnKaw7stnmPzXzTGu6hNtlrriTHS1AP2MQOmJTmbPQLGx9JHyO7qN0c1Uo2FlZ5HE+qTlyB/o+kwHSCnF+yUojUDKDGUadKSSaj02NqZvCAeHRF79zWaMkFfszSXVJcabhiZjCp0tyWsA7NpThU2f8AylRpNUj2Jn2itmJ6/etp/wAR3v8A6zds4PlVRxtLxMNR3dSljskhv4KyrVY+/k1rfwVRhp0hXZxU3AAE90qvRba/Iu71BbTpDkLVumkXjzwmQ7ypkQYzlNpOqW2nrgKZLHTGmoWjD4OUVWFk/wBentG6NUlok3I1KNLdtzMvBU/1a1Zr2sbTMcXMrym3U6foXktupv8AEQnOsvY3VzDI/sGU687rJNq3jdhYxwx84rmU306ze+W/1BQdV3LYkuiVFPa6rgMEkBHy9Qx5wIhXs2oXfQeyE5jxDmmD8VL7YTXPpXEzrEkq2jQFugFslDe0WlscmovpttEJifUqmcXYRG5dU+uHEAp1rHNH671vKdU+grZZIMiPaQgbctE3hp9ap0XnjcRxc5Tr3GT2Tnhym0x/24keKbvKsvaI3Y1d+C3tOlayJgGO7Vb2xz6YmQTc3CcQAxwHG2faoH1U5jtnFW8Ng2zmEKVJjK1YnsxwhMu2emabcmGwr6LTbp2chUqTbhdOR0TajnQ0al5VRlKpbnzsSqlpdcBo7qqW7rCkDMi4ifUmk7VTe3xd+C3TKtKqOsnCuqOik2biNdVf5YS3k2FbTqOuP08KkKg3ZDeMu79FQ3O74m9E5tZlNjvp2rGm9PuQH11Q8QtoDGE8Z96a6/Z7XCfnRhfPU/Wo31NcNakfSm7xkU3G3eDITKYq2WuKeam0i3EAc0N3WuIjtIkPkk+pV2Mi8gQD4ryjxSdqJaodtLWuPRplbtm0WNHPdJ9VhNUXawPxTQWyVfTp0aY+iZaUwDzZ5ytlPyWnVquy51VstVPd0tgoDuohcT9mx02dcQ2N8/ToJtM7JsRYQRfTYo1CfQZXs2cNa5zSUNmNVr6fFaA1eSoveDzAX7o4A9SET8mOFljfWj+zl0CeHKqtLXWtfp3oiqeMHS0/+q4HcXS0/wDqnvAsa8eGEydl2aq9zZLq6ePk1HH/AG1tDg/c06bg0YuJJXlW7a5/VloCxS2ov8QuBlb+IhOufWa7kYDgqbG1N5za4c1WfttrXwPONumdFToU3Qyo61tR5nEolz9qqx/2qYj2lf8AyB/KjYa/qBQuJqUizUNjM6JpJpZ+v7Vxtpl3ZOdPzXk8cM2qt9r4qX2x70QTgi5pQvhz228Uak4HNdndEG2Htyc8lWM4TJ5mFu31SaYyB3KdopCzlnU9IUBpbUDWgAauynwI7jlbKbZOsKhYNz9o6BUmurQ97ZXyepVFSBo09nov4Fa6HHr6E/5NJe9/Fc3sieqq061Qs8od3jtjvKAbgzqqn2h7gmUmTTa1oBLdXK558i0XOb16Qi1lBl9SnczeGQOkyi4PLXu15StmedGsdMK3aXWU2HFNvZKfYHtaBJty6Oqe12QBg81Tq12vnzS3n3Ju8c++ZsaTd+SLqVaeQyjSY+AXOBx3pr61NzrYhrukfmmVdgbJi1zun5oB+RunaLd7W80SyI75OiaNnc57nS09Fu2ea/8A+qH2pVH7X3rabybZPZE81x7PWq/xwoZs2p5uK+Ya30p0sIPirmaF0QqT2tuvcRlNJN1R9wn9eCNS5gtPgqpOrIOOarVRl7RI7kN1TmqNH8h4Jja9SoC84tMEpxFeobWybTnXMdU51JzmgnE/eop8MdSgKlRyZrM5lbMymx1VwpC5oMLOxVJjFripfsm0nun8lwU9qazq7VOkux2TUHNEFAcNUuIG60PcVHzdpzT7+q4neTp+bMc1bZEHFrlbY6oOYDzlXAtLuk/mqsVA0jkCtoth1rw+Hd+vuVbaaZp02Zdb07kXuqMtE5cIEKsHWwAIgLZ9rs3hsEiSFULGFrxntLa2sbLt7OE0soUiAMF3+6awt2dkcihezZtPNR3tIDvaqc8nc+kJxoVQWwMDOea2IhwOeJv8JXBT3ePFdnJx2Vx05KZdMG6Z8MJkNcPOuNJXOeXA6gshHdEiBGidVZsVLaL/ADq8lAf0dsrcdntJn7M3ZtPmj7VSohglmp5o0WkciGxmMySmi4u6Z0/RVZsRBTPFUaYYd6ALnT3aKiauRddGkHqg5lMUeGGuiXDHXv0QD+zKoxyP3Km3Z2OfBEzoVvHVrXFjRa2eHPJB7qcNOC+ZDu9D7Ep1UxVpud2wqFI+SLPKPxjhVdp/aBX8oxtuOJCo1pie0dE6ccTfcr7cOV//AMlpkXfcqTdrtDXN4y5wgHWE8bPO5nztYVDkx1N+qdVL2ii9xAHPHejTouO/LG4PSP161VkS5q2OiA2m2qLiTjmpZSa99hc4u6DOqFRkCnUbNsCe+UZ1vJRFekXPsp84GunsTAWCn3NbbdI+5Nc8TbQMeKa1lTNXJfU0i1EDirMOXDRT1d/9VEdkqj4rahU0yYiZyE62iKrv+2QIb4oWbPRMfRpqmH0KTW6xZErDYrf9uE6McTcH0qgXy0Fk4zmSs8HDw1T7lU85kw1jfNxqjHMgFP8As9PFF7anlCAYAxohVBY1g4D381S3TuIsO7ugjX9epOpVImeIt5LgMskwSNUz9jDGZ7fL0/rVDlxKnXL2i0DJ9ybTomycS92VdewadoBbja6bSdZbbI9Sq2Dg5EFO8V8p3luBED0ao7SXt+yTkKuywP3hjiVSn5Ldaw1glbnc8ZxxJ1Glwtd5u7kj2KrS2hoiwlrt1GfGE7Ouqrlr3UnO1eTF3d+uq2hjmGsyeEN0bjUD8FtAiNPeqWxUqoDHUm8LjhVajK9ODAIZqVtbmtucamvTRRSqsfU859uG+C3ztoy+Yc6MnlqUW0dpFQHWn0HenkPN58yE6eQeP8pVN76Ln1HN0BJnvCoU2MsZdMHwKpmuKZgeY3id3K/ZaDqNMS4AcKLdv2Vod2G1XaEqjY0tLnkBrdOycLZ2Wh9UN+b6GVT2nadk3dA4sbjH3LfU9HHBVJ7NsrbPTPmsBI96d/xKrf1LDn2q7emq36RW9Y686lsIxwVdDOFcBMmeFVJKYt+XCtzI7k3eZYx2YMShVaLZbkDROawZ8VTBJBJ1GuipCk53CTh3Qqsx8FzzDtcQMJrXCyk3RvJXO0axcFB54YnPWfoq9tKrRqcjTdCvfQqVSOze/A9iuqU3tgdmMK7kXNVtSvS5cJ6cx7l+y7RTc7XLgC1WVCA0vvkuHgpYW1qnnOdj1LZgNTSdqgXHyBOYOD3JraL3X8YdbzynFxH2Qvg2j2WiHF8KnStulruJ0aQnufw7VFpaOXIyqjnO3bWl3JU68XnciIdzhVRRfu25czeKnRqtvApZDeaaaDSbW8yi+rwiNEOl2PUnGUxbS+kYORPNaAsIyVTp4qVXOEZ7A5eKpxayDDhqT0K4de5BzjJvBlUGMlzBMho05KhSrP3bHGHu7lvKFpdVbkTNmY+4Kq3zbwU/7OnrReyuZGs6wjFd4J1RNMuFvYI5CE5zQbG9ur0VrZdImXKlcX1ydWE+C0juVE3Ai0apnAXNGoReagneemOiqOaI5296c9r4b0Rpty9z7Qmh9RktbEEqsGA2wW5KeRHaVPZqTHVKrjxfkjV4nOc607wYaY/BbhrXbphgsqO448VXqtealOHZjQwdUQBJQ2DawKbGGDUkjGcIVKLQ11RskSeA/oKu2o0tPD70Hud/0Wts+kE5gG5MAOYXSTjC2gct/BB6YQp0X74HXlCqFz7fIRwtw0d2U11vkxwipOqkOZVyOzyVXH0/cU2nvd1YS60u7ZWzOJ1LiZ8EfKSNRnRMbSBeBTNs6uKpk1b3gWuZEWlUAfpyB6CqLmbTvtrrYmybeuOSO9otp0ycwLltFOnUuZEgTluuFQ2V7N5s1SmJ+kDOoKMuc/TmeWqZQpM7h1JlFrXU2uHKUbzTdb9eV2ILk4uyFTDcuTXU6Ig41kol+zM7yQjds4JHL9BZoWjuTn0wG2al2gQ/b9ns1i4yp+U0XcerTK7bY0mZW1moy99gDbURT2FtUdbJPuQ/4fB1ndFcdA/xUyuOkzwVBjPJVA0uqT3K2ttT94BkbzCYR8J4JPDhOjbCY0yuHaB4F35plagb3Umm7wUSxwPEbjCdu6TBBgxzT7W+VMwtnpmw2Nte1wk9IRbT2k8Td25tTk3uT67uF75c8vEKpZZa55zU0R4dgxjJT3hlFtmTaV8pqbRuSBHCcof8Sc93PX8Vb8on0pjqb77nc16fi2hzXQ6TBXjxJrdlcKdPtVMwQAOaqt2mKlZuGNaZI6Z6Ilsg9ydIg3M+9U73OHgEIeWv5q91TeNnkIVo1uGCn1RRfUEWgtbOVA+D3PjTki4/Bj7+oML/AJe6J/7iFP5MadP6EwpZSjGhKpCZhsKDgyoY0QG6RkqQwOnDmuVMBzt784Ydjw070LWBrWiGgJ5J3Y5ovaYcHSCr9pq7XvDkluirfJ61bInynNV3BhrYMsbrqnuY07OGibKZM+hMduSG78gVBPSJQFSodonME58CqwpM3ReMtPgVdE6pzt1VeX8mtRPG09JAVoa7GrlT2q+Iptho1T3F/EPNd4rbWXFk7RAc3kmPuuo6ipGPSiawpltU2uNujY/FNo6hujGj2pwLhPNoU97tVfTsZgCJ1718GOphupBjwQ2kgVQXThVjdYH+SpAtzOSefihSpUrqjcvrHEdyZTfl90+C3uyio8nzB4I0zTNCW2O5KtkucRJlbO0vtIpg+KqVi+GB4YCOuqZUa/iaZGNFFfaKwdObUf2jaHEamQuB9SR1Rh5d3OQqMAL7SGz1KYW7XRpxMdyj5bSiboTj8oYZzhquNsRGWrdVGEiJIZq4hUXfIH3uiZu5o27C7DoV26q045NCrG8mGzcc8k8DaCajDZa5oTfLufvH2tLQPWqjnVyGjsmW48VULKhqARy6ynWmLuAwmSKz3eK4aNUZjLlO6rNZ1XC6pP1lU2fZzbv6fbOYHNRW2/aJ7jhOFPato8ZVR1LaXPP0XhBgoOqtnjhpj1q7+jXUu5mFUd8lr0mZ6lce0bmm0kNDWyTz0TKu+2mq7u/2QDPlWdJCZIdWpfRdzKbZsDHSJu/QUv2Mt7v0Fe3hpXtAb4r0qVXGD2tchQ0i08jyTywWNeIIu1Cmo4F0akrt3Vep5eC1/wCqNPArYqFLZvlVbdgm1s5Q/wCF+T5+SyU/5RsL7OVtNbVFLdvHY7oXybZKO8rAlzpRPymnRnULj+EmznmiDttJ31Xr99bcp+WsdyTeHhjtVKZamOBmUwtouMjEA9E19TZnB8ajVC0VonAGk+tGKfF1cqjhT8bdU7xUNiwxqMYHP2Kq11MABrhEdxCrinbcXgcSFQVWUtqbjyehXycMse1oZdvBE9U6rUdTq1nDL36DvVbja4TPD6E4hge/vTDsuzNBHMI73ZrlU31KyWwqFN7Wkho1fCfDG0z1Bwto3VOSa0h04VMO2PeD6hB+5XP2CrTBPWFVjZi0TnmuGmDzxhcDRvDI4hMJtzadnQgrZA+i2b7uHuCb+yVm95E4V7bqOZI7KtFNlgPIppptAtOd5oU39soscBNqudtNO4+C2k3sebTjTkqW0GqabhRlvL2p9Gpf2DZnzpmUXkzMT60/hPNVeHB0lNa5k4iOQ1T4VL7QXEBcXCTE9fyVIuY1zPOkImOUweqbu38IEkXKrUb2mte4Kg9zQH6uPUqrAa3J0Hh+CaC0Wjp+u5bRTaJe9sD1LjgTjPXVWvcAYPZ9SaTDLpgORhzcjEFN+01Mnqn1Axzi76fecraKJY4y4w7ny/BMyeBgbBQqGlfSpUTf3Jp3TGwAHCNU6GCNB65T3WNkh2AgGVt1w3eKdvq7iaTBEHtKt+0B1vLqtosY57XuLXw62NOaJ+TU7zGLtI/QVHaHUKVjKhLXTGcfgqJps3bwJaOmip03QZHZjTK4yHTGgTjHnNJXpTfSqzn1d0J1UVNr255DcBvZ9yFlDaY84mTd+sL91rTzKh1Jw77FtRp3SCC3lz5qnY5rI/zHl96dZW4fNAIH3Kxm1bwQSXYOjZ96Id1EFbZ13Q96fMzqMql5RnH5t2niqz2WutgNF3rVXdjlwLSUxu+vgSQ6AgXAdqTC/YmhtPq9TNEcu0o39MCZ7azWpnrDkTVYKjedpT3twHZTAy60gWmcZVclzrYcTJ8U2ptO0272X2gwiWVHTHmvOqdZVrhw0RvqP3feqlzs8iwp/FbAJlPLdrfPBbY+CZBWdrqXQTxPnmq0uLwxwAJCp1KprPdiQxOLG1mAYNyFOg5rGscRcfFY+GabIxAKH/HmON0wqrv6UpPnUYynPNSmRpwhb17bhmR6FRJ2Rj4hsO5rZ6dFllXLJPWPyUf0lSpj/ERn4VoVPEpwFag+9MZVyHPDeH0qqXtsdT5EmSnBrDA5/oraH0J4ZVJlbaKLLRwhwkqd5sdQacKLcTI7OiLZkzof1+oQqcLGHUTJXGPKXE/giRrOVTjW4QgN5ieL1/7IQ9rruGAqjL4DBMlYIPCSto/wnKjdbaGau0VVoFwk5XK3Gi2l41DZ9ia64uOs+tMyZaNBlDid+hC4icCEJ+mFWaYFw8mQ3nhUb24YOzGpRAAeZnib7PzVS3htYBTxkmTk+xbTxFzG0de6/KGDbkH7lFpdg+uU+3AhUHAQ0skTzTi4im3h9vNO4mu1VenSpNqh1Q7wHoAg0va2pVLXx6MSqYqvp7rUMIwDKG+7VpmPFANDC2pTwHcsEp9SwU55NRHW33Kn0gr0FEWtdc4NF2mQm0/2em7sxblOmoGRJwO+E53ykEN1FirA1KR3cTgrjaG1XVQtiLRxNyjTZU5ANJ4kwdq5s+Cdz4gtoHVoHtT3Mc7HK3T9Qqdz3558lViqCWHs+r8VVLahFrmtnHNfOCZLSh+1N1tQzPejvpiwWgdcI26kvjHqR3cHgxrqqUalwD5OnVVt3wskgZTvFGC+2zQHkAqu85gz6lfVJtYbQE17tnY8PBLc9PWmCn8Hh10xDhy9CP7PSY7UNnXPgt42k1jmkZAhV/sps1BMB0Fv1Q7705wcGhp1Vf7YVJzdpDTYx9o8FV/agScZAzBwq28bcz5Tn1I20iydCRMYTSYc8iLojoqrbc3S0gd6qGlw0zJt6YKpl+W5lUg5lWJdiY8Fs9msPknraU0Ut07HFdPTknGrmndIDek6KHNYX7s5uI4t5j/KtlpU2XA1JJnoDoqhGxARjHPv0RB2cF2W5BnIW2kU7CGwrtrZXq1XaWHCdbs+0xEwg6je1sjtK8VPPGI/XcrQ6KeTlsdfwRG8kDnCqZmSmnoQsWP4rfSmtY4OdPFr1TTdrhGMDmq8/QPvCoyWta8duOyi81O0YiPrwiclrSMxhVXEXNABj+FW2B326g0ju8JW83OBMZ6g/igX0rstkEnIAiNOah7JjJzrr+KYOtRqpbzgqFx4vSrt7LQJ4m58P10VWC1rbDbd1lUoeCCzi8VtGQP2UZI+sFG+DnF0OjS3qnk1ZdmI07kd1VPPtLZnh0NbA4iiC8U+WRHL8k7yjOzpKNKjUFN5qvl3cGg/crHVx82TwDkB+CIbtTndkkO5d/vQbXOIIcfStn3lW7haPRzRuqu56N71DSXMlse1W6QE7wTy10GcR4IPdXeOWqe68O1wefMqL+00Oweqcbi67WeapOe4vO9yT4LYgBdNLAT6TZ4mt85bvtw3TuX1S4elbVb2oYPaocQ1wGmvOELqhI6x3pk8G9OYEkfrVXB+OLEZMQu1vAeib5Vxn9frwUAyJ1Wk1MaqoQLeMWeEoNL208anxRji+jr7U61wuudieWI+9HxQc2uYLfoaKqDVcWxhthA0hPFJjqkVJtHgqQZVZFNsADvk/chSuipztOMT6l84LTGZ66e9Oa45LgR6k60TCp3OHlALcokOba10OcFWH0i1Ugb21hTaS4deac1jTMCHen8FU79oROitDgQQ7zAPBFHnr7lTYMXSFQl9JoMPujoJVG6JeHnH2VTBFpLHknMzGE6o93ZeeGDLhyVktB3Z4mzl1+P8qoWmRvHZ0T2mmeQi2e770fo7ycQeNbdvAQWttHJUPJAspi+70JlN9EQ2MDuwFSpmjY7eDQzOn4IvFCo7wbKAOyV2s62lTa5vdb+aeYOTzQRJr1Id9SE39pIjpR9K4dp/yI+VbbzBwq9RlJtSmOF12n6wgwUqW41tDgB70/yVO0kzDtcpw+RQ/qKn5Laam0AAQOAHP6wuzWHSGjCltOqG9+Shhw6y1GD/AJYWyP2byocN5HRNcNkB5AX3FZ+D7R6ES7ZCwa6KPkrhPO5ONkUH0rZHFH6Kh7Npz9Fn5JzKd4MxFRunuTv+oRraFSqguFoyLCU4uNd1TnDD/wCqdBt+01VB5Vp3roNLB0CsPytzGjEUDHvWG1p0nd/mg5lNrmtGb9EZ2fZjGNU5u7ptcOipEwZeIjknnXihVu5H0f6U1uWfWhVt3eRkT70JY4xwrFNyoDrVPuWxOZVYx1ERDyqPlKAcBAIflEipS+0MFBjnA2uhtvJVqbIBcBxHlC49sh3c0qPlNVzQNBSXEa8fYMKWF8eCw6fFqAh7n28xFqlnZJwjc7i6FPtqDDZaTMXSqb8NHOeeUQ2wni1J9CfZnhg+KaSJh+iO7dszGAWmTBKdvWUS1uu7VR9Lgdv8H0Il9WmD2CDpEzCF20sY4HJnxPTuVao2rcBGev6wgXGeOFVLZB6jkhdtFUnkLZXDtDp6DCflxlwMlNrsDHeTGp5R+SDn262cJ6IOexz2790hokprHU6mh8xPDadSLruGme5VLqVaHPnseP5Kk0YqBrrvb9yZfluZTAWipxSM8lscZlpmDzhMtq7yJ9HSVEilTvtvvmc6q5lXiicuH66LZmh29BcSCOa+dYR13iOQczDStt30lxnVU7BLGURMd8Ko+8E28teX4phqU27wVSSCPOKuZWYzuUVNvZH0bkXN2lpGmE9lcB0jtKvULd7XItpU459Uxrdkp45OOqdfslCD3hSdjDjOYTt/sztDp1W1bPSc9mzmKnAcoVHbRXDyLrt4rd9tAzaOJB9Ha6jp53/kqtOtL3DDyfFTU2Sm0DtEt0K/Z9gpupgdsiEG1tkZTafOZyTXU7XgiYa1VmUgJc21s6Dmha8NLjqiXbdT7zcUf26k8gexTvb7OcLatkLJ2io3EaBNc3aWUeQ4T4p4+VMeAZMM+9TUa141luFOyVRSaDfgJxO1EXcJLmAKoXVmutxxJzaGKt/FHoTLtvpWxhu9n7ladoFQ68DpTNnq1S24Zhbx21OF2SXOW8ZWfB0N35pjL3PawgytRqqx71gTFv8ApCF1Np1Pzsaqra6gA8kkBynyTtczzKabKYidD1VKf+4cLZqVPZt9UsbMN5ox8B+bqKR9aF/wcR/CtoYaFj3NuEt0KoU6OznaKokut5eKG72Ph+2jGz0xOCdVYaTbefeoe1h7iofRZF04cmn5LtTGxzCpimDc51ouQYalMdZCs+VM0F0sTR8tp+Bp6Iu3lEmYtAhPhwEdFYcm5FrKT9412T1wt0GO3thuLgFUp5u3odIHcj5eoA7Lg5oynPqbW8Zuhp5+pG3aak97QhTDXFt03EKpu6YfUuxKa6js1wH0RqjvNkt5nCcyrT3YIj0q1tekx8AEulGd36EDVrQCbiJ700DaqoPNwj8ELdueZPn02pwbtjNdItwpFYacnJ43LK9UYaHaSmuNLZWADzQZ9yoUn02XCTweH5pgNF7jbyuP3rOz1R/C7/2XkL/Wm8Fx4rRMycL9zENHmo3bJae5bS00yzg6plXZy2HU2szzwEJtxP3d3cqe87W8at2wlkO1nmpOq4HETr3rHaBhMjqi2gd4T9HkpNV8H6LjCBuv+q7Mp2A1x1C2qrRy8M+9UmVHjiwCfcnEVg22pNtvrVSiHtMHIC2x4i6Cc9UG15Lw6QiauzN6j6wHVVtzs9Pf0yS4A9nGThEDLeiH2m/6QrnPea2u7b18UXuqDgafJgdk8sJ20b8NDT2iI5K2oWsqdY7f5ou0buyTKDNlq7tpda76eUalOra62SLe/AVW501A0znHoWzgi95HZGF8orbTDNAGdm2OXpW62qqXkAQ7n4LbXOaX099yRdRgUzFsunHoTK1e002uzGuveqFShT7LCYKoOY0uFmjNApfTLATGchOdpNhj0oDkVWV9drnthshvgEN18EVKzO+5cPwDa7TTuTB/RD2tbraO0iKmw1WHwlOtBpvbkXYQdUc0EO5ug+pBuyUXZHbicckflFIwZbxNiFc2MvVQFswJ0QG9vJGB+KFOhss5xjAPiiRR1EwHCdVuazRAkXRxNQNweJwQqBN2DpKZVpi2Dc0dEH16zuLXjhNbV3jqrj821xcfeiTSrgnszP4ryVx5xfn1Jz2PqMjOU0vNzsCVXi1kGZJz6FU3jpqhhmNAqNDY9nl4zUcccXipYA3uvn71w1J5EHojLWFztSSJT2VxAeI4chPvw08+iLqDi1naaTUgHPJOdUfeGkgllTpzTt0/eRbmIVM7TRc97x2gfzT/AJOxzRznkm1NobcbiNJTbtlZvOVKwSe/Rf8AKWxg4pdURV2draokGmWAepPq0mepCoNRlU6xbBOYWz7iabi0t92PYrnbXY2J4k1r/hAXxwtjMJ/lyYPqVFj3XPJLpTnVMAgOjJdnuUbTsz9iLuKkXHl3ynsbAD4k9Mp1BtLfWiLmzlcOzVqeMgE5UAE8TbbtRnVA3kgy6Gt5SnHeCG3cMZMCUHXTxBuPskqszW18SmnohUvbE6c0GYe7LZnplFpGkTGgUHzVtLndjd8UdFRexvAcQqd1WXGm03Uqcu84k58Ed4LWjGOfetuLu+ZRkdp34qsx9NlQmm4Wu69FZUfa6ZiAOenhCB1X8Q9yCDbqbRdz87H5Kp5Q1H2gRuwGHGXD1oukY83mtopECTRgHojTpNDKt3zh0HJeUc1naLm0GzOsCfQVtL7QOF5hbBUuEuER96c8vpjsywjx9+Fbk3avqNhw7vattA03v3K2mAG7txfc62Xciq7Lt7xw1tvY78+BWzzPZd9yp02S1tmsSVRYHEsc7Bd5vgomRDB/mQb3FVkzhukAx/ChRZTBrAR1DU6pTdAJHn9eaNV7jAzO80yrH02CpEB04Ka7/wAkexXBkvunCAHlGWF89PqpzXM3TW85HF6l4vVU53ruCOUKWdmcZymWXmu7WDyTm1KtjOK5jnm62eStEUwT5xwEGiEQNntcGkh4JHthM96p0mNDHGBf3IueRaCCQRnxTqTaW8c4OaAAfUnm4BzXY3eAE9rxNSIvX8SripJp/R6lbS9xLsGJ6Ks+OLeRPIBCheC8c7TDe6U6qa5DA03OLpJ6LcwwOGhcIDvwTZAuuiRzVQdU5lBheIJfBI5YVVldzalIY3Ye4uujn6VU8Wp9JtVoZTgw890KN7Tex7vMzKvbh1zoKYar3U33SXHVAt2dwdbNpAA170cuvGrWnsmdAnbx1xtJXoK2d9OnSy0C4wLufo5rZgzq84Hcm7vhcMB7uy3vhXvrzUeB2uvrRpVq97mnhcNR4qk6cbt6G0VHjaKx4iAfd+KDHNO7JhhcdCtpZUdeW4n1KhtDNm+UE4cLdCnf8NjJHzZ5KkYAcXtmERM2HHcge74nT9KFPTPsRZrHFC4HGW8wfWpmfFEuMzJW1U2us0JJ6Kix8XNOLTMqpXe5jqrJY0dGj7+JGqRd3ra8Seidu42dwIcJ7J/BX1qF5aDZ9rqOqqVKNAhp4u5TVNzonHZ1QH1x7lv6GQ3JpzxJkODC423OGitpHyThjr+sIPHCAcOW08YbFDmpLabg6HMM4Mae1U3Nte8kgvnR+uPWqj3S3yZJ78LY3te3gbhpKr06sUqTI8m4cTnHA96fLWMY0nsiBK21msVR7lszGt+daWXOMWg6p7RFr83AzImVRZT7dr4Wz1XRg4jQp9Qtl/nEIMcOwG5/iVPGsqqOaYGSHWtiPBU2uba7onim22mORqW8VwHXorXVGV23Hd23cPrUAcSa3pUnKbTHbc5UqLHOvqUy0CnpOM+wo0vOBzLe859qgnIqKrDb3tbIEwncPG8zBCpvqU+zbwt55lMkSXcXawHdP8y6kryg8OqeN4apqv5ns9yb3KmLBr2lxOFPTiInnn2JxrVQ1r9WtfqM8h6PieLPAgL+NW07LNZLwPYnsqReG2tgh3+y2i95psFQGR4Kqym87lzIdUtyAOYCtdUqVId9OANBEc+qq/KPJkuN1uVQtcXtmASqqtawucQWB09mRGVVYOK6YdygmVUuBaeHBVZjicjAaYTWzxzc8TJn9SgabS51ztE11YlzwfPyVfc51OnDJcDrnPtCL6M3zw9SqjniHBhmVA1IVKlUnfxg26ePVbGTOb9PQm7gF7QQRd1VPy7nS0gCm3PaP4IDzQMOI7XetnAPmvVTZqzTb2qbxo7unknUtnEA+xVGOPETKuFzju/mx5+mE+3ZieRmwajPJXXF81m8R55UVXsbGhloICsp1WVI/wDI38UXVKrfBpBlYjtJjjEA+cmGpUbTqc3Nc2T7Uba1Mjueoc4Nb9K0/gnwQ4xqVtFUU7qeGl0xCzSkW9retP3KoNwLjxxvO/xQih4WtW3Vx5EBwBceUqTttJoHMmPuRHy2k7+L8lb8pZp1Cm8Oc7GSqb6jfODsc0xwpuxzwt5unsfrLB+SvtdWcOVTRQaWAIHcq9Wmx+7YyHuTW7neA8gWlXbt4LDqTKrhtMmQRrKpN3LJa2OMT6FFfYgbc5e0ojdwB1gx7VtRrkN8o0iSE11ba6QcBHemvG0U32frmqFTZ6e8ta6QAmtqbESBns/mnW7PZ/CU972WtdYB6wqfc5VlTsBc4tbEeCpA8Lhgh2E6k4tAwXvnAaMp1F3IgHMzAwsCT0TrxHGI9qDSRvL+kmFds+0EOZgNFN2n6JW92h8aDsOQDfpp4LrS5sYBPuXla+BnPA4eCNm2Uag+tVE+9CdqoEf4zfxUAsdU/wC5vW+6VlzonomXUyGqLru9CnV4sRoqdSk6WTMVMck51Vzd43s5CvqHeSOy0p7Gw0aAWoOi7ykweeV5J2y02x2Sn71lKAIJaFXvZvKZdBb1Ta+yzaMkHVvXxTXbLtF9cw11re3IR33HWJw1p08VSEQ0mQqhKh20Nc4+bErhqj1LtXZHPwTa1OoW1D6IH6KdXc+XA5x3KiHOzGQPFBxqCm861OZTqQ2ymacEfrKLpNSqB8508FVDagMtwOaY76KpPeQIjgLTotg3cdl/KOSNSnxfVT3PLBWb2WkaAf7o1ahFMaAELZ+cB8pwqUS63lBcPSjaxlJpMw0QqhiCT6FOQ3dxcBovlNQvsebWtIy3T8ETtAtpBxcG98GB7lDfg7eDwTbfgQM0zCId8Hva7r0Txu3U3aiVtL68l4jdsHNNFXYiWRxeTt5ok7K67uu/FPLWVaYjhGVY6pwOGb+S2vZqNUspMdvJbzTrttrNe0T20yPhF+80AKDqe0XWjAqNW003m1rILs+hRUqVd5GgcE5ja1RxHMZHuUUH98OwpD3SOQW0OrD5RUbThnUlDd7E5/DAkYXlNjAjvC8psrj3ASnbzZHNBTtkoCxzxLy/uRu20t0+byn06e21KrgZOiLt7vRqZCNZ+07lhyeQhNdV2+oGPOt/3QnOZXqW95mVUcWbyqyrnHJZ+DKVUu85zED/AEY3B0/QVLZ6bRs7qh1AnRMqH4Sfac9E9/8ASD3g8xBVHZn2ugjjHT9BeBVfxWyuf2d2yfUqV1RjXjV92U62qbOUAlHjdJ6thQGifpHVOtkcQwVsU0W1azqQLrW3FSPgzeR527yhu9iszJ4dFWhjW12sJE4ytmDaLK21EyeGSh/wMvxpuMH2Kf6BaG9CyE+fgoRrywnF3wdqOUJk7KaZ5ktQvpUvRVVFlUbuX2uTWmlvC3vMLyewB7bYt3cQUI+DXPg58nyXHstp6FuE/wAi1gPUIGiIY5wICpsFI3t5zKfSDCHAcTj4plQOFOk/i11Cbva7T3l7lFJ2xgRPaynUiKWurZ/FPIqjyfm5M+lVfJb112iaaGwtbHdKfdsQbIjT8kadSjursSrPldEVI84J/lWA9WJlLZ9mNbyTBLG9wlQ34Nl3UsyhHwVzk+S7/BOFT4Oe109qNFBpWO8FXo0IJOGuImBKaKnww0uIjdxkLZnCHOoscZhNu2YO+yQhdsLg8lA7t0ciuHgDmkCDHenmi+rZ9rl61bUe4+oqoHuJacQqZAqUbQLuEkKoz5W8iNC1bO4Nlu+bJQbSY19SdO7Cua6pnkxuAizaWXnvwQmuEaoNfMd3oRpVKd7hylGzZ6ZbJ0pdy3dem1redoghXUoiFtlUay3VHeVIL6cSdBon+Vg9CPV7U+jcNosMbwLb63TOPFC1rWMjI6p9erdTddFpMTnMKjUp7QTUPZAyjv8Aifpd+KcTycfcg6sWFoHZHad3JzqbHso9qGaIGpTJE6VBrCvFMNA1zoVUMw0MuK3Wz7SxjTHDp4+KdU+Ug1G8hjMqpd27Dkc1RZZcT10CZtG07UXOqDhOk51VWg299PtQeXgtvNRwaC8ZPJPaKu8aNN3lC4FguIF4VBwIqAX9lUnuAZT5NlcPPUKpUiJA/wBSfjkqv65KgTT3vkWwPQmHZtkpU3RhwGqsdSa3MmCuMU9PpSfegTQabcRdKrMrUrOGOqve27jjKd8nZ5Qu7TkTXpy0nwyrm9lzsKrPJmEDWLYnhGpThslJzgJ7A9al1Kr6HTylBlVjQ4aVCPegIAz5qY9zTA6hXmAT0QeW40J09KbS2UC5wm55yVmqzU8u5Po7VDurqZmCqm74qRGHID66uqX3vuwFU+TNIpObdlMFOq+xnBDFdU2p/sRiq41NIuAHuXCYH2wvnS5rk64wF+ztqPH1RjWE11anUZr5vTVdsVKktktMqm6psLKkjD9PuVWtSo7oNVENbcdM+Ks2Kg2pVbl9QD3BOhpxOkE4R2fa6e7rjGcD0ovDAI9Kc5uth94TKro3msqns7DYazSOEdIQc7aj3IB+2m/6Ljn3pzX1345KiHmdSuClvK0Dgb1VOtt2y8FQ6jzUNoa0OZc10dco/JQ1lI5iUd4KTzFpua78ExtVol7w3B704DsuOPWm04a94pl76s4cqRNrWnNo1lX8i9GmTF8iQnB0jqms4XuhznVJnlp+uioO4Q0gGxus96LZ80ytta51tN1rXYV7GipTaJk+xM8qSd49w14jGkqs51MUZ4hTnl3Lb2nsuwfWtzTyHGGkqlSqu3lakcWwIEGfHmm7i1+zt45dhwTbtPvTut5Vz3Fx6qpb5d7/ADHZsGk/roq9AObScHRjtVBzXCSFtQ/8OT6Qnnd3OGGP6FUjaHPLDfTntGf161WxBAK2IAjeOwB1UVSN7unsIZpGNFvGmaQENHRfCEfTCe6q0Obbwt08VVpCwWuy4au6rY8XdrCpN4KsA2t5T0PrTGmGPLp6n09E5n1B/qU933KtiR+S2LFxNJmOqZSoFt8QXtxCc5pv5m50lPqOLLW6nRbt+WzIdzCqEFvLRNqXdh5wjcA4DAjx5qq0NFzXQ534dEeYvTmtMEtGYmFc6XHOeqr1GtmqRDWnl3osfUPEMKInwTcznToq4eaZBacszaSdUFSLvm+QVI2F5ZnC3m8l17tDkjp+uiqW0zTE9k8k9zXAN6Shz8p96q0ydyWjtdSqhaHXxxPd5yuc4horyQDFyt+TsOztglx1lOa3ZqTrqd1NtvaHLwyt3Ubwzp9H8kxtwOZx4KoUd35XOmtgVZtSpuzdAGl4T/tN96O+2l9OmHwGdfBNp06zqrHNJ+r6FSbTuvdyB1QFSQ+mdNcqaobTaA690dkck7d31STjGSqgcTlsmfFOn6B+5UHU6FI3gCdLvw5rZTgtAqaDwXkQGuJgVHaDvU1Kw4ok6+KOz16u8c3QsPZ7lcNN073pr9nLqh13vQ9/RFtWm217jy6qowZgj3rZdla/dVWfS0cO5S+sCczI78KgG5ArgSDMphry7Z2utAVUUqlM02stFpgOefQmHB2gmXRy8e9M5cSl2gDj7EK1dl1I9poxhO3NVm6ALccIudpyUu4tq6t+9VWxm0mVtYpglzqjRhTIttyHjC8naazBvBfPbnPPot+8lzh05BfCAcOF+CnOpE1hGbRkKpvSXVSWtF+bWcwnUqM7i4uaxjY9yiobHdqE/wDxCrXNA8VSoUnCnUxIbIgDJKrb4NqXcVJoJ0OhQ4uDotuDcuNED2hVaVVsDtNnB9aD6Y3ooEMAc7DpEyq9R+Ja5xMarZya5ouZ2YT6u0U7zYGsqFog5yqpktoSd2HdF8JDvaqe6gvrAAScp7a4BZEtE5OOXpWzPbyL4TjBjDnh2D+sI2NsbyXECDaBn7SHRVo/WFsQGposTGOBB71VFLyJc2N4TA8FXpuD6jLuBoPYx/uiNE76XPPeqtS0OqB1oB7wtl3RDq9SGzPF3yqja8GmOKmQZJxy9KPVr1Ufya0Soc2RyB5IUGi1zjaMayt69m9YRDQBglqLxwnuTNRnXqv2bhu4c6+KCbVtlgH3qXUxUaRkSmOuc97SKph4zM40ReW2+aGhXHyctnvQH/l+9OqauJ5Ap9W8EPaMc07eU963e9lVNoa0XMOKYMw1U6Ro7u+jkt4be6U7hp7WwG2ZKpcNvQRCqdZCpUafk4y8EYbHNVxV8s1/FTaByOhlET/1GYVSjLJu89RdNVoghuGjCpMp0i9pbk+lVKZBybg5vXoVRqGtcaXBUDW9fT3Le0m7jpbqnF4jh588pzWiXFkADxCpMqhzdqAwS39TK2W+ctqeOoVtFhqU5i0c0ZqWdjhk8Pq+5F7qW7u5/S70xnmmmQPWnGg7e035A5+nqFbTojY2EC4xBKdS1PM+lOfAtEC8nTwVKCazLTI0vz+vWtn5eWGEalC55ObSNU1hlpa4OgjRGpabTq4rn28ygx82GZjmrtmgSDLC73Iix7YdMRzToaSdSnO0ICqte6LqmQFmvxYGhx7FTDq8tunDHCfYiyl833FbU8U95NROs2Z+ckiP/RXP2V0uzJj/ANU62i5o0OfyTuCHELjFvGSQUb3cP1RkFXUDvRyIwQmiuRTaBFzswFFN9ztbittEG5zAMeITBtbwY0JdxBZrfKGdxAhVjOocmse9jXsblrtEC3baLiTyaR96M12E9y2k1XBzKlpVPdRQqU9DP4JjqtanUt0An8FsT2kAsJJtGi3VSm97IFuMIwx4+sZTo+iMx3poVVbBbruWKJz0cEyltDt3T/7jTy9SqbRs/Eas9s9j0IjmU8P9SzrdGqD6Uua04I5BNlvzbYkp2uuqqm4NMCCSmy5rY0qM1WagqvmeFwWk+LgpMmp7E0XDVNcI6wJTA1U27o3Du1QcdkeHu14CFY2i71ZXzdjurmZ6qpwAk/rmmUrbX3zBRZdQvqNzcFWDC0gCSG9F5sb0yXHlCbXpPZJ7bOWq3du7yeM8sLgq03VNbnJlr7wE8qN5xfZJQO+wBA4eSosulwqhG2TUM5GVUqG5tSDjqtnLq4Y8jS4BX0n06ZnXqiwbRQDZ1nVO4mmtHzlw9iIBvFupQcGl8NOAqe0VN51ENwFsz+LFF3aQfs4nGWkap+/FrqpN4Ljwxorqh3dFvZahaeFtJ2XFGk1tLHO780DUs+0HEpxkPAcBMqXt8g+BeRomnZ2til5JlxORGpTRLWuY41HHuCtftjWEDzmAymg7fQIJ7RpAIuG1UxHRoV7Xtq25IBynV6m0bgNdGueSx8JVW+OU6PhR7gM8bdVdT2ukZzkIxVa6eQKpU9k2XfbQ17t44dZwo+R0GCD57ULqVMxoN4CvKbMBzuan0dnAZ5Qz6f8AZZ2u3P11xbS7rzH3K1m0O9f4o+XnxW0Vtpdb8mpjQ65QbUNRonFjzKNterdHOoU39oe2dQakwiL3OPWVtFNjX1K1e14EryeztZ03jk5tajSJP1kN/s9lOPFNfUqubiTxYKFSqRadMuk+GU6pRqCzzS1xVY1fKvFSPQnfsN7j2TcZCxsmIXHQuc4QABz5QqjmbAyI84Li2eFSoVGPbVnzvuQIVcL4ML+zumSmTMgfOUmkuWPlRGk7o/gsb23vYobS/ijKebSDhUNpq7TUpF/GbXABW/0jWdHhCE7c5zYlxa7xVZztoNwZeO9U6jy47Q7VrCgfk9aofrE/iv8AlpHrT7dgc1x07k79lc3GA1C+m4eKMif91sgjFyMGOA/6UIqPHlfpeC+cfqfO8UZcTjn6E7P6lUo7k5ORzzRkAqoN46LtJQ4j60ZMquYE75MxrTH+lN/xT7lWwMVBHdlVJe48HMp2SqB3bZsHLuUOptIzqO5VfIU+0PMCMADPJOMBbZBjA96jePgHqtjn6LviYSxpPgtfOKr/AOCfejxH1o8R7SreJ96oxjs+4oeKqwY8m/RDAR4B6l2QnRhQcjoj5NvqT+BuvRdkepcPD4Lbf8Vn+oKpBIyR71QF7o3gGvchwjRbf9pbWOQpyO5XOJc7qfSnNnh3Zwn8I7H3raQCQC4yPShhaBaLshV5zDB/rCqd10LaLiXZGvpVYnJhyaDkY/1BV95xxf2s8ltIjG5n/Kttx5yzRYf4VimweAWxfaVKeZyriJMaqimeH3Kuvgz/AAfxVKxxZweafBVZqPPFzKq+BTc/9Me5bW0iW7l+CmsfxNHI6K7c07utqPA31KrGPJuRkTjmnRSYP4UDzuKyJWgVLC//xAAnEAEAAgIBAwMFAQEBAAAAAAABABEhMUFRYXGBkaEQscHR8OHxIP/aAAgBAQABPyGoYsE9g8Mbb4C1h1zLo8UL3JveB7jKR/G2alB+DmWyeuPaGlF6tZivRqMQeCPIYNGhDeoAg6ha69oXfGp4HFXxLYONQuq5viOUB/jiLLrOobgGZgrR4s9od1FBeCCAbA9sso/qzatkIu2KD95SCGRH2jI7JtrjqRJA0N8b95p7ma11e8z7Guy4oXLwShVQStVeVh1qw7xQDFTHt6ymYbyhek6Qocod24cjuMtd/PvLhr5+xcAN5uongmFKOZVj2niOfFXTtKPmg28znsR61eYhd6DzjMTk61feIGwliXkvt3iieRQY+YvdQXNz+5U00YMszNzOY8muiAw3SX2H9UGFzdbG+kSobM7/AOqdOGqifEKLqpFMwbrdmpk4lkiqiFnlSBKzmUIleqoI5XUZYRM9MbZ0CiQflXvLdKS2vfFSwoGhx5VALL7Zc84jNav6CZLR/h5jqhRgIGb3HfYAe/7pCpmwCOd8TOaLSHfVveI9GoZ9GNx3dT3zMuKdg6RrTDg8okz4oUmcYi/SskhRyvvMokBe0vPMqxy5mhwVEOGsWvwnUEXeahagWX3mabOqDqqnVhQhWtoLwW9pmhmwu+mCBNZzt/H9cesV64+EWyDm4uLxY53jHrFxJMPnQ9Zp40HAxibRiW3f+x1WO57zH4OfK4xHe9ZAfo5gBG00q3x6TCW50pQlracalFQDgUdcWEcWKdhCARCqnmgFvlLw+6GbjxYaVYdfxNLwOHV5HMUUBejh51mVzfJLm9hL7qtul3FyAc33jQU3fhChjYK7Et+ZY2r58IJ/XWdem4Iu1ptZHmbgftU08GdYzcs9eyNHvAtgU0d+sDf1HjD4IJlAWjqvpZuu8culAqeusHHzNL9hA1s+Xnia2Q7inaL5aUC3k0zWTssGwZ79YjWQYCyGJlvcOKWLn1+eYAYoC8/zMIEQluYwMZU2a9d4hqumVlyzOkAWSqrONWPedTO3a9a27jmtPDiCq3rye0KE9HEbb6zEdHVs6OgwScFA8n3nKprChV5ax8xQMbXV4y+GOZZglA0O5GZU3qO3rAXCNVGksiyAZ32xHQwgwSbts128xUdVbVzPBxzfaXij5CvR+kq3bl1h7SvsME0bM16H0lqu7rkyHYsxKqH5M3bnK8GZdx9gM9FncqA7vxLtW/aLN0/lDOMqUMY589JTFYpyKV0NkM9bNCYrpu/iYLGskR8vmWXKzi30SA2pmo7vJ6Qn21oAEO4HytA7W1efi8QROzpha2rpxhZWLAyu4L043KI4NbHZjt8L+8peQDxWhAiZhLQ1j7Qw0PWyOXtXqRTgSnFRa56OJlh7B7o4qGwyyt4BntcboC1PqynZ4xbbAR5Easn8Rbcizd4PE1wxo6HHzFGMl2Y3W3d6g0lGRcPTvG177JyjzJTk2/iNGXgYNASzY0sskvqcfmOMG3AQuDx1l9MNWnaD0yx1kwPu7mR2wIPTWZc2156Co33rNOo2VjUBl8HplUV0BBQzBZa6n2/2CB24qlWbc5hobFO93eSOhqy95bXRr6jv2ir3mYsr1a9JbOwBsHap9TzEEGqQFHYd4yVBo4KV8795g3uTrExQGTPp0ifEtgEOQE8M6MFgpZ3grATL77IH+RZzeSR0phfkhMRAAC73Q8y9q1liOhVquFux8ThX9i3LrjDUoXZ2Viq+49I2Bqq2+Qe9dI5/NtIKDJIWK0Fb6u0Fa+eGWeDeNqDZb34ag7ki8J8pSNJXfWZYDi080xaXwKO2WmDdQFb5uMqWVDPbVnHQzLl7k9Bn1f7CMujZNTmWgCkrnr9CR3Y9L1x1YKVuULEceSMj0CTWrry8SpXkyIV4wXnvjMM6yhvPMvyIMXJhq37TGWPqZjsELkOv/IN9EQB+7zBS0AO4D1PHrB66HmXrWw0sS9K6+kHhULLFfz0hHRp28Cw9ZhKnVXl9EqHzEyly738z+bvG0luv9pzubmtvZ58bjW6mAM6Y2ZOvUggzT6qL6OkqQYBeJzH1h2msd+ksIcuZejfmBwZCObdu+vzMiUIbZVNntnbrikX8mnSYyxRYHqly7wSaYK4Xa+1TNIavMHH7BEr4xhasDC3da+6Kl5uvtqm7PLTZBY4bXL2nMxnIFvUzc/lytxzM+WBdwghD7yv52icpRwygfdF9DIOisvXfee6wTGz0EekRRKxlXyvHLdwlY7duZZ0hjvi0VupIXaWq1Z+IZrDsFq5GqrUug7w8s950J6HaY7spQT1ikDXPPeLl1tBRc6b8/Me0vN8gtDd7z1lOLqB3LVwwkjq74lKqDp62u4X/ABHV0WuZ3AueB4zD3888ykS+hXfqTf2JqIKwx7Q0rtPYi+QK+SCSqGDznJOLfWY0qTbs/rjbYpOAwdOi5vm+kcNQ1yQui6o7h6VFTcrjH0xlUTbpBTNdMfaXRHlQUMA5eriWzYpvvEvTF3VnQ5eOkaZ5PiHUsp7Swa2qj3f3SXSWLQ01fStxq7KKUP6pRcDW50xKrmHFvw7E25C1iIC+MkUyvUNB4z6EouAXpaiMFr0ejLpzOeqaFeC7y39o+B43cZfSDQIEKo7Grzy95kDn4lQvwiSQVvrNnmXtual6PaImSGMdl2TeCU0B0230gk4yg7SdKMRU27zyx9oPB9pLZG2Cahzt1ldekw+bRflCqzLTRcT1H90h/ROgC+IO77BfEABGhe2pZAgqN4ZRRzk4OvWcegZLlyTqrB/2YrEo9EHKlXffD/ky/huZW16gXl95s0u6cz8Nyz8RbtymnFcIGY/IDm7edyibPOgzqbzuKu8H4nFYFrqEWzrG7JBb8uedwg84IK70XBHnL98dZa6PCsXt+Z8qBQHtTulbNaumBss1iUWRHtdFpvEz45FDqG6zlzFfZvNrLMorFnUUk93fmHKrGL5zLWmS8oUWqXvaZA+kGHNd7mcOlxYZe2S4x2pY0LB023fWUA5OQx6RSZYcTcT3RVXL+457enhivCfMMvCtAov8ntHNMqMPtNSEWLiTABQW4K/mHQwNQ9tY5hby6tUbLpL1vglfzA5bSKHmYA4azHGhahb/AKhoMxSqBMyDs6xHy0ZNe3eOFa1kdDTTzAlr+TPHHEy3C3eswEi9eN4llexpCp4G30CP5c3I0rbmEDXYEBb0tpbjeKzla8R243+b5ZxqnF1udQNri0EuI220iJV+jYae0OCxBw5a11I6qy0sHJnessyIE2RupXezqmz+zDrCrVy7zcHlbamSt6z4nBQqsrXbxGVAVaB6RWHAbfPWF0bV4YdWej4D3sqWQ8jaO1X35lFzzQz1YgApR+U4QBliXNg5dL6veP1OCQ2utymwBsinZo/Mqlothc1QXr2iqqzcnF6jBN3RoZtiMiUy36JDvE5aY1ArKlD/AGZZIQXCrrf9UZs+pLOmYVGK6r7ylXzQC3+VO5wSyo6tQbFTnvv4l6BTKep3GVZCXrXoagLMTTz6zdugmBjtESq3gQlyraNda76uMJ+iq6N/2Ia+R5xw28K+8Tk8C8OjcLwaV0SmPUthOZ0xKx7unbKS9bIapvEtHrXwY95TBbM6RdQgqjd5li5ACn+uHpmoAOnTtKUbwPMcy4g19MP8iKqYl3MfaaBFGjn37Sxt5fMVrKOvePX0V4Y+pUDnKXis6l4oGzc8jyo7YVAwOkz3QBwwtXWC5bGgA+wiVCDA0kOrAAe8HVx/mJNcmFTy8K3PiHLX4NXUylxR8NtX8xAg1yjnhI5WHbSLuDsRfmWBHRYzRZpyZhFTABV1l1DBoIVy6ISe4sd39IjFN0gp5qNchaMRXGEqnuh5r3lWz6QSdzymLgesx1uMyoety2WeCqjWynrLuW2Dj3f5h8zOAkFDgZXJ8yUY7LuWXUWN95tJKyDajxnMYirL4c3MrBzgtbodQ8BMGv0eGLNXgFfiAhegCU6Sb0NkXube46Ny3m7ZWtjjvL+Q6bxikeQA48QGlT3bxB2zgAemdviGCbYqrjJfVl1VtZL13ySwyE4Sy2s0Zy5+IFZS7B25PWCQIeKT6QmFjwQOuId4S6nkg+0RKiR4TnEGlkdS5PZKJesYMs7Bo+4TbYdOssxyqVW3/sYzEd7gxrqRrKTB3sxcMikTqauZI/DV5nPdGqgTapaG+szQGF7o4lBIYhxjeO0oHrssMc5z7K6TAWCQtOnmFXNNa1S+JZpXL1VDXDVhY4Aq40FLRyG2G4ZDIIDum9wo9WFwx0j8gyazmNL6wD2zmr3Dbb2BINl7V9zrKHsULTo1Fc6tzHaFCrwE6aAZOd/Ymk3pYYDr3gBdjkYKxqOV26Idbr1jGmljOYdp0vMTACq1O4tvKq94lFHq1j8qlB+4x/BhJMzYni6lq63Y/mkAEWDNnHWDMw5E/kjMzTEyPvn4grFLToO2IpSHoXdc6wxKmxnlUCHTo7rjTWFazrfZqWFhNUY6+lcQRvSjWArAbEe8siUIfQLWrdvaI5cLgTQHiFLQYGhiBbLcFeTi9Otn5lrsL3YzIDywMHprmjIaO0zp1aAC9Xx/kfWxjBbO7ZwMuTzVGFoNro+8ANlyjHY77xF3C6h1zCxJKNYgUxGJRop9Ts7QhP8AN+C89tH4YIIpvWDKJ88DpVf8zFE0KWyr21ny7ROlhXCNLwBcNOfM6aAEt/J9ovZeYy8DHOc9p3qFZJljklNsW+GjURLyFTsshA8RqZrIN3j5gLgpLjkb3dZ6RGLoqsX13rMFdYb4aYBv0J8oYNeS9pfrOAdvt4nPcjZ/ukpkuepavnmhI24g5ZaGDmLvUWVxrc+7Mu1aHDZ33HWKdhc3hSBlG6eoHtLqp4qQWhn3CFsuI5CN+cPtH3psF0jPj+zK8tMTRuqDpUpk6iotuVU0A2iSs9haKw69j1nEs274P72lgXnE5jTpqHHzOi3ANj6GcTuxCgfpvvK8itky0J17RbiwJxiJYb094OFGd23o6194/AVchuV81mU5gbKh5OsfGpUiICaG+GuSukQqWA6yOe0Z7u0qNWC0c4lsMHMD7QkUN6LIV3pPSMowsF1d1ktx13FN+Qv1/CLpOrDGLKUl8VrWojfZt2ZG4y9hK7WtnCI+YqPjOgrdFVllDBxVTKcvpujzUzXZ95Ur3XFVmEtP6xtFpmIndEKoFeMvxGE7FWdOsGVdTxPgw7pWcVng6+ZbaQXz57xw6fht3VQIzGmwWvW8zJOU6Mlt8IXf+guRPYUYWBwli9cIcdaUwdQ3bMTGhQ8rdqiCyi/kOWq2YdSb9dFLg3Siw5947JbhcGb1cDiTejlx0h1Lw4VetXde0ReBwqvePQWxUFZVi3LKm8YPDQQXYlXUBuefBLUtWi67INECilOjmYMvrOsS6spu9tVXlmzHGb5szHnL1ube8oJ+p2duVkF+c+tMFeGuZm4Xk1whnUUwy82wd07Kj7QkQT0defmbT9cu9mRjTxM97Qqsv+ZSquWd4IAYB67ls+YkNZXEbw6sjMGl2A+OLeb8wou2g6I/uWB1U35RRccG9xRLVbu3nZ4jav7VqKvv95tnM1lil4wXjvDThNkdSRpXbTMvVKKVlAuDXSWkaEb264/MQniiI0nVZvnmVbI4ZCoubaDGOekx2+hUnYGBcT5EDmKoGjW7lTlVsea+0HJMVMOB4WhfWAeYa6coeBcXq3gFzAgdkYlk7Ow/czFAdQ9fNEvVbcVhguGKOkoLTxvc6znUGhylxziavb94CJowXNrdnJ6QADYK5dO33EPRKyAU4DGQesGDBSsEaeNekaD29SPWI39cwxLeeJj9CVYOkePaDuXeLP4D4zAAxtUZxzbliZEFz6opmHYt1/2MABwz5sOZZqV4Snz5jYLoKmL/AB7xK10AFIgC5WfUiaNW7nCPN9Rg0dH3hAKjQFXmZHBTjbUsFXLtkg7FfXMFN/MVLTo0mc54mDpdwOcX/a9Dp7Fc/mWQlmOXysw8KZq+WUEThYVw4vzAKU72SC9MAXT2SufSoAlaOzTBSD4iusB936BOtQoVSnjwNOYvLAL8Q9NzcX2tAGSvSY04Q0MCLa1Vot65zqtRbCGNRW67ynspV3WCgL5dmoAL3HqKvcVce6mJTfHLzczAunQektbJS6gvp/bmLBGnjcy4sruqy9/8lm24WKZ77qVEWOmVKJj2OWYUDlbxMZZbkKaYNTbB6qg+0pLOJbim/wAQbvtbfNs3GkHg4VZe732jnZYqmh/fEti4Y31wy6F3WsLf+Riq7TL0blGGJllcb2xhhAjnTkUfA4h8QAVw7GptTVcvZiE5FsejD6wBbDtce9Y6KeNn+xFSwDN2vmBY8Mus6pGys9ty3YOOfzEDCLFWifeiUYGwcDq9oUk0xCPQK/MzTI5bPMs9xYYDRLHgCyhwZOWBoOimrbKm74qUG0A0PsVtjJESw42L3XSIG4Q9AVXzMBmLWy9pcOPzS5GbJS4a5jssL/mZuKL2SC4R9XaUFClThjnnHMr3VrGI2bAD3lEVCqeBiuI81aTwae7jrA0uZLVsduhTLEUAHZb73LQkty08PrFUY0AL4mVNQ0l2PXM0S++F+G2Pj47cEeqm/eWLN0oYMfEZvWiwP0HWXS13Ra/dwQ8N8WjJZ9kI5thWxv3rEXBGDhLa9inpFAm6cEGxRxTXvB6L94UqgtQWktZfITJzpGnO0WZKlvKl/aK80gCurJxqAYZSGyj2K7lGQlDx2RlCr9u8RKTBneekyQbENpOX4ma1JxAcPlMFlTTU4xqEpYEPCArVcnR5v4gCrwmiUt8Mdy/SXoWzsfeEDwEVWtJAIaAD/AjfsDIV8V6wgOIDBmtd5zFxIlYvdLzyU/Moojn10s4qDVSf2KgukbEjtVzEJtZMyma/AkRRKl0ca+8yz9KSKzLv8w+ZmURvuXEa4Ovfsx5ShaqOoVv7xdyUGkxXO4vwjJ/kerXWTd12lChBAacccczUPjxnXaJmFayHDvxc0C7tvcpJkK3FGuset0Ra+gf8gFSFu8vhTG5YoB5NRZfMenpLxaA+0uIjO34OsrECjlWM/wB1gwG8NtNLGhrMIFFHGesTWGs8lind4P8Aeks28Z9jN+YB70DrWJrgZbQvomo4qVT1iFmAhPG4ZNfTiu8ZuE87ccXX/f8AkNmYtqJ1hrzIb41K6ZioYCuzYCEtW2C7zcOXxxRT112iS2QHWLyTEbpkzkGBtqzoMIQSi84suGb9gXwCyMGhvHHsQCnlC06liqcj3lSAXeXeFoPzH2AnIUl1m7LfaMu2reOgEu8H3hViatDtpl2KYc7fEpi1eITxfhDzJAtxXodJi5NoWFAP3MxabRpV/qohV2ifBK92XOp+UZgjszXtDjbZqK1q+b3BxNwZYNMzipFj1/PeZU8C9JeAFcdNROhmaScR6SrdOT4QBNvif2jOoIY25c+sNWkoWKetgD3jfD6eaPmX16EM7rtcBXLi+WD9qy67D4hFpVuDyFHGdd50a1arfMK16PLvEoVzVgN/xmWhDeKd0susKcXBW4GoKvB2qjgIa4BuYA6+qcDDgsmgYmxAbHwG4pl8UNkmpkRYXPmW8X2A+yA6XSj6dR3Fa3OKA7TNnigDd7qUB+dD8QYnGmWzjEDSMCtXvMHWazB3qWF0dGfeFbDpMJobgXUDtCcccS4yIqUExb1QzRY+YONmm8GOuOu4LmQxQWVwfaZfdpSaGIcFzSh5S1ihy2zCQBryFxaQXSPWlx1lyGYHn1O8EiRhZfffes9phb1upcNcYqK5pqdn3rPWUp3Fn96KuyMAr6XH+4C5rzK4N7lwGD4WljpswUzTNBQFIFCDdgUxLHhy+w4mpPaxFgVGCemYX6nbCZUKFZzmC0pLBfj+zKI+NtOx8RQp6wY6YY4HXRamXqByTaWbqoEY0Vby/qWmYKzLNaX46TK89VqxWfX7xhDWqo4XuM5aNWV7vmY3/wCkZp+AmvMOIlrJV8jN9MBhTnHmLB+QSAGUGYw1tR6yCqr8S6dQ3q+YO3tkRh/XEaEtWQ2tU7ozceOQml7zETxtwroQGTvdoehxKrR8kh7Rrpp1OX4iF+8hy2l40mO8s522uM+1hsjyQeM7OKmOckvymNGXgBV6y2ZGaU0x4mL1n8me9LHvdG30zAxFyP7t7QnRbOw6erDdVLf3hBNqqMG+hfRA0B6AlVXDDuol0cl1EbDT4Vu2p268AD5CLzByjD0GMUcu79ofFAfaD1a7eP1wdSluyUUsKxcy9JnUMQSxH1mPceJS/aC2yyq8PmPH5RGOkL1SdFwg0ALVsSLzflN7yglhXvhIJWJ4EV0BaPeDpKVXLF95en8Gkv2jlUk5IyjBkQv3mMPknpisstKy3m9ojak6syjrgWYKC0dTDMwdxVgGw5kerM43RHDdO1zAUvKNYqrf/eOtid/2TPGPOv7w1t8v2zJ9gkCJriAL7Ms6moHDVcpBsvqicc/8bm3J0d/eN7dtyfMNAd4V36xA0UvzPNQQtVXxmpQPHoPtF6/LP7pg7dKJDum0f5RXfOhuDvNvf+S2tN69vadYiOT3iUsYsxLTygL5Jmvtb9qlkHU1KqDnb7wrda9uAQPoF90OrF2CU0rN0NRRUuu39sYhZ/jmIHfCjcw9UcUIXpn7jK2rsSGWpemILt6GZ8Ne+IzShSf6QhVHRq9FhWs6uXduUDAzzwyCFGSNYBqKhug9zClBdP8ACUD0bs+0AFXvbFbd5AZ2hpDMabKdUJqwOwmpadKJLKEY1h+oPO72IKy3pVTIVT+dJjCVug9IJyz2iVGbIum3rM9QnaVVnT0uLoT1mizECzZ3xLoBxXMbbrzAQ8OJQsqpXqNUZS7jyO3PKyLlVjzFV38TAzttLcF8QOB94VYw9GHj7xXYgOF+IBOXjEdFvtMlbvEOWU4M+kBXC1+sExfwnZo9UTckr2niPFSOGVPxCUSviKdV5mHBfiBt4nNNXQjxMxrhWdYeZVYs8MDp5YMs7V0ZyZDnOMI56E7BmXWOyR5xna6lVA26azjfaPS3q5zRviB+ChiseEQchZ7yjoHtAYLuJKMbddpY/JHZ1L5oekT5uVL/AITwQGEPmYdfeVLu/eWKsov8qbgZyvrKoyvmVE2puBvC49L1SktcbsxBCxOVVvSUF4I30h1ajk2YyPev9lSpMagLxANcFoMzOB0wPaZZSu1yqnNTkWnZnEPWA5I0tUAu4O5MQ1KlY9Zd1h0gI9ZgWe06tniBGgUEcr3l46MqOGwMJv4bhswC78L+xMRU7iAFWdG/2Zyg8yt/1+0bV+T+uIMX9NvxMeAeoVCat4TT4jaEfP6JzOa1FSz3GUdHliplJCLR2RKcnrCab2Ubu9oLYVRRmhFAH+OYvsP45irTlmVJbiZgX7OIOPEMW5un+0BWT0R50vtlFmHsimXqwtmogD80RMG+ko6O9ylsnAw76hnp3sRWwOxDLFbMUMVPEZwDG7alBaecy+8esIcKHUM8sSoYW2qKyfedf4S1qleZjR8zqXzO4fhMBT5fiFWMeYS4p9JgVkKsTZB1pGA+aMabPYmzxfUlDp7/AOw4n3iNWPWWVAl8K1dXKJWsCxSsOQpj4QAYwuhuVdO4AfeBPf3gVbvR+5Yb7kV1V5hVuPv+yfojPyWJRhmRq+jC82RS4/MU+Mf1KsiOt0BsMxUq9n9ceD+TtOOL9AFNoG6kFxNPJ7ztfMaQ5onkl+h9P00MNVBLCvDOtEevvE7w6vtOpUu4Jh19FLx/4kjgzHaISgP8CbcZ2HtCE9M9pm4lpuYsspwq8w689WKW1HzLCl8jAPGPEv1e6HV8kB/vma6PVPN90v8A65TQPiBefenc96U8+7KufdjXgPXHpnqj/sJhfuI7DfNwf4FOT5E709cdpPVLv2MP99MOVXdnc+8d63m4PSp2Kd8ZR0mHCI9t8x6csHghyXU0ZDAnQWpaLwHBhZYfpB4x7I0CvCAoKa+MOvH9CVf4nZEPQe0s4Rg/WeBO5PWdR+8q4YFOpaL/AMof84I5e87Hunh7o9nvlm1EmkiTp6yt+SFf8YE6skve2YQRywfWL0+hlLnMs9JaeBEf9Ro6esDW52fSdzBkWvctNZ3Skz5j3zbLGnE3jfiYZzPB954zPrL954sTvL9GeDGxqWH+ytTu+8N8M7TPCV4hPSUg9/eUnvSsqa+0f5Ut/Es9Y+UVXMERqmhLgMMkxd45JTk162Jgwz2wPX5h/bgHHzP7v6Z/zRkLYvKHb7x/2J3fdLtb94u+T1hRly2ZmZTAgMtepa9TNA0v0rzB7Twnj9F3h+qPdsG5i23AuZ3If2S7mp3p3Ev5Q6ydCO8/SOvO99IfWL6n0l7nOPO5lr7/AEBukZ2dxOrBd5Y4i85ZatsteWdxlXMt1nVXLy9S7BW6+kuDjnLxdS9/7LfzFVt953H6C2HtW4f+2bio4YOaKgAu0bOmWYeSEeU8od08/qGUW1mAO4u8s85d5g7Mx4Iqbh9bl1LxBZtH6hVfVxLzOfpcuZgst+jCMkXuXv6b3D6VvrErl5gfRZl/RdzEcp4k7s239S0x9Fzbcfqm30OM8v8Aw2Lo+jynlNIP0aly5bLKHVh+R90wngqELGD8wdsZ8y4Mu4S8y5f0WpcuXLJzLzHbCMuX9L+ly5dvWewf7NO0y4P039Kly45+ly6i5gy5dS5dQfouiX9S6IJ9WWMwRl/QrKUSjLPpSXLJxL+nvEJiV/4vE0hl9F+lxgZeJuVvyqPpD8sGW9lOmWK/FGO8/tdY7l/QW+ofQtl2fS6IsuXBGBL+hFxN/X1hZo9QOZYvVuZgy5p/6QMHMuXCeUvEuXCXLzLl/QfpeZf1qfRlWQgS5cWXmXLS0vMZtlscJcvM3Fa+lpLxMy2Kly/ocT+SYU2aqNSjLpnrL+IFK8wAH82izE3Ofpmb+l19Lz9Lly6m30XLuH0v6XOUa6Eyg2aL+iXKqJGq+hOfofSubxKlE4nP/i/rzL7yypcW5uYv/wA1PKU6yjrKPqagTWTZNAMwvzDSigmKq9y916CX9TrkQCZwhX1KlXKqVj61NfRhEr6jP0G0Q3PpVljtOeVnO5/vdX1uH/kw1AlYiSvocRwRjiDNvoQ0m+kUrZiuf5G/SVvVC/TMv/xzKlfR/wDFfS36Zh9az9Kr6U3DlqxFH1YOUuX2Peb3sUfZEINxV9Pm72V2T0kGbH0VLHA9Ulj1UuwOX0Jizl1H03CB9psX21v4gBBbAtzxxLwpCThdPj5jxUIFUx1OsvEweEptjvlQ9DbnetxkxXCtFddpURRIXRt94apSWh8YovxD2Qwpg+pMiOlaZ9u8vY1pUFnZ6Skh3RT3vjrOa1NLSEH8JtH8QiZ2H8TUUKOE39DEs8MPxzNmeRDwq3b6trR028ztUyD942CN8wHWawumlvtNC526x0mh1xjOxH3n14ly4/TdAXNi/EO+VdSVPwntaRHOFYj7sHg7gvv2ZjL7S+dK1jLOH0JBszmzntBf08Rl4xOfoqe0t9IwvWLKWsGnTeVN1roYOBsyy/rv6Y/8a+lzn6V9KlQJg+nMZXSeZc5gH4SfcmUOYb+R+IxwkaF87EuYg4s2BFqmy5aF+45gVxjgKV1gQBStedwGKhOz7oMurqGG8dJmUSq3MmkBBEzBS7VOW6mRhVupfBWq8QCGbAtm8cQ1aJqpF0glbepub/ukcJ3PFaA4IsQIPC+79RAKIBXK/wDvtKjoYWpOI+MXKNth4TrDM+/1XCS0Yu4G0VkGH7ZvLkGpRleR2HXGIKAtm8rqZ7kNN7rFhS27JxwVCdWbXFe8YEC0dOsoM3EUzgtzqWlqwKEXUMu5roYmHz24MTHiqnCSx1+7LoA8txEHoh0wYo5qivSFdBqvCYfxZfTf15mkwQamHepWCboSu/smOcC/RLjBSqC89ivma0DSXfk8cStJbsEgl1OgVfP+SgyuzpoxRjHWZpZCg+BgNkUGLwrAM9gKw7sgvI+s9JXb6ElYizGnQBRfFajlQDbMGcesR6eq/wDJvfX5maiprd5sawvFlpoMLSEqP/kmnyDs4we9S0YnUXvzLdAzuH4Zh9DUKFcavQEvmKhJjdTXaZZL01vtcELJWYrdZzMDwC7z9EJePukD33QGqKv8Q9BbXsNduZz3oSGXz1UBO8huUpzQW6LRntUsuT7IBbil7s+YZINX0fTcAdhK6ox8xfK7lDel33+I6xrkNeR2gUncHYbmWhT1jaEOqi9em+GM+IyaHUjktbLxvpHnE8QLbnESiAa/XlsuoD6TI6Ymv8q6uP7oyu6RPybzURru9S6lZgNj5PnOZ5UFyUzMdU4Gii9Y5gFSJNQ7W1cQVOLv0Jy6mB6BcZncBurtUXyUcLMvBBK92O7GFe8cstwIv4lQyjQweLlNiDqjTl4WOsoQE9F/DuVoxYL3ivTrKBc7xXM1VgavfoTTvBT7xgyvbiELCzUqd7r4jxTOGG+ea4q+vNYj3SFLQt12i3LIKLV8Y6/iDjAGM2ydU1DFQCmWZxXvMTjL+6LvCRN1aMnRVvfeogP+HvnWNtdizPzbLfrTE/zLHLWcN48zKzDB5pgGcyylVd8wCks3L9ftAzjAQ1Bt+yIWGVdOzMVL3mIwgth11YyzHYesLrdFGDDULGdCUec/uMFYowbgQgC7N+YJie2F/Ew4vNJhloQxVNuAadBZWM6gDLkc47bfeaR9artDOQwQyWfXZC0ClreLxkh6WccafJKXxgu2YDwLAR01ezRfmfHwFdZaAFmxzG+7EHrYfuOQUKuqVZZ6ahkVjKDDwP8AssX+lpY58BEN/ZO/WF1TztvzCpwcsTfRJwC2F9DccB4jRroevmagSzOnCdaf2ZTRNFQ3nz6wVg5XC5XLr8KOUewHaNkP3VySjoucr0w5WLZDayjKVprm4NRYOPSIVoCNCvvzMYMlzYwe98S6fABxMZq1xbAXTVNDwyyeihwuFjqwavZj6e8JAYbLvNPN6t9YwsN55pk+JcOUa43eCLnEnVd2PxMM8OaYGE1dWvgxD2QxNBqtD8eIWfTk1K1yisgBToNQbmbESEtdzXnpcFHKW1YcmeescAddRf7hjW36v9cy0AsVcY9bv3hmJdyhaquollZKdOkXhHYK8YZuXsVkCnVLIKyDBZb/ABKjOemRo8dJfcNiNBRssU+sBcFtyO84ttX6BB32MeSqT3I6vaBVfCP7Ii5yLEOqO8Yo1gvwlg1Q/YP9ld7elJ2Q8pqdLDqkzvnjm8ETYTRqEyeY8OWfExUhcubR2cwSKW4nT7RbnVDRjWr9EpBAbbri7z3xKOltgq18z7k55m/5Fy86nrB2AWnVW+mzpMsKJYayCsqxErFy8eyLg5MmD0xqAYccQ1XctN31/ukRHjVr667w+w4HhfDMGAdLPpJUcNZCYxrEqS7/ALF6Ttsxg9ijhBB94jyVj5c82vpXaWZhFtU2DZ3h69ZNhVQaCOcWd8xM1ln/AGRFZOy1yH5jmKYJp191JeUjZNr4FvOPEAcurKlV6vSYgliuskY1nnpgrp3gGAp1f1xa0NyuAj/wdTqLe1YanxFk7Qy6f7FhwHLMlS0xgZJj5Y0DsY1rcX9i6l7H1geYaV/iNgToMm8VeaqFQFIK72/KHSdKHd5c+8K1wlHypCKPZG7JffxHbwZ3PNBrMO3YbrTPXpv4ljwK5qs5D1m0BT2sCri2t04aC06WlRaEMJSYF762/mVaAZOczFeyXdGsjFKgRGhkoGfs+YAPziEF87LHUTRriYW1iGI0/eYAbL6M5gWonrHniCfN2kF2jr0VRcnEJawde9Nd5j2wAGuWM2X67YIVO/QmRec/5NvFmxLrBb7Sby3CdD++SXFDKjWOC2Lz24lDf8EPAZvPzKSDOo0N+8vVaJ2WQGYBAthtjULexTeSM/v2SkBYB8OftOS/lmXTRLtCe7VsFWrpmQdesM4efxEiMle5NRQaxK16cnzMeki3SB15J6yrI9XIHzUYq0dOC76VuXqUuCMvi/aOrcm44KxUjalDa3fciRKKhYtARj/dEB0lYmgpXLrntEdf4Ia69mBDAZ8nDXEyw0gp1b7TLIB3N08ZzUYt7oQlcgq13sI1dNDktHCvOllbxXsnOviDfzdKy5i3wcBVGc/250UsNLtV9swzWsuIpTXX9vXi55rLMC44qVz3UtlIUTWmFtgwf9SomjI0QhVYyfxlshwZBxzo/wB3GB7psVe9nE1FpbX4V6Mr9zzN6xiEB0UMjFrTnLI6DqJ/CN1SKre4o67YLAw3Xklfkigm+7C5aLBEGF3rZKk7jcoDONMw5UGhip0HEIrBhDSqViAShheeCHpFRnBfl4XMK8qAp8IEhde0LxFornXgutcU+zMW96axS+n5hhSXQydvjcXr8xDLZ5IAucpfQrq4gCdOCsVh6RtxQX0lkwxzQDg3/vaX5Ag7Z1r1KS3ZGiNLWMTVbvL6z3DtHP33+ogcIGPmRpuUf+wKcc3C/hBkHC8tnvL0lSm26rHWCMvC7mlaBtjgkNhPqlvpIJz7xvf7seH9wOvaV7UOTrFJ1YBgtm1qwqCh3PvMMar+/dvEsopE3hfDExorzR7elSxCPCPGqOp1Q8sSCZDF9Sh94JaRMAX1z1Jz01sW69Va+JdSwjWe0w6RXW3s0hWoKomStV+tw50mXhoK6SXAdYEh7YlRN/CAfiESLM0zVMmv0mC2KV8a5p+8z47k0oWw24NEpEhcoY48pTXsfRuC7pqtc5VrnzCd9gcV0e0AsxbkS9XF3RFKZcb6H5i2XMRVAaenxkuV6c47VoRhbiVTeLqppylpjrVuWuNsFvmr6wljPithh1S5LOKoaOsRrbYvSw6K2DZ/vEAGw/mNVxn8TJrmBpZrox33SV/tSlA9z5WwNq7oxszEmotnBUB3X7NxIZByciYUdiKxTj5IOjLuG1WYe7bzZUaK63UrVcL1hoPEOOlWOsEzbxHPlxLBXiuxqNSgoGFOcTSN+LzDB8xRBLYUN77vaU0/hAyrULqx2ONYRlKgN3TjtOn5SzdErDdEuarD0jdjVxVK643jXaZ6Xd1f3zAV6KP3hlYA6q4jGglkV6x1rpld8RnGzftGZSUNhn2VWZmazQfTduCjE9DL5Q+y78alvDvBHgnglmiKUR6ya5K2vWOXMzYzPqa1q6HEcTil60dx1JbGllXnioNNNYjSm+7mEqldSUsTVQVVmvJmbvdVmw58F47e9iq3Xy9jl15dS5SLXauSRDsDjJjAYBF1niq31lDjkR25glyEYtl1j4qEa0zfpjv2hdXg0FWvM6WngGr7w5aLZtDDlTOYmiau1eM6p+0DVSoHqFLMMZMO6DUwaDIamjtfLT6TjNZd5SZ9cLMXtdly7qYL3q5YKsEuyv3LJdjp/Zhp9Als7WunGojXcqD34gsm0iynpC1ITC76eOhM/wBLqjiY30ABi9n7l+qq5NvRlG2qkL2lHxB8HFNTqhYpkUY7Cnh6Y7wYt8YX+f8AWeOjOl94EAbsbeB3ZaGxgI6bvtMmoDQ0eYsCCaVb/wAmSRrYjGlNUCxX5JlKIAk88ZiG/YOn0erMf4ZMNpjn2gKXPcg2sP0SuEbMmDiX3prUuTaJbNYDywAjPqLPuSsKXaGN1oJWReAMPTXWaPENYhMHPSZe4KUQw/p7xXIr5f5fMqlba4YSCu3FvtCE56fMbXGhebJUqW2V7gcPMtnrcc5b3WDxM+dPbLaw4d84iZaI7xEdWyb/AIy7QG0vx5vH+S2puF2Mu44VSjZFDppE1dEAG/MOwjS2NcBB8OSOGun/AGIOim0Y/r+ZvTRhGfEwBMBwj1O0WrgxfllLUNGFBdFiUW3MGAzXX4YvQEXkNN3gdEMdxOd8vLMxgFOQe0w4DmxHEwrvKWvukSEC4cE/5Fx4wtNvxDi8OC4KTbzbvBB4ykt/N1vGfMGeZOd+SWmgzlpC75MzSB0eIxluQCHoeZcYjQ+6jI9a8FVjpiCUTUqtr4pLmpHVZeVz2h9RzEqK+0LjZQ5sOOhlWgCoBYavoPjEEGnjy64flm7h8wPxFk1s6K5lznQYfSqMkqqpte3nMs5Wg4r+9o4TVqCqHw5VN2JU4wqhnHO4hFZp2Bj5gqjry2rIuEbMcZleMS1dq+Od61MzWLyw/uKIDADYbs+YLmgSWq2s61AjI2wtcWc8l/5HYyQKPtKt3w1NsIbsv5h7RktAVeJ1AuObb3BDdhAvMSi6rBcte7AUCekpoD20XVnebsW5BpWfWJyhmAp357nvExTtQ99szKOBtyGuXUo9RiXkFB8s9MCnxyHjcDSrAtabam8axMU84jL+CvmHqJ3LNPSLLkZT/sFJ9Fuv3j1TNin7xVaWlD9TW7nAng9e849oWk7xTHY14YMrzNeRR7y6WFHJ5qMSI1QIeu2ISscqAOIgWUERtQ25YbWt1BHw+EWuzoBnWNZ38ynZcmJsD8xCqtU0eYYw/Q/4hjcCB1G/TbDeMxeXIgNmDCTuq6o9RxPkHaQOJZxCPtfio9wQ1taWfKMm2fpqguYYjY0Wctd4DnpaA81MEVbpNN58TFlbKU4P71hASAVAPP4mk1i+br4lWRXCunZqBAFZS/HEzzfus2Z4m8utgh6l5qfeBnYzTdTSI3buhijrK23YpN7zSfaYwNh4Ans+Jh6a0t37PXRLWVq++cTp66IZd1sFqv47TCNU0CvwaiKnNNCWNQGHocRrF5Ey7gAeJkCq3vm8zLFJRV4F55zAvfW0oqwcd/vEy+wNJZjWiq/dJXNyW1SvFytMIks8QQl1J/iNm5uUgxB2qLUdYjrMiI5fyieuSsGr6QY2Qb7KcR5Yq06hnnMRabGY3+JaYebritpjUwaCs80i7lFg3i30MUaaCsgTr0ZuvtK/frKo3rhOj4mEoGq3jBZ/XCLubF7smHzFMnPvUAYzTds14xt7VAvSFjtwRqNektyvmdpXcqZJNdFZVuHrG4ZrgtvIPWLrl7qbPTZ5gNKuCiqviurFqEvFKN76zD7PEGXFcVFRO4nF1UpTbJ6mYtQYmPEmpdrXuikw+MAvAQHY+aGexDtADdFpqaTqp6Ne6rgujwLLh6C93BXQDuChd8dpnoE8mMB3yeCdFAKPmX7C0KMlPTHqxMg06AOJV9c/MFzb7tCKUyD1WHzOCMeQF21jd/E1zz2uTvr5iqLFBi7f8lrAcG2qnCbjcmqoeJSWLql5951DzwSj8obwQXGX+DlxLQnxVrcXXH5hdEkZ2o/maCtpQWx71LKj7I2feZmMiHqxhdd3iVWet4zi9i61FJKCjZrtaAiK0pNs/dErduwXpX595da+ylazPbHEKSmlYBwerGVgJkvJhnxCC5hRhy2/zJGS5PCAZO4lBSigGmZiR0JGSq6uobpd9JcTLBvoumj1L9ZkWhSbM26Zr5lIx0LDb18dZe3VMhcCU3XTsxj4gDV0wgY5SZ/5MD483JoLqtXN3MRYaQouHHsO0zHoWOZUEIjXBj3CCwDMt7l9bgoKhxhoFeWoRFm2P4V8zexwc/j8ylqtDu/1CRnNrD1Gb6C/YQq6lmWBPJRzUpl3kpapWvEHjaqDnZ8Rt1AW8upk4kiqijZ6hnLmZf42cI1dgrNTJR4gx1K6CW5JzlO/YQ2c6FsuExu/T0lP+v7Jana3vLcn2ZNfaWa/pq1ZVu1Out/iUHvQaArL75mkodA44YnatAvOd/8AEtnVF11m1zB0e+riUbLfWagCJtN7UOwbdqa18/xlY3s2DeMepAC1VwsxR91w6lug6ZxE/wC5UddmqLSG3393aAW8+BjOvvKjGMJMIcTQZsnS/wDkC3X7SUKTUFQ47QoSPg1WgmidFnWu8104dsI2Hyl+eUK6VMbln7zMbeb9T4xOCMF9NBLDwQcHicN7vARi44b9PMtj3b1Ho165gHCkYkzj3z7JgHJDQNq9U+yJSSUW7QF3wymNorY7tV/1d5iCqMZcGbvp94xXnUXve/iE8RRPDWOvHrE6TAelPYLmCfMKJ2alTyN3Rm995SwEJWaW4VpnDZCaCqrLZCokIoTmG6tdLn3IAHgOJes77MPVOxFnmYkrl+0rfMx2Co/HbLt/WS41dMsAFTSp/MMY6L7nXaIKYgHQD/esoWDxS3ftNIWjsrcFnFJ15mSij05MoTaMkyxTqr3WPmPjohszny8MVHKMwCrQW7evSO6CEpnGY+r2mekDNdm08BDbVcEzkrJ1MsAeFbVYOf1iV+lwaS3eSGrgelzGo2Fq9f8AZqQU2pmhr8zNBlCwo26ZfmIz1IFirmUmOotwhF10NekvoiNLbu/7ES1H669fMyGVdby46HmUCDZ5ny7cxDxtq6ML177mAeGwuBS2oPcljhXBWfhHwgStGDWWUPyWnqS4EUQoqDnZ+YbLJgDEFvWbnKtj1P8AqFXpWZhqY5tbfEt5/RVtX94asWyxiuE8QxmuYEAQEWs5KbjMXQDL+vyxh52oEGQdms+Zv8YMw3qcwHDXLCWetwDYqCxiF8G8upGjlldnGfMsWEYNh+Q/O4fp3rswy9abPEIJCCHTn+6TFNTwlWceeZQPA6lPVv8AErhBU7dxUGwHYW4fF09Z0BAwEFRnOpNmglaH38RnUA/v8yx8Fmux034V557xm2AtM06eJVAbvLjDKaK0KyspHly2PpfmJQVwthae/wDXAEW/l6X30bmAgFMl5u4wniSZwxmBhZa5NF7bUQ+hfktCt0Vu8aQsVSWoNMs9YAtG4uymxIbkfwIK0qCyIAyfnzAlFJyWPDx/1CA1n6xFL5LmOAr30nrV3KJtjhH2pdxVwCLp3MlS5E8Zy8q83M/fAPFtfFQFNa132PVhyJcOqP6QA1suTUTG1Q54eE5YnlaQbH6Sjj5MAaeWi/Co5mC2Z0lsibAZK/Igt+3gnh8XLpwynKVF30WvMN1cMfiO4IK8FfiPgZ0WO8xCHPupZ8xbeiFiILL9GJwxbl9UvUSegkRZeYThz+faa5muhjxDWTAs34f4dYiMlJ4XmLZUwq4zK6VDXq/7+JRZ/JjtAVS3/wAjxjC2UPOekHGmhYg0ztuLqYjIqvMFeEYdDVax3/jAxjQdRe4gY0nBa4XtMQs1b0/I+ZYw5ZKPLrUTFy2yxV+qaOxQsUv9V9kH9esVRBVPuq8XtjJ8VjDg5YnUtLmhrOPCf0dhm7Zzcogk1SpufYxyrLl6gq+l28jDUJkclMwJdhaOkxZqE3wmn3lxSdRdD+YsapZXvLluJqUOHipZ2Fd2vJLgW9ocXpia4a7djAPRWlbPb1/UBwcdZSzYOXdGSE7XRZuIlLJYiJ+ceWDW8BezKmdjpIAXC63eIW0WAvRads1CRH+IsU9coWMQCyqukH5qhaDH5+UeK5bmCum9kbedcQMR+G5yr57QJeCb7q2AfOZtaC7l/ZAiK23U9mDBs4d+td5UVbk8e8XJh14e0dbOEcFwB0GRfK631zGUOd4N30O7l7ZelxiRUOchFZD5psixcfMKvRKYGItLanvicQRvIfzvPgYLb5tHhqHML5x0v4hSinAsaxxjP9zK83tsO/72geRfKqH8fMuhJztqPLD794KzmhT7RYgGOPbrMWApW5V3vpMO+0WCQmpVnQiVfTSB7E4uz84tUoSRT1sgCegaPaVAV4FDumotcGhD+94g9LA2fghv0QRZZV/kzmJponWVNNtkROK9d1q3mLtkxxXr49okmiYCPzLWQunA18/M4TrD4JkWbFXLr9J9qVEDvUSmG3QsvF+iqv0lqoBkarAedRywXm69vzLhWrfoK+8Ihr1BXiXbKBGvjj0gIRqqAPWu8oawCiDKnur6wyq6NRZctcEZuc3/ALKwhg9BvMzcjmj3UzDh6tv4INjcU/0iqaAbgq9zrvEuwvHxHgsXZ0xpNsAIdQcHmtOU8wPXHc9CzHRg5Q+E6a9fzLYUbFwFPzV851BTNBicY1zCAsbJxio+2CV3WTXwTC5NDQWoDht9YC4pWmEvbnjuSyzuxUyRovpXsJwOuXQAJdaMG/KHPHweM8diNaqc/jVCJCAHTG4RuUOowX1hjT+gOkDbHRgiSrLWV5xaU6jVYY2O9nbDMvQD0rOPzFIaJjSt1+QRFTgLq/WZrfBFWHGPSFa38kN104hCNd7qlinupe2I6xoEacFHH2hWjhFR/rw8zsBJg6/E3ebQUQ109JZpbZ2nV6mCRAVeJlgge4HL5PeNtfZUNLwHnJ1zAaKwhRWTswDBm7XvxU3KPfK4R14m1wiMfHMGzVAwwVZLLZPLiouor4/ugjBT2q6SsfdQO+0CWmjI6MRgdJiww2+sEjLqv9zEBKxS2b6DLqvoFhqv0lS7ij2bQOaSmrod8Zlg3AyjkNErqRdq+ZeYoLYirGeg+8qKQGWA094pMp4h6yoU1d5V+mOZRlJbVwrp0mb12ysHWCtpulcyk9VTQ/z8RTHA21WM2my8Gqiog1o6LKwQXzsUWnd7m7TIFemu8KkJWVcQJis2HCunZOKjAPwl3rrsMFRTECjggXe8wtsQ7Ld9OxhSTR524+0qDQ1PeZs5X2iNLtlDC2DNo9bDOXzjbqtRKpvE8OBcVmvzK1PearCLV9/iKVZs6tbgy75mhyt6zHCWA6nurMfKfa06du0sP5TUVaf7cdUxSbu/hKNhtmFc7Dyy5v4t6r1PDbTqvOe7AdyEwf2oPviCW6liAO9t5g1NVg3dFnEWhbVzzrrqYMKxMzfOYkHcnCZ/XzLoZ5QOtwutFXmOauOnKCJzmKo1qbNRrvcUAGnXejmu8onuoaMfzB1e0ELd+/McubFm/Ds+8ZwXeJdVx2l6ai5CXSGy0CUjvvJWm/Ylfouy3UfxCr1Ctd0qmtCho3jxGHLd4LfzEaWaLlaOuJg+FXXHF+PtLWLQmEX6cQQ68Fc9W40eq3IYtxLhueVNtsJFzFtjrAQRM5dGvRB8WzX8SBXOgowraE61+9wUakN6G7K7xQyVcOc9COXkc6y8AKl/GBQNM6BYa6kPa3rB5U+4RpeADygh+o6KW81MWfEtI2pXaqwc2I2qNl5K+ktTS6tvhl2xXZa5PnnjUGjBaAwv44lT07YzHxC6B37wULMMXhNvtLo7oEtOGtRjuC7MKwq51GrUHi75JoEk6dHzMZB9vriat1d2p5aSvtL6uD2Nh20UauWKo7+2IKITrLUGOThQ7FXwMGJW2gK5wOx6wA4zRQ7hc3gIqOOOp6+icZGvYqHZAVWxS0OhrFamT5yqlPaaZTy0OSQduTUaTtnTO2vEuliunZNudGNrGmYcvcd+8q5gUweKfSAFfs6trq1zEtWJwQUKplZQqUvtI8QitGsGC/vEL1cw32d7mCuMN1mR1IzL1iy8WV7MLiqbbKwvJB+8rrUchwL8/ucia2HJc+j8Q6yOJW3GCLOdVO0+An3ekDqanWxPkwddmLCKuk6RIVMFceYpxH5Oq+9RqkAEa89Dd48zi3laI66XAJtN8yoFDuOnFWlTV3zGJwazUvQ8i3kj4R1m7Df3jDmSLAzegmA43W3F0z2gIS2Zf9yonBa2p6PswtlXQj895R/FFzn/AGXKzU5aysh4v1O8TCGkVwdD1lB5YS1t9mpUxbOXUP3yKTb0ha3YR98UrahC47MCJEb90rOFopAbPeITtIcbbazKjQVU8uatekExmtrF9EdR9pIPuek+R1q3Us9Vx9b0wPMsnrgrTiCcamCnC5lbCtZVHgc21cnMx8w6BgIZMvYHqp1gYXBWWx4lr6rtMvXrOFK2G3tLn0p7KnV7UIys8uSAj3koo4YFzP1RSbD4g2wi0Kzk9YcprKK3q+PmXSSZGSl+z7xhM1ytENdXEdAoNLFQPXPSoBUJA6ZRfcoJRDVR1FoMxx1L0wwN+PL2Q9lpBshQ+BJx0tZIl1fX9RqjOD/ekZsar1GZQIbx2ZM+jK4lUN20aar4zPPjmlKLzd+s0+b0YM3EU1iFdWlQriFG9MAbpyviUO4AIdR024HP5jYUXbcphCjB4MtpWX0YjL443sa1xRhjg5oaMDPnLyYqbZekKwXZvI1KC2VisKZ2Oa73L0oEJJaaea/0mThL02P2xHICOukBtxWiYbWNgXpAgoOBFFW4Yug30YRVYfaFCbYrD3NU59JV4Mmq8i7FyzHXp3GJZKpUWY4x9q7xndOnaadHvOIVxOacOfmmodn4ZcjLlpu1UofKu3cHTTtcWMDpTFgywcVDC8wZlKkJyveELWVj/OsuQwybsNntMkAxFtawK6pClroztXWm7fSWLzy9JYFVrVL5mBRcEDhWzxKTi48lp7Yu/SWDuzDUKdy/npLSNka/UhEY1aO3MppczFNooBWuYhHL8oPtaBmzmu+N+YaQveLLg8I1EmVSCxynRmpa6oRxOnSHfbgu8nHXEJp/cxcKLVRNBv39JtPEFdmNQQbEpF0rtITMgohOErnu44iqRu5AiVQTcAbforOz0mI29dw5ilQQaBuXb569I8+DfA9AZehuaxX+0rfyUgcHHS5w6wq3D8fJHmEx1+nrmDyqixa7+kpLxqswL5Yuop7jIFzVM4/m7NRWXf7JVM1SGmWepa4mJBRuCuiZzxW1XohFlqoZtT4VAnpOi8ev1hCOu2PJDH2LjRuQByqco8dKgRFUDfNIfEBmehk8d9yjAhC8C3mVCixXlLixIJk9XExG513r/JrLRf8A2KJZzelxIxu3sU4+a/HX7Q0pDkYpt95dSQmezUt07nmoRJJqQFuc1My02JLoGSMcCuxekzEHeAdiYBGQUXfaUeGBtezRyv38VdVfjqlhxAZkjaEwaza4y2xSjOL7Ff3SLj2pV5/1L47pwcad1TKTdVymHxhYzA2VWuDL6JQDfdyVwJMLLdZg28i5Sv1AhA3IidIxq6PeVHlc4QxqBGstu69f1EhxzuAjZGKwgZA1Z11vtLFdAbgA1raQfjf/AGY3MFNpejL0mVxlx1X6ZrkzZdAp6TCcL+47ekpQy0c2ZlHhWS3/AJ2452Wd7MftK0iW3zDO8gBSHRrL1jpSC7lG3a6weWIN22PEq60LqFjcEWm86M2/iAh5SAlXrOi7SuHIUF2OWV0nQwzxUQ9YHu6fmXA6AwL/ADA6i0dJ+iNbbaoULbeNiIHMgo4RC/lCpZFba7rjNde8KZ5VDoSg3Ms1tOEVar5gwxnmHhgtHLtBs1S3GpzV7W/MV54/3AYu6M5oOjM6FzMc5yRaiA/E5l0RSUKFdRdM6bEqvZ1sbYSTakNR6b1EYJb7WHhZxXvLw1CobAdtwunAJ/KOesCAKkK5/wBiEZitKiY66MTDK2YlTTa12Sw0JW5ncGiNcrL7wTz2LCT/AGOKloSgXIFXR1iWHUi+PeAhtIHXJC47XGGsttZiVRISjOS/3iARQt9HvBuOpgKWX0KQBB1EGzennUWDIFbzkhiPaD4rtX+Ql0pjatOeNyyRaZvm5YadYzmVkclX8QYXNUbaWuC7DfEFXc7swXK+iPZgtPm4ZD6KHiDyQr1q0ywdbgqXJSuFj5m2Z8zjJpjW+k2W7VFvoXAhrc2YXBWey66e8XmiIbPW/tBbN6VuEHsQ7NNXRaoZx6Sk0uxV+XpBbry1bIMs4fsiX5S6xLMHPhjs8c148e8sIgjPj0YVNfihDfrNCmU/2NGvlWsMXWHxM+gvj+lF+svQaNinbpHzsCUF1VutzHnNqtuNX94hMFuwH3a9OhLIthkyV0loy5yFvuAigKjDbeTf3g5EN/oMPaW3tMl61fibQZVtru3EtrCsvHiKwQmBLehFMlhndDvLrzB+jg4CvWU7Inhr90BXminpBn7Fx7ywKBi6znYVlYc9YbpbHNfzmGmYHAsvC+8Lg74pM/TE6H/XxN6gd8HocXB+IGYU1dahYV0CKBXTGI+JeSF9IiEDIHHT0TArVuodqa9oILTsvqgyKZODX4EbZeK2O6rRxH0UgDlogTKIXhgVSRcSrl5AeQ0ZqmsNsKurFdinhMRztqXiZ9uYV4AqB5S4bQaBSi8so0ADgQBA3IUvvEprIZlyB+GH3xCTOmHH7GH0Yw7GFasvt+4Ag4p3+ukZVsaq5/ydVAytG4Rte2o16xkbYVwxCLo1iSrwz4iUDTQKTPmLAKC21dXtK7FynPLPSUwkZAas2XTHDDqPSxv2SuHXMCz0W1/ksBiK7O/mWzgCvuQq6pUHhklxwVNDg6RTqjOLZ46zKcLSloqurdidM4RfBR0IV0TjS+TtAvYXKHOh95UKcVZcb3iLGwBRixLadzShO8235TD7Tf3gvL7d2PegTVc3fzzFulysLzn4xLQqNvsgW4pTzr9G8xa4yhYuRSZwfaHB20By/ke03RqOX9cs+7Et5mZN4Alr7QzDfMT2g9hbS3esyx3/AMguNDqEVtC78Q1cLLGOutYnFAZyXVQMs2NgSH3jOCF36+ZwxgKTn8zvzAlMenEcBwgWDhuMQJVYyekQubiFhQao/wCviXQWWu0qw6CzY1rn0lTZ4a3xhiuME8DpAJ6Tq9E28yr88n8FQJdI2wAKx6sJdpWc97qU/WlooR4xCIoXqB0YHF0WVnnVDDE4xg/MfsUpUuARd5qlvqXEXuVHZRJRliE5XR+13iaiQuqxvrzPaUey29rsS/1qHJmAon4WvL8zHkd6l21M3UlmuD08QxoGCuivEYBofT32iCpsFJTOfd8QtVvdF/J/ZlVtqBZKPvz8Q4Fqo0NZA8fMOObnmDXbbqx1g0ssmTJcuDspsSPJfP8AyAxJ2oVePSLCZmW5GPb7xBYb6F0eLiSGsA73UwAYGazDgmRdCVj1gkhyh3UVxEeo0cvmgW0ibSr4TvBYA5l4OUVymvtFgDb5gS9JvLhsmpiBvQtiumq+0souYK/hAip4nm8MCNSto/uWu0acNkSSIKhfadblmyFXHTxMVqUeXI9EtptqvC3xBhgOVS+X1gm3d0VckKRy0mjG+xHA0lvf1ZmYSqAffue8SsXMO/d6Q0lS1Fv1qIuGY4va+uLihxYUpe0JER0fyRHfZQG7AxAQCUJUV4jMpVp4ur94amYAY8fMphCcq6nHXvmKUAKapuscRPyOy2zF9dk15NaG4mAu3ACqtL/8zXpLfgBYhQXMAsF1cj2uVwyNmdSpVANGsvaaQil2AHE6q1AmKtb8PSOItRX2L43mbmLsI5k4jm89svvKuszRItSGbuvJAvSjsqW2+KsJnglHrIr5liVwRX4oDeXTpXW5Xg224YtedzPPo4/MZJUyqFz/AEQsn9O2PzHhB6Fby8OnQgu1NC+CnjGZYcxOLHczte7Nj1rnxEiRxgpoOlWZ1GRpoXF9W5xBGARag3AoHHGskC3uCcm7xxcAZ6bUL/cyzT8G26vxfzESB0XIneVrrw+kIyyW+0sffNwGgR3bVCh5gC2x0jLpAYB1pzOMWCIT1hr0NRo+YMW7FgL9sTbydVgxtlZfEejfR417zBhUCljC+3/ZRbAsdI5BuxDWYkQqrq6+NTelpQUF5dcS4q7r8Q7RVgdQvo/MK3xeuG5ZmOLqxBl7aNBG8VsTgcdznUYNUFZc6trUKs7Z6hWOdTAQ2Wb3KazK6ibiddej2ieMQ94Mp0BMIYvBjPHbpAQOi7du968QWAgArRRVEI2JlKAesyvzVMPTMIipc5NeDG/aLgBVTSdSmOvLTLCCeyOcNDfmNWdFGL18pS7SrXxGz+etOOqi/WZMaOXIddQiQKl0HujaIo63T2smZZs00XVcZeYLa3QixrFNkcWX5tZz0mr4mYCNsyGM4qD/ABKjkiVATmi32rO4CCTjo960/MxWdcqpYlxtcVfzHI6VXtI1Yjjk4lN9NV89Y88w3CdwJD8jVzUcGBZnb/YsVA6qvJeEAQ7POcLPeVqL21AYAeevxC2Lo4jveeKlzHAPaICATgKJQFOjEpHV3Urhvo1bnLEVCpaE15c7x9oZHdntgHTUNsLBD5jH7N3eu8w2tgTwdnfs1rM3D41xXVyd5WjJquhjIvHB4v4j9NJ0gcLGVeOsvtbvQhW86b7dodcHT5R5HOyvET0Hds9pTYcC9bRIL6w7Ha0s/l0xiecK1Cs4xUrLsj1NJgl2MLyl4jhRtcWwt5xW+ipgXB4nb/IIiur6X/e8LXIHCtC3TtjcfhHqUl1r1gCDFoVxUa6QM4asvTXsyg6twlpAW138Ma9kcmtSq1GwUYZOKhKpAEphC8P+oOcQsc4QCE565jLhG+kNQxA3oZmFdVdp37xRCBSwfBmIRqlmhVOct3RMDisPuc6hSykX5/8AJR6PwkT+gtci7XrXfdQKO0c2JbldtTfjDPaXvFZPI3UpTzS8r4mJog2YXj19tsG9DwKw7PDKkt6CWJYjTocQSM5W8QALrDazMDQ4liFW+K/3H0f6HGL7DcMGLpprGpVemNvRXbXb7pupzhdk+I4V6S4tsReLddP8esoMmUyveAmRxbAoI4YfL6nC9VeJ0t3rLdkPQj7zVWTbRv0doIw0HOv5c6aGIfZDKl7uCuuc4xGh4F0d2UfG5WBqJh6Yo6/CuJe5+82qe7IwerDVLfXyxrswAU4U1xL+oSaFWAult66jGsOzy+nWa+FDpwr4jF6DfMEHCHQq3Zb1KpmIJ7CWVBLP0XHtLIlnTlfUvFQSfJbbZrP+xJSbf3MGgHhfR+YVNvAvfQdDF9Y12genQw04i6cLys6axDtw2AF4WbaEzbKsDrtDdTeecaM596jkG87AopT86jh2Y4NVlzBMBStHiXApQ+jiNCSfESumIzwJiz6NaVrFsIVIg30VjJ2+/MZjsLywamK+J5qrZlJoiCsLrqVKqBmMt4aNKHMWdKigOCtEv9swNJa8yix0s3WU15r2g4tya5MXgmOSMuG8gzjrKEFVzsO/rE3c2/eNnxxWMcZHhCWP7fOIf7hSuSzAcOHr1l+5HNMD2gQphVfNEyhRmpcWbd+YqDANxWBvb7QEskKacELlei8ZeM7+8zAwRwskLbL33i2GAdNlrHHrDnbrd6wLkB608+gcQYwgk6HCjZ3+op2rjucai8AmAhi603l7yz0rQtu60Z16RyoF1M6QKbysL8SkxhrJD23CecxzfbNpamosAM5Pd+0GSLjtw5rfywzH1azC6slyxdJgvGOOpuZCksfrDWHXeGnOxdtPDB+YWsgz2bgIXcULv4jKp2s9kO5Job0Fcmj7SlhDKypteLvjTEOVtNI6NOW1v4lMGCybpSdltsz6UxyRQZo7JaAbZRszh9Z0CEAK1tq8QSqUBug+7Ok6hdOtTKigMsIAXMal1LgqTMF9vT5ipbK6Y42moW5ZZ8Au3bu4uLCi19DIdoDWYO82VXiJvwJksqsYjFM4R7x7kIogbW6uX94mRANNHadmHXHdlzUxWKvMzMFyrVnTg5gvJJ7Sq4QzfQiqQInTkY/ty2mrC2hoxjnzUz4jbLc+jgH/AGM2+otNKvy7YqG2TnflGhNAWsE1OKQOol+pUIwuUuzbcIopSU9W9HeKDIFmbmB6sHlGwLfFEbsYijNoGvKVgUFLLTpVbNSwESmBKDrWH9y+LsFd3GS8bIPXhz/WQS3fFFOW97NxXgqeJmX1NYHMydON94qy7ALF8RdOig53DFNlUFVBIwRVaGL8ympHAteXpr5hNQOZVNPSV/NSD3iKeB64b/Evmswpqin4irfKMP5IoLtPiB1jzxKau95bXiOSHjP7Mv2QsV2jFEubS6vrjMw0UcmmhL4oA76Tew0B6QsBpZl4CKZ/tctiEU5xOR894nGa9h6AMsAkrw6V7HEuZOHNM/aNgBSR6pj0g61Olnuy5lumsJjJQYxx8wHWsxS8NfuJzYBhsn2SoIHCHD8kpZwX2ckVQTT2PQticVqjG2+mPBbEOGZXWAQuRbq9YwS+8eGx7HpLttobIZr1JlgN5hpG8fgm0lUhvmBnQ42CAEdBfjvLd8ld2Xs0lbQ1p2BzcuFksUcyhi70dZlYqbDQ0TNnJxdTsJper4cdO8FIYHslbBoAzmGojOrYtc9iMW60Cs42kdzsxeq3PMzLA9KeJ0EWscMJ/EtcXxRLsCjInMRT3F2aPaocpqTZxkqyFVOHDg9/OI/StuxY8vHESsXdpriLeX7SGX4GDucGn374lAakUAgPUiVQqLHUzA209hnj5hO0rdO0ebdOoX9RFocHTMxZILDGvHmbv3NAlmnieI61pXLTUPC4mgnrKdJWu6MVXnMf2w2+7nmGhT5juw6B52Kfi+Zlygjivj1lcMAUj3BeIOeZVl/2IzEwq+kbS7QQaAo/mLXjqfWMSeyYuzOyJqFIDhU5eoQdxKjl1fXyvSPtSYPMbjMMrV81OVClKK/6pcmDNmx/2WJCwvZ4UpGIYkByG1F9WZQU7QBdnxEOCx90SoBRyqVJWBUxnJ8e8eGW2PS1rx9o0n00Wz9/hhl5OqRnT21r5ggxoADs35gSVDAjPS4OrcF6/aGAwEjos+K941skr5q7So2C0BVUYJygMm15gSu7DmsIekYBePEJ5bg++EI396sV/LiOgpaU/EvrQ6MMog25KbHPaEUF6Zl8Hv8AEoPRqQNnv8EW7A9kx16S2BZETmsbuXMUUBy7zUBqKilDzuXm5Ioya7QMncfQ1L4zMtL5NzzdPaWZYe3dQ0nmGqgUPA7F8zPBsKqs2530o9JVlXM2YbLmUBF7i8WY+JpNe/4jkRnTR+Fwswa/Eqk1V17Rc/BQZtIKh7DODnJRWDWHk/Uvit5q55rUsc6ASuYGQUNgo2OYpvhiq/ZEjQ4HPgm8V7S5BJ7w1fSADtsDtnpMMqzCy/wihM3YI+YEL1vJDQawiU32YxIjq2cbjGCLLSGVlsyu5LuOgY9AIUutzW3SFRnkrjYWuvdOiO3zNxnESkaUprpDAILYvvHlQtFOzAiJwDqLVtEqLFKdWMRkC04qUelWMbyhBQRwMDYJuK6upgybFjUvprxljAW3aZQ2dgLAHzhD2J4e0rlm+qnNS0th4YApk0LojXi9TyQKYJuQi0xraaIt4phVUVdKxXDB0QdVE6u8X8XGOoEuZJLauO/SWtXNtV6lwt5JcC45EQUHpLxOFYhYRZdtTLVx0wj1HhMmJLko8ISEt3MEVTMHjhAmNMB0lMRnSOseZo8UarjLAUAjDhVsg5TG23UJsszPF10nTAeJOqeDh7oIqD0lyYsYqYmHtDWyeIlytRXiCXLPtMcR7dvzuT34TAIHAYN4SJwVc30ggAopWL5QRQgEHiH1JNpgDW8JCDVm/wByUsGltzK4LWRnZGtucfmfF/dMvXhDQSv2h/ermiCQ2uFeWMEUCoPibM8/ZGTriqzXSJeVsZx6TrwcNwB4M8IkTpqIHkeAviZcAzQh7gV+00J5EIve4gFQeDtP/9oADAMBAAIAAwAAABC9kh/c79rlr3htDJG1IwUyTHan/Rq34NKEmSnfvYUNb3tCXHE2nd7wPRiDz3XGIJUxtY2iKqGiACDOM69xJ/VkXHD+O4DzBzOpDTuptkYjpygsmNGBRt4zsgLwIiZFHNmA1fy7xiC74ugfKcH03y3Adc94etwvnZ9JDQfLOvETqI/7aY9y/wDZXn+daniS7D5swjimRmH5rNEHuzkrBFd5+T4JwkwtswTJOkEuokmg30Ut2FTy/wBVN5WL1IbvjjfjmZOkUaAzhPEri3MboygWbsCprdB5lEjtjSdbJR6AESU5QvG6YCls2zrwT23KVvSul1xnU/sGjwKdidXEoFmEV+E0M3ctjuJ4I35zQm1u9acmM2Kte6222BdxRiaPd+iInW6gWitI76EfJ8HQ8mQJdySELtCn3s4o/qJjxXUVVmQy0Q8NjQclsMd/ojVou3dG/DPYBESYc+6SvsbtS0cYvyYjH5ox2P8AkBvN8ptWxxA1HEIC0lOs/lXFoXnxTdTwZmPOMNaWrZKGiyq5rVYEVzFuWmgjVDrJVvzmP6wPg8X9VrDFZN0jsx60W+PUTIV8tnMDq1v72Q7LtTs2fwBLcDiCk6RQL299P5AB3BFdgUZZty7TcJqV625lQjsSiV3LNwwLGXK3Ren5witb1723bd6NW4NJPr3ANHOB8nw5GC+4pSjz/E1sXDkfzLRMoO8jsKDHtVdPSeCIOuAdFdyeWweiGgob3WQPeTc+W2/c/lZnuBKSAldEV1d7VvICwcnWBP3PXSJMMdNhl6X14n9pWIeGlACBEZjeR9wNUdO0KRLP/wAsp3HxsqxaRPNMfYmW7iY5mSCy7PJ72Wy2yQZEa6bJ4wKQEUgA0g0gEEwIkKM2g20SAUEgGcJRzqVWnp1G5Z0Jkzze6+1Nqr4ud78X766Ql6A/2j5baXabT5ethE6zWz7/APcjDQz333/QtG8uvksvmsu09+qrcctSv3nk85O2Yac/y/SlfhvALP6b6aL8kzmnZSaM9PF4mwmbVW5UYuPj7vpHQXAFgccj7WMTXaSXLCeuuNWIBAvWf0GGiBlXvezHQ5L2kgZSkU1LzoqIGm9EiXlRbHaxlFizvLtFGDToIDf5ZJvstzxWCMw6KUgjGXXXB4a16Xfy6sCrzmjuTkLIEs4+/cKSlXnZn6yQAyNbqK4HUJX2jsupBCBp1dp1vGXwSwwk9BbZ94DTCsVCsAx/BjuxSL7XqS+w4Be+/wCVhG5Yndf1C7c4z6BC+3t1fqbnDMMZu5X3QJPbM40p5xbuzChYadnDY47B4IkaIfG5qkxsYsJfg8alU/jCqk3jzehvowmSn6pJCZfpS3yw+VrzpOJ5/Y/9xaudUMgilU23gz1183qI7dC7n2YnE0lb+jH/AIoAVmB2NRIR3WPb2/j8Qc0sWA0uqmD0yg3JvL32zFgWjUm51FxijA4zWOaIOE7sOwYInsuPGNse64+ZqX9Mn6WXutNmb1fq+o2Lr+QCJ44Leecs1G4ftH2lWdSuyXRdxdcBca+waFDEsY4ErbD/AJBBu0hID7sFYG1N4NaWfx3IVH/Ih97+dHMWIyMIeJYCTcQEXlgd/iFzecaHpBg7IVmp+oSI59cim/aj07ijarW+BPO3weJb0SpYHdpS/goV4wqVMzv6AiAHT1bH55wrOT1h2FSBSZ3C1QUqRkzlKfSucGLfiMV8ksKvgS1uNSqEx054FlDrmOBmAIEeKTo2ytRXXfuuZEJn0174+AlXXoQ93/5vRn1+6yxAm+qfBBV4wNBHgA3+xNMh5CVkopPBIdsNtLcYQuqSzTjw3dg7qjW8Gd/qKq6bBS6dtuQCnRg1itL5UPvIp6WP5wjeKtti2na9M2zwBT70uBxiClwG6NZKZb1ADRIWqFE79cobw+oOBoSAEk1CU7cIraDxsQYsNWaHLSFTJRUNWpy5XJdyh3Gyp1N8X2L/AFW2izR3AcWQtNgqn+EmWEKrkvF0bA1Z/D4e/am+06Jdqwemhgqzaje2Z04rD78ge3vi1daUbdS+BAkBlQSuoShoFDnRSSKUod7HeDFdr/opqZIi9gF3xLG8E5AzrHdUQi1TJv10Niw1WWKSwnfYILexo2JKeAoPe56PfAHTPH//xAApEQEAAgIBAwMEAwEBAQAAAAABABEhMUFRYXEQgfCRobHB0eHxIDBA/9oACAEDAQE/ELBl894kBuNYcThLlba3MEGDYYaw4jWBAS2K1FA19Lg/GGF9IdhrEaiZYPkiATNJfmKdDwxGIWhAHiVA5jICvMLiBoUcdI1LihgWopW9hzBKnXmURfzAGANFu5XViFsOcwNmFQuY66TXbTF8Q6kC3dw5xBsMXLlBGo3ULbUuWrlKqLPoQgohy5qZ1U3uPdGIWrfeADzDyn2jeU8TFaB73EILl5htJXUso7gbmpci3EARQu0FbSbF7R0t21CYRXczBwUevEyKkrFwt8SGAauaEAXKBpiW1N0+JdpVdRWi3ZBrBilVEKusrL8biMMENglbjrEovmOqUuEEq9JdqkJTQYzA1AQFd6YxozUKq2OdRiln2/mXCcy2g8Ts4AaMR+1zhFPdnWii4qE2SqAxe1jMTBGpRB0REOo1ENx8pRTiXNi327f1B0Y/f/IudhjwZJDYxOL1EKGC9YFLIl4gMQxM5uUdpYlpgAqC7PnxijUCrIlWF3jVfncLF3+f1FTHwTHEQh1gAm4sUVPnEQ4qIMTn3lXaljTMEv5ywq5SIFX1lMuNylMGICcH1gUVgiYVHY4FTNDLoo9atp87Ql7yZlAQ5XvEMwGrY8neAMZsJV34x+YtWGwQUY3fz+ZRSzbjETgu1ndDz0ggZHWDmlS9zrKLRFmEsmfkIAb6yllTItmVvMQoR4j3ladQItCo2ZqV8+dJbDKEZNS794BXoQq+O3x8xmcvM3RisKRhdXzEjZl9oUwAv2l8DZFuhlSHSM1Nji4gocC95g7WxyoYlSjUrmtRR87jEPdEVcGYgHEzkaE0XjMKgyyq4QygzFlYIUlGRmpxZE3pis1AWCpEWbIfeAOr1l92G84jdJlTvEU5qoqk00+IiEEbz1+du8qReYU0zBSESmIDRDBsfmYK1vnXULXj7R02YK6lGtlP1iMM6yHbhiQW6K3+pTaK6t6gPuYlWYrYwD3PzA2SzDXJEQfb2lVWZAkoeT+YgCGF6xpxb2+PjHulsvR1jvKHaiAtLa+vSKsw583/ABALktUI2eG5hqVbPRidlyk3LUGbxKBbj4QrCYNURqTJiJJyYwZm0SpllMdGZgHUoHFEsSr6QhtCUhDOsR3FDZ9PjKWhy94GjAlhFM8IEvJWo4bFzGi+okEKgokdXghSKwvccR4gaBi4lCoruo20alqBqWgVvHeNQwTLIGVgZRctUVq11lIy7d/PrCIVmALdzXXWUgVS7ughrzLBlRvrcPKAsWzHTE09fiUIcQi9efntGqCWqjv3QY0zHWAeAHvjvFUwN667g0uJYWYicu7Kywc8OHt+YjLJgrcV2KH87i4QmvMYhyw9iRKIYiCr1GQ6wIPxLijb1hJRKMYhVqLoahugd/pEtmOm9pQZl8V9pQqFyXEGJmMUQXiYsRgIzVm7UHZPnEQBUWyWEOZS2TSFYoYCVFM+3Fyu/J1gezyRyMqQMjUWLGHrEBGoqktB8kNFRAbmUl0MMCD3OkKaZsxg3C+JyuUBhbJQW0KFMAG4KYfdjf4PeMGlpKlBNBgQveVHtRvBjvr7wAujrXaLcalwuJvMRLgd9IrgKr7wGaXDkUazPzQ1EGq8vrUaE27TWS1SxoIZmKvqyg8J7am3kfmVG8TNjXtKcjD4jTX3i9VFWlmVF0TQdd45uBSpplAaJkc2ZyKC30MN0bQ+IukWRuNFdybSniEgQP4mgNwcUggFkIBiqd7YJkJQZQWGJQyr+39x4IwNhUu295mERpyzAM2ZiOKivRb4gBOSAKggQIDs6xsb1GJq5ksJSrolekoJqEvpka8fqBdCIOKxBCUExRbgxZfsNQukLlrUuJ0koscpywQq/dAlivvBVsBXUYNdYdoimr53hG4q2Y1OZlhHYjAIRbIe3TvCAoTeIbvHKrjInnrMZjxGrgwhcMsMTZ7+hqPZLA8LLiALK7RjVSlUEc2Qq7qManMWFn0gDVEMQVByxBbULKvpGL48+YcK5+fSFtsG8TsQ4R4joxyWMcqkVsD5riDIGI7uN2l3SJU2e348yuCyiizaJqcpiajtgaZkHMUWuJXF8+/vEFiwGXSCHkTJH5VvrFUFRyiCyZjaIdS+3Jz/ABXoIlRApE08xAIxgZMy1dlisY9WSwztEoJWxgdf6jxVqXbMR0qiqXWWKNdZdldc2S1I11nRx/Ui7HX5iLqPF9D5iNGOYymQTOkzW4AtbiAjxAKOv4gB+JWWWsVBxEcuJtUT6aiaW/d+vpATMZXxHx6xKIim6iLHOPzBV7twiwzC1VHTUrWGIUHNxjjYkdUr7wwLGOqTBbTHYfOkrbncdUZZ/da7VcbYlcXFQFO4+iO18xeUdsIux+P1OJFjUa3IqJAbdt1CGz/ZW6JustNGo6pTMGYh8S4Bmtly9oi4EcIZAcsQWPPYiOGFP7+kMYCFRX5IaEU6QgRxr7w0TpMMxpGgs0x2Lgat1nrUMDYblQRiCFrDMlI4t1KoGERvp87wF3zFDM2ZTPP5goGGVFLN/WXKMvKQFPMrrACKBu4olea6eZhjLXmYNhMjGrNFI1ifGENn9wJSYG44gIKrECvUGH3z+ohCzW/PHb+pcW5b/f6ltEWRKWe7DQZkzllblFRctCYmwQRKZUNI771mQKqVVT9NRCENS9zmZW1EW6Amtx0Td6/cG1KxKvWQ0IP3pY1HiErbRhljLEFh7wwDDyF3pgeEqs3ZgW6mO30Jt+6HsY8wLUgqXAFSMoespQ/5/sfF38/2VpJSus+4lqKiSdYlijuZ3cQq5Xio8o8ZdNQ0Sw6zSGoKMIhipuJkxkkKUvntECmpSmSbMFvjMyQUfW5RlufeBRjRUOHmJwa+0xmRv3+EEFs6doWAkAmDI7IlAOXzMMarRR+oIVhZXMSmoZgHQgC4yY8X7cxyYXrtLw4g1dzg4/uYQkzLxzISvnEbV3G8vHzmAALXy5gCKBGTrOEnEVog1KtHr+ohzXMBWPnmILtE8soYmuIlccdYJVxEtXeIsIDc/wBQNwlXSUwjFSszMR3TAqAXX+QLKWEmNzlAJdY3LDdwApn1KJWyYl57RzUFQqr3Y9mnSGcgQ2WLixd3rCGESNo1mYriphxEO4YFQrFQ0UjL1FCnmVwcRqamlUrJgV6bhE3P4i4tXGFg4iy+iF3HPSCHthyalolPmUqwJEH5r+EZJuj8qUMsbIBuMMR9PJDgBjMAo8pR2wkXNE5FyouJmVVc5ndgG4BozUd5fVuWh9oiiB2ywGbOf839IqXY8ywwmVhiBWTV9IAKCIQ58pTchbGYkOPm4BDriIoB7EW1RXjGYlMmYG1ypLlKGWdElFYyhukXv+fpMNRFWzIKuWGMalgHV94VDqAbvBox85jrvBriLiEdYxYxMsqjX7iAlC4V15iy9IF0aFkQGss62aYJZWOJepGbOINTQ8RIVGliUFkQlMVXiLAF3M80cu8XBLZ5ubrLmUNJksqKLSK7vXT/ACWDS2xeytRbc0J1lhrKYQK6ROZzzBByQ5Q1Ti4hGMQaj8xOxqM2RVQSmAoYWi2Gi0wNwuspHIUldEcui2V8yxjMtarHZTpAkd1AowDyllq5bawiv8x0pLl/UTlFIvUhAB+Y+a00KSpdwXBcx6rAWphsqUZTEElIhyxJkheHoDUoUy8hshrUBmpRM6ma2gtMaARyESjQjDOSDVKNYxtuL3VB+amybhRcusK8zaslDqUdMU0wK1FBHMVyh9JSBcSzmZdwWzqBShgCmLYTQB3gNYItQRxqijmP2kLg/RCqUdwCqlAGZgmyDVxDSidsAYJkZa8s8yXquWG+FGoWohx8NoxvllGoxMxOJmIK6zdhKhUxxpGspGwaSq3B1VKoqNTJEIsIkXULGo22kS3UpsJk2wUYhWP0gBxADZAmXQsXBhUUKmGJmztZUN3ITYZYIrpghL9BhKGVTMRqm4kZLgByTJsjRUKamfMp1Q6CpjzBGcTGQDojeBqVMRawTxjeBigtIOhgRlGSGyVWn3jjZiOyHSmOp0YKZzBUlQoUkZrUvxKIJuPrQLpfccSqVSYQN3LvESkEMrl2lZah1QOoTKAAYjSIS5ZZdQURrGCGYGpZ1BcxWBACiZeZbpDtgikhuph0IHpAdJ2ID0AXWL9YDLv8ivP2Z3ZdzOK5Vp9DiWHWI12CXbSdyYMQjp9FyIO1EoqcQwLnejTTGsouYQJemUkRqWm5cUtsw0wdUDYSIGoYMR1kUbiNZjLFyjiIcwIjj0KNMWGGYcwsqPXqFucwpxBrMJlOkYU4gMv5jNnTC7caMRBmPVnWYJB0crdJ2H1nbQPmUcxLn7Snmdyd+BRV6NsaZgDKOsDvKGmCZbLEuZlvSLn0V9FeJXmBlEWKJZLiCYQ9Ai3X00ZmUpKSs7fRfrL9Y1jOErK16e6I6y7ubSlwPqt+ZlzLsXKOYQ6LOq+hd3Doijud6HWi3MFzLmvSd1yyJcy0KyH1YQVBEO30LwXaMHrO76FxwzqpbmX6zzlKCJbpLdJbpCKnqUqomXbnSYggPprO+Y+m0euDl5aXCnq2RfQag+i3oYvL9BlH0rI19JeVhT0MU9LSM4+ikSyp6lT0UjJYiJ4TLiX6RWecVTUww3ALYzSKtcwhAoOXl5aZzymHM84o9LBaDWIdpfoXBPQxLv0pwN+mpctLSmNiFZdjC/Muf8BKl3mecp1mfMy5lp5y3WWMejynlPKU6xPDAyvX0K7idyvTB9FP+F0Q6owOL9S8tBS/obTCXZbLSXirLl2MBsw7W3K8d5gpdy5aW9ZlmK4l5aXlpbLfQaloOSGvQaYI+lzPpcvdIfvHb/4XXouXLJZLlyyWTEJqXLlkuXLmJj/i/UuXLly5cuXLly5cv/i/S5f/AIkBkFCXCosvpqZ/61/269Lly5aW9NPSlPOJgg6y2X6XBv1v/wCdhHcUuWy2H/yrXozUySVBEXCajCES0tC0pBv0tlsM7lTmPpbBjbv/AKLly4R4MuMp9anpIpKet1Ll+i5d+ly5cuXLiwf+giU9C36C+txz/wAXLi+iv+WkG5dS5Z6jT03g3BC0MASRW2Kn6Ll+g1M/Xslkv/klR1Lg3/zTK0epEeBUXrLJZLP+bRXFhe2WTBhXMd4g4zKRQgJZLJZLJZKSkv1FOPW01hhTHUVnrY8wFwA1D7CJOSZBiqaKYLtmXotmTsmHEvSIlnT0GWCn/gxFD0EQrccbf+LZcv0HPqqamenpa6ipuJpOY9YPoG/UXCNZP9SkOr/cu8+tS/UuWQpL9Vv1Kehb9GZ/5WvQYTaI4qVbjQvQTsZpWjAQXZUoFyx1yT7veb8LFZqCZr7RXTHa5e6lTqGLzBnLzG3R9IEKJt1MuVekstzlBgFTUSsO5ZrmG8RyxErXpnlAmAtYrsYFwgFuZiQUj/ntAbqsy7Z9JXsZX1ipNbmSEtEWeZSYfeYpSKUhMQUx6QK36HpdJKcvZis1MZ5/54v1M+l/8XB9K/4q5xc7yuZ7xKh3gsu5Gw6JZaQl+yFN2l4RAGU7kgMCVhS6gAiothZVcv4iqbH8Y5hkriIHZsllaz7kLEpXSJYgsqzKAHaUdtXAlP3EnvDDcrKYqHhbLiK2IqhDdzcX0dRGcMAcxipWKpshWOGFMcso2MyYQ4mI1MZUyuk8+m0uJsypXG0/aEqQjegDMvK8sSAtMAV2fPmIAK1LWlEIUL9ALqdqJKYYY4xlfOZc7JZV8f8AKanGJcyjpf2Ylhj1yetQ3AmiPMFsxfUszBt0I0FTnzA4z7SjILxERDx6fcH5jBCi0psOZmD6QbQuNBqpf1Io1Ba8EFyceZTbgPxLFCo2OsQaUw7eneWo7fnEu7U/zHxdSsmG6hLHOo8+1R5RXrLTLMA3OZWJ9rgBzRmUMCuiN39v5iKDEpY3C4MwMBvXJHOT4mMqGqQR94av06MKxBISaTTQYNesO7KV5/RH2xhAm5cIXkxxb1LBGUAKDJEOUhpSxwEPgrL5IRdwuXSNALj2ZmqJBfFNfSKqogyzWUAsl+8ULjE1XMO3cfO8VeE+d4qCQBfjzf2VErUIFKuTAFg+FZcgcthK3KNUtKC83htUZimZW2S1qs+8esSiIPdT2iUu5+YBxlrxhltpmHMwkPkMxClUEu4ImC6ER53pUuFSDUFCq4Op6QMuI82h9/Pz3jC5xmE3hvzQEy9obHXV8HmoqC8PH9ahbEZq7wHmfr/kYEtZVyKi10vaZGvvRXX3lJSyvYxoMOssj2d48OXppitliKJe69LLxzWS/Ma6lJuBTcPLHILH2vz0+spdB6DCvjmIGNyta/f0meUIxL0hUDDzql2mE3BJlLL7QmzBwl+hRuUM4qJTCGdxgOGHERtAlOO5bgr8zOy6gCYjTKQPIiz0uA5wDpACq11nDctKYiiD2G4lR6whRlOsBLJcqWWpvMRsSg9IeDJYRkuVQpuGXt3GNxjr9II1CiYMFwqXiB2Fyjbfz9RN2CfZLe1RjAUZrv7dY4pf6nOgSg09IrOb/cChww+0MVNI6krAwo075ffS/N8Q9Qlwu8UDSLTC/wBwW0Zk7q8f1Cu9LP48fbMxuogQRAWKt/33isZe+gDVHSHBlShpRBgRWpdtMsssCNrYUyRHOMV9ysjdcTvTEOpZi5pKIXUOb+fScriPAl1zK+YECwPbIVf7Eqyr0/zrB3Aa+XEDEwbjnxiEoOIGfrDGn+EpFDwtu8Py4WJM2KXbqVJW5lNo9CEdUQXf9QTOJ+fMoAhed/onFDKdEob4jG4+NdoJDzKDvvxOaV/cAiXCSn5UpkOqpzTBisCo5946CyoIhREIWZQ1KZCLRWJcgZkC4I5gBdkFzRDXU/Eatmh/2WiZWW9dP3GI6N3g7dYLgnjEoKGFJoO8Xoufrx+4Xgcef3FjdFR1axC225ajAMdY2DjH4/mZIgWc41BQtXxGlckXcmJNG36XLCO5aLrEsXbgxn9EQhOcIBg1hgWvBBmBidTFTSPmjAA3eh6x+ifeEbEJkp8L5uAJRfMQqdYhCXbuFqdIUq2LFUvS6uKAOPj/AHLgtcWEY1SIoUmOkBVrAr8yq04mHGdniKV1do9Zwrbj2y3gnZX7y6BWlcsepntKVb4qDqwg6gsXmFYvO/SbWV1LvHiUdFdQF4Ijrr10QBAUfmAsC4CgY+kaE1BKDjMRhQ10mPOXiPRXMAALCLtmLYwBUwYCOiOm4jhMUUMS3THW+kJyTNhcO41lKuUA8biA1+9ZlNk/WFrZADDcw6NWF7RVSK6czfSPASqDVxKM+m4Dmv3AZIbWGN95hM6nW+8sBTBCq9Uc+s5mAIDlTGKlRkh58xjazZUFKYtsEdW5mweWGzMFgdSOpPExDnhMRUKL9JqcJv8AuUoYe06hXj4QQzOIyxRzHdV1hxBCXUCdlafTn3maUUMbSmaAvNxlqCukTOwtQBW2/aDk/Dr5mBiFfT2gFm5xMHVuoCi7leSVVrsb7RoAxGgj4qG2soDqavr39oy8mE69F4GNI6tJQGfEDIEy9O0HgmV0Rsv6wSzVyhmU0WoGKmzmCLul7X6xK5IArI1lUwmUIy1ZUWMwp0h0APb344jdsbjaARiZziBZA5lryC9ssIfmmWzrPPJwg6rlrGQHGIjpcQOs/ESLERbJAwYIGYNV35hDiXmY0ZYQBTlKhZpi2MrIRmcUwCLccCH/ABAVS5hT0lpLvcQKQWCF3CqGGz9o6riNgySCjC9j+pjBHxBz5nUINdpcDRKWLWZxXFhCWCzf5gRYwu9QuFRANQI67vEXnFYU2PW2fOkYXb5p+kaGKnEFbD7wihB4pSAyljeVIFC1KFGcxihrr89oAC+OlwK00xMWymCy0FMCBaOA/r/UqLT7ozrMhS49rTxKGoRRRJZKT3fETQOpFAMQDeotMbjACwNjVfxGjlGyasPy36lh9PaNJlsZXuoC3Eve0vGyXCnECrmb95QYYL0HTtqKi64+sKGTmdDJntFbb4+0pCfnSVrtL9ahMpFb9oTCCi1q5Q1At2EK7eDvB1gqEqAjKHaC1CbkHcSvv+pkL+pRdxAgioCw318S6FW73/LAwKZg4espAMVDqErURR3XKAuPoi4EIDxEUSYscXeuZlsN9pRMpRdsA7VDhlR+IVViZtzbE6ADitwWAPYgpq8S28a6qJchqOW4DQVBTOsxNWIqoVE6MCy7S32ZS3Qx5KSI4lCbS7ByzdZjhvdRrBUAYgUXsv8AUKgFv7Ry2Wyt1L9vwyo0+7LB5PzBQstByle2YR1NEOIIhhIYGIV5zQVIzfExdtSkMVTYMQxD+8KsQjHJ94yi++eJerbd9oqzglFL95kOwm4ZxX7lO03OTFRWbxFdMWzkYzBzLbDFQqYkcRqoxA1m4YAA8S1pYdcQLu3HSXG4W2TIqLN7kxSKcz/XmU04iv3T6FAKEwxXTX1nA4YBoaX6TEYEuyXIwUPClSnQ546R8DiY9Mw/fBi1sbDjBWNl1MWlyL94KLj2PPv/AJAyWp16Yvr0jYMVqbQc196hguIMpkdikv6QWkNaysTVdfzC7oebmfcGB3EvIiJdVAkLw/SUHeAGfjDYmIhAOY91iwWC5jk4jVSFfOf1EjSBVFZPzLxZK9JwMGxDiwHYQlVJTbEjMZPAW/dn9Qo6r69LlRlmWXRwrXZx9YycNP0qAc/jEGnMdv3mOrp+uJSoKggXvmJZlJjiA9SvvEwm0WtxDRs1maQxLnUpYvCy15cEU4NIlbNc+ZwiWx+CNVcpY7QWiBZwgtELJhDBKRUalEtQ69eOYjsiLe8qeioMAfKuCmiF7qDrUvoqJOolwRdVFQeu45AL2IUMeZmlYo/cslCF68S0dpYlg8wqDfh7Vn8SpL9meP1GqKePw/SU8RKke4lvrhaIpQ+NSwYC27szNbhGWNYjvMeEjO6Q0OV5/MJrwy/IxERZG2EgLG+Zc6H+xQDpMAdIbduNrDELeT8w8omAAvSIccQqphaYRREuLgmimLUBGaiV7cNZlukJqmYqsQmNcwKNs39oh1HTUQaNdhq9cedQzC25qGMhC3Km2Szdv9kNEt6MEK4gUmajrVhmbUs48wWgfeWc1GzPE/uIUXAAuamDTBExtNmAbQGCIixlwYYTKafpOMlSgcyxhXrI6R9hZSuNwBonFUUOCLZ2jUzggU5PtUbZjOWIq4sXvN0L2lrlqa/FYhVy6/F/SYlQ7c6CpbFUOOm+nWX2bqNoO8PqVOHKeIn6/wBlm6MFBrLDFrnrKYpuq3MG5dtuMB2zHYYrtuNBfeMLcR43FC4KBF28XODMQiGzbr2zGViiNLSYjO/nMWxzAqtECLEoI7ZkHXtA/wBBibxGG2mJ7D0WihT59IlqRi1E7HzrBryvSv4nKMoUzp4mV4mXK/BFXRLlbceErEVHc1klZEzFQlRu5U3Jn05joc/EpnHyZKmg5McwTk47xxEYrvDgmxYy8R2zT4nIzKjcso6yrdA117p+IDQZUsIQbRQ6slmEYmSGIGUt2Qcn2hA8ogGCiiVENUOtwYbhdXKgHWYF0kYcEalttmECtU9ZbI1Vb4i1CB3/AHKyioxYZjpCdopQGYIuUTB0TES+Ir72Zmlitv3MAyKg4YQjsxKGi/Os2qu4FiwnQH3/AIi8G5uWAXuHGZijsPM5GQOE/MQbygYCKYrsmbFQuoPC2DMQamg2KNPdbjYDPf6TUEDsJ18GYbNGq6Qs3p+fOYGTM6ypwO69RV57yu58MfOsG1CWB2j24/bFyjeHz2g1HEvhR1nWPu9+8LNEcLpIzTz88Q+Ly1iEgxzncBjETP0Iz3ygtTA5OLa7nBBLHiXzfnzmF9xOi+faLV/OXKPWIcIiqVfzxLPIyyixDZFFIgSBdzAZJk/eyiwr52lDU0oQsoSukdBLVj1g2hiKJkQIOZdKshCQByhIQE1lEoY5/wAZmaXMQO/5iYGN74Ikg5c+0LGQiXXENDrcSN1+8MU9YJotH7zAY95VjMyQtKzDAwsEXGlFYgVFcAR6n5lConCMYz5uGsDEuIk3JMzIBcDAmSkKcqFoVM7aKUuDRUaub+ahUSJrXUcC1n9Q1Tnv85llJruHJAMl3XHGf3KLFZ6tnb3gMSp8QB0PnETPLqr/AD+4gjcSnZHMtRfvk/E4SoW2VWytPp0hIT3ixrpBR2xVbzHRBU7TfMAxi24gTBamCSbhNPmZWwxS1Vmo4L2y6sI1IJdywbx3j0ez6xbIskVg746S6RmUPE4XLcAK6PExrLi4RJAPA57R7HE3Lj2lNFdHPlP4zGs78GvZ3BAdNdPfmWqlIC3fMImD1xqHeAKrBqJUJiIpo3+YGcdo55K7v6gUHzzNsQ35Uv5y7hu3oxe0dOX3g1UEstBp30ZdLLXn9QJAlKukcGilESz5jwuafmVQ7wDKVmoGG0EBdmWaNSoSVtFjLmN/NymXA5fPwmF+kGBsfrEYn18dJUxWxlamRIhg3At3AcTCYAizRDCOT6wc5AFHb5uV6cQ2GK2TejS+Dn9RB3hzxCrNV9tQ4KajHAr9xdilqFkQG5akiCBKyU1be3ETt/sZVyraE4ahNqj8PqzXFFj0IjlGgtwcJZW5oIB4feOhApr4gsF9oQhx0/mExhtMj5jAibA0y3TU5gW1AY6JXl4XpG1AY/u74lEZHfmJSnMeZ6Ry1wIzKN8+0PM6wQOl4sPnWWUMQQu78zJ0wlALIa6Q5cQ0wFPeWDy+fSYlq00ysTJdDnt+7gaZkeIEH47wytIhKh2dt9IIXpbz1/qA4ND8wdC37v4iPIPh/iIlCI5zNVmXj7NfiAcGGWJaRQlyoVGeiSigFkXcJVOYGl1CAK/WUGDHVqUGoEkZ7yxS/L8YspSXvO41dKooGnnZ9JcnXkhg6IIH9JQX/X6gHMFXG/pLaFR0IVFaGZX4uHshRWLYpgUgLGOikyQhQFGYTD2gC+K/cvbm6/cTQjLMWFxhOuUKSvA/xAjn6P8AEVll1A6zzJAYFyjHWfxWweHoDm7kZGt8S5LZhO7xLYzzw9PEsqRt8U17/wAQxsRy/omS5uO75SwTqlRbNcwA8UQnLFQAiAuL+0vsUX50jgMaxsPeUAC6lBHo/qH9wgCJ3RBRMrsOwIgFZcLmbvkrEFNOdxmcZmZWvEto38wcYmYsUWlC2cMzKEK2QixLI9zTrzHGAWONQjNTNuGN3TyP7lyo+eYxExuxCEc1URpwfowznvO/SJbML12olEDEcTeoY0JWHmappGo1ErGYq5I3drM8ckNaKdfSHgbhWJQfSbxSjsStYZcFMxSxDNksrUqgsQHDBgJegBhwRGzHN71ErEbjkMWNjMixQzCPYzCkGYgW/wBxY198KocMVKWRLOKzL04ogmMaK4c8RtlV0+HpLGyvd/kNbA13iJbYRHc0UE0v5gSl3aQGgWdbg3vhMVw+CHmpaun1/uUyQYDqGp6QbIr+5preH9TfbQlc6jtRp2QoYtKFS7HNxCQzU1mUUN6xKuI1Vn1hJbL3GJUEaIHmUuCXkhrAAUE9RAFo3AVSu0ob1jau4fNV2489Iwlfz7xi0jtPnEdZ056eesapX8cQfL6RFmVXeJ9qU9vEAZpL46Rg2j59I1DCqvmsc/NeiKMW/wBS4o8NTQNzB0sf1EAz1SlsAPECTdhjxH7gYaR0WsjpmJVqEDzEFh3l/wDEx8/UBypYUatzKE0St8yrlZUWQMQEeYIVKl7TqcS1/B16Qs4uMV39SWN4fWOW8JkAImqBFfHzWWBdCBYxgSsUJWSBAGLgwVHzmBcW8QVlVQ5fQ8fzLaK3XXmdREFCwK+UFOqFXeKgmu/aDesIal9IjQuI5k9YA64sgh4tdZW79eJgu5Ed6WIYugqAIcfSC6kVog2JSJHt7yq4VEXxGo4/mHRKuaPWu2r3MQDcau5M0Mw34D72yiUyywqgMsZDUa5gc8rDMhPsRFjFYcEYmA7Pn+dYgXkaibVqolxrmagbPv7y81zGwiA2Tb+PneAB7mKHR/JLCpnneuvvLZUVlYsElsxhIAKjREIqBWCGlLjOv5lmDznp0Iwj1jDrRLDOIjZG3lX7iWXEFs2siyOY7kGNupY84YGQcE0WynSN2BB4Llga6RnBm/jHBebHH9BMidjS9HnziGDuH18yixNmCpb/ADBAF9fMwycywnS7itGaiyjELS38x3iEm9V3+x0jGtVAU1DT8MJ22de8ti5X6hu46dYQOsl0iClfSaBR81HBTCUhMKJAIVD50mT9SEdMurmCFhN54DrAX0gVuWRCKlzAwDf11KtalC5xiS1M1M/gNnsamMRg2bhMwPf+p3QnHXiEBaZgLRqa4ZalPnu/2+fmYReX8wnzM/2S6efnGojoXOJ4kgTLyjYOnJ06b1N53LgxJsQvx/saCxgbjDBwgGTCE0qGGKhKJnaNsvExDcGritIBBqsxthr58YAYz6fjjzNyFLWiF52gUMTgZisDRZT2E0lUYS1r8fSKoPAmSeiXB4lrAAsW5lprE31fPHtUWQU8veuYOVnt/cQI2jq5lwy8UdbY7Q1ftGDtIuE1VY7/AHjlRxMpVUITricJWx7f7KU7ioYFmlMz3P57So7v6hrVPyoQK3n338zHrBdHpHU/SLawGEHDQ7agLYpv4Stvch01wwkBom7mFpRFG7gstCF7sbtg6fzKWa+a/mWKxeDrAunav7itYcNf3KIrAW4rjBYsOsfHGvGZToSxmNMWKmiNzrHvKTh4IEq1KKcVESmk0ill2Zi67hg2LiCZCMGAp5faWFQUu9ELtnP7QJaS0RzBYvE1jLCGwbmd7jAYOCpXrg+3oApTqD5IaQipV5lxCOa9nSwmEtx7ywsiC3MZ3JS5YkAYzA67/ctoJrr/ALBa9qVX9y+ohMsDcZUx/dENVEpMCn5jrAoFSgFxLtTiNsgxNfcxrHaIadMNCn9ysaU/qaQdH8SwBYafMAVvM3e0saTBiuZ1hK8C/OOZlLLLKdRytAfZBbdPdYgtjm7ywbOEGXDB58QBXEJRF36nmNbsXzxAynzET0TGJllhEfoTLE+38yjFw3CZ06QGj7J/EdYvY/uKMBU1qTCmWM2rXNfLgSWqa5xTGDeJLPjEtXOXMARuHXmPU5hwCK2VBKDXmGeTKHgmjEzqkVgIXoMLcxnIMDgJyowqGgsr1YTcRKqZl+qi6I4U+8lYIqyQlIKCvR90R19CbI9ZZqNn5lWhG3g9AnuQLGukwxhHzfuIzOkOUcVOkaqTX5iW1+Khk1AFCfZelp8MbaIQsxwmS8RM5O5s+czc8E/SfdxNbist9FuiYr1gxmZn3DAoF7/UMNEZ93E33thAEJZ5mvohqM19Od/Q/c4PWCUnSfbS0ufMM6CyfmbwlchEVEahZ9sxKL4/ia5lHTwmr6MqBcJgR36AF+JjRHBuaXE+3CMp2cx0wjnKZE//xAApEQEAAgICAQMEAgMBAQAAAAABABEhMUFRYRBxgZGhwfAgsTDR4fFA/9oACAECAQE/EBAovmbKKlVq4AHVczMg9jL9ZWpQUK5siiIrTLipNkyDQ0HQrhoVCzsXARbO4nzInsgNAkGhfvKOx8QPDuPekxKErHkeIqwjMc0VY5lmUIjdqLFX7MRDhCivMg/AuUy2a7iGkQKbXcQZuXmyKKRuwXFwpIiu68ziU31DRw17QChVV4iBq1idMXJg7mCzLLJUUJVUAg43ytTIzO4pAgC0BqPFsNlSUpOoGy1EcrKFbCjLebJbqRJQxoLiaWE24JZhfeFFiX7wIHDKBJWQTGqXyQgPtMqB1FTY+0QbFK1KS47oEvBC2pZT1j6CmVtTqZYseIapT9+sNUggX8S5L3mcTE5OIMFXBUsczCK3EvNfYYbuj4YNQLHHI8xIqMx8wxYhteKJVWYuEBYEto4lhbI3eAlxhVifvEtBxUTcshDah9WNzcwhoLdQw7TBia8IRgItBv8Aef1LR0fhBLMoDjqZCXIK+Ib2gs7dVzAxsw2kqMubOI6ElwgAfZeIp0IFf+49niI5QrEr/aZqIs4QbrhEZWu4PtjFm5mjnlg7jhUiWkx2Cym8TBr+00FQQGVwqpZI9StzAg2GnURsx1AVb9TIMv5ii62ADlLEhUEpWDI7ja1DYt5qOX8IbYo3RqYILsmclsYeCALFCheO2gWdyOGWDQf3GhXDmVrG+pkGUAA5L/54jhM519EQDAlECmo21xdENHbEd6QuDqN05biyVxLjFPzctpKFJ0AZz+/M+AhNfMwXv7RfwNS1jELoiAMyx0LxGAA/9lBS0IqhzMWYCEADMvewPtOEWsf9jYFlBmIQzZIYBe87I22RHguAAMqFQLNS5UZmZYYVVyT5jBPbLOJuZnEYBnEvGqo3MWgJbz4/uIo5ZhUqClfUrkRHGFmE1F65lxtaS0t3A1hTHubIo4lYtbuu4WtrF5Th6hZGzuPChDQISNcx2WbOVxFbgb8y8RBDaY08EeQQaMu0eL/qVBzIhgrmKogy/wDkI7/mD1kufCwhgRsCmBozE3vU5giroFH1iAPNR5Ro1LCmDk3FVhpxqJoFExp7R13cAgthsVK+1T6hkSxL3vqItREqDOYFi2ftGp36SMO5VT4SxZCeBDUpjUV2wbuMG+OohSSwFTHJYwSVDL0OiIWO5tMdhMTzhJXLjfHMMXYcdVHEVbiSCLgR0EI+VGAtJvRqK0MfyTAkpUl14X6SyZx/XmAMJ5gMGNpBsjqplbKr5ih0c/MGdI8KZmOXUujFwJbTZFlqL+WagBLt7giG5yTI95TjHDNk2sSzTaS3PMKGCNoBgnJCVFxgtLH9qg7pOYDDRGvXPcvQ9otAlKMrZfMLwu5c23BCYn9YWYxlulmElLKgKpK6iwMv7iALjwuoJRwfEeHB+5iqBjxEWGFVnUW3ZAtELgHVYlClbJfLESV1CoDxGrMq8qisl7gLFT9YAFjC1pgBFbRnCOcvMAUUCQTj6udHntmBNI6UXCMIbOo1Q+8VNNEY+oUyGOnz/cHM+iKEMsYUXAGcsD/zlQLivPiNF8w7Nsi4EYi7Y2KVA0K4UHpeUDPmEDuWKhHiyAVRkomiWR1qP0mGOIZUF06jrkr3IdMD4uPA/SWv9lTWNy2DMglmUJ8KuiA7xi1wReYV8RdQqFcVgHPcGQSxmUYEZPxURGOZmY7r2MXxlyZvhiiqDEFBUGNbiIHUBODGpXPcVrSVm99QxZQeLfmcMYgVrLWdp1kMM35nhLFJo5iWu7NIDDXBmF3iXiScJjQGI7IIhgEjGxM7MZdqZgY73JVZSYKZSzWYNDuhxAgJ4axGXbzORCgLTCIueY4lLcx4e8HsMy/CH5ibdExhqEsOYdLhMBEFgMEuRiCdxe0oojohdzepBdK+qgpcCHsy4PKZ5dRsVuKd/pLjYT4lhzM2HNRYLRFWq+5RmpZqiG7NMNXu7jDbLTVofehHjE0uzuOhg18SpFsaISufMJoCRJwMEVBYxUqYRTSFZUfIuYgnsSo5PeDw/dOV98Otp9IVGgzHIhpRQLgHEZlYYODCGIqFP+/SUyHlM9WcTJYMZg3+3AIJqTxKYa7mOjtAgm873MW21K3hHaUeOSIV8moomWBInZgOhQQoOPSACziNRFH3j3E/dMhdfiMskphAIWNwZ0/eJTT3KCpVFcQbPSCSYrnuM4sPUwYJjMolGkIWiIsDqWYN6rr2heS8RNENDAa3GDpEIKjlpnUN2XXM40lSVuVcJpXwCNUhUipfBIBL6lwWoG0alVd/X8QXLv4mCGGYEwU3Kx7ZRVlgoqG95zAa5IELYhChKiA9EV5CCJmfWBeIV9E75QmK3cxMdxLfMqgWf3GI0QdhudEswLFkuTLUe1p/2M16zFc4lNsVA9aPvCEGmBUuzcvgYhauOKEglxrxGzOoilydRKLcL/7FAGoEZIrUV4hpBBK+V/TEZsBWf+RI0zYAougCvr8xCE0yIgyykveAqxGMWqdRvWoilPz7+YizmodFKmXtQBco0ZQWqzFBod41HSn0EhTEG0NhyuG0TODBEeiUwuSmIMDhVHpdxidLT4zzBG8XxByk0Jl6zKjW3ctvPcNsZ8fiWMJNl9QSAQZbTVniECBmlErWo8SBrqM4GSCGzjua3uInyhyi2leZqMYpVW6gqbfmU4loFEePxEsEzvDRXuKlC0dSxDV8QvCLiIBRnmGIsHMcPOIiaOIfYEISoyR0XSLoY7iPa3SWK5qdKJjJOJ7iUrBbz/2NFNTA14g2bgtGESUVorjmGvT8RpaomaIo7GCrV8SuPaWYmpB8XbAIMvxDNzLIf1Mva/qUCzEOqKxfiG1t4RdLg/qDcMUiMx03iCq4e48xKJlSwRF7OaBgQ8pW0przGtnvNs8yqkFCijLEWFRfUKAuUwKfcjt241EX5hmTjLXTBXWptutPI7lyQ6ObjBvEFwxABRTBWuIIMUIMjQGJAkzGghe0EgWuJ2sqqKg0oitthQSmUYGpcZiK5Y52S6KWylvmWfOLVsiwCbWMqMAa94dojKKX+YFp1UCVzF6jgqvzDKGoULkS3YhymYVv5jdffNFX6JjOvvMAE1LBprUAaDEmMVLQtKn2iMymVVVQicqrurgjYmYM36bQ7ZeXf4j+1koaoAowNSC45l1vD0y1TqZIa+sFR9yaHUAsuJaxGsm4Z8uoy5L8RAvJg8sZjMpUoFW2GBjmGZrAhyNVCsAxLwS4hBFR4L6jFHF2jDPUvYUDzM/KZmUliDqNXbeszhsMsx7SofeAl9Q+rcsZCWkszcAjkjDjKEZyEQUOPEyw5lvugILegtZWHXm/mMBTO9YihIIwwrb2l0m11BTpL2vmCNr6ckoKkZBDMUNkCEdQMxe2oBIt5lUGKvtElyoKnFMhii0BpGMKDMVASoPYgHMji1zKoqEJtG9xUAO0bsVNGFbgK6QoW3CqliCrMtiONEzXiDQvMKxNSzzLGyGwTE5P7lZTbHLG4GLIuVBDPpfcpGQiO5jlIBija1OTGNeIosPYJQdxNslwojKY4l1Vtg1qIVbiNhmKaIAXiMMIOg1fEu1uJ7YBUUDbPES8rzCwGveL8KP4BLClEqGHYgAIWwTMUixn6I2VNzKs/wBgj2KIYYmKqRjYVGYJzKjJmrMCNqJnby9RQLf2I8QfcjDX9RVwBVioDRcdBFQKxBBvUvau0GxhKE+7GcP3xXq/vGrf9pY1NJqW0Ww7xLuVKziCmCGdxxxLmY5jELDidiWu4DgYpKHDMmrgtVB3mDoRDEVlxwKgzhmUHExbComsxMCmNWItqEdtw3ImyBTtblPi5gUSyQuYiyRXFwmjLEs8sPRgAC4QNJiRuoibjZyS44mW4tA0mG1YFu4OXcscswBA9lxXpAyoYHigojmFNE5LuHfNpKm4r6IJiXcy6xgVcvXRAuWeSjfdxbmW7YralDRjAzbgfMEVGbLBmmDcLAoVxTmJlFuC2BFCUpMqDeWBJpLW4KqHEwUQHMo3FpUGZYmsyxggxQpgHUsu55RpqLdkD1CC659EFNkvxLS5cI62szVgXuYu7lNXMl3MlqPMSpsmSBZvKFd5ZzFcMLSjHiYeUyzLkv1KEExBHHoXFxfMBz3AYAyoWRKhQ9yiwomYG50EDucsHc8RTKqhL2yko6iFQBVRRiZlIkDEb4goplrqNOYvDG7ZHuJ2ieePBMFTwxCPREYIZls4fzDsijmXg0szpIjxCvUpNROZOtQOkehMNxbiAS0g01EMxRAsy5hWKMQyzLGFLKtxMILFS7lmyO64IcxpaueD0L0I7ipL1BhH7lUG7JmmJS3OnBYtqI8x7oMlkPT1sV6Yj0IhwS8imL9BC7MWRXmF9stN492OovTeOeL7zBr7xTiV8RSDlPuSnFfeZGWNzNxXOIPZKGGUSWQbUruAi0ba9bKIjeXNS2FxDmPBAinmDqE5RpFNQVRSY9Ieovlg+5YhTMtcrslHcQGINlwhyekzHLQfEvF8wlgbsnEk6CFuJhslIlhKvco5lZQiFlxAhAQDqIdRbNSnpHcYgwg3HpV4gHMTqIYgdzzJsRk1QlVLPQyT2zLiW6lOoy8kR3KxhgjDUXXpJwXJG5LS09seHpQysTMdyjKSkDGQRSVWpUDMF9BLASkSykrUPUY5lTKVgCFo19FZQlEogGJUA5iOJXiXlqg4uXlpeDjASVhIYEYcr3hVR6mo5Imow+kwoEqxkHUoSkyhndT2QhPPogyqlSj0Cz+F+ZcZUqVKiSpSUlJQzwegyrK+lREwPMpKMoSkQynpUlJX0VgSIuJg1AShqNvRSUlZVlIhhJLKEYqV9SvRSUSiASpRGBwncSSK08Q1cqV6URDKSkqUlOpSUSoxTknb1SVUolHEtElRAJVY9MP+KpUqVKlSpUqblSpUqVKlSvSoFxivSpUqVKletHpUqVK9KlV6P8a9LSqjKobZieYGFQIlelH+Opr/ACcVKdypSOgQFBloFR36qJX+ULlfzqJ/BiAdSs/wP8KlVKx/I3H1qV6VLep1HRcCiUrRY+ExZVetJRKiV6h/FTFj0q/8B4pg/wAAw1/Ax6pfq8SvXMP8JEuJX8KiFfwS/Wj/ADsSPKBqncSyVSeJp9U9RIF/4TYSo7/kqJZaDcfEzKf/AL7l+t05lncsZ2Skyigxuc9wTIjjcsntCuZi/wDFbE1HQe8f3Q2CC5af5VDf8fab3LJYRZhDMZWL/hkwxwKuB/Con8BUqv8AEF+hKgX6Ehme8eBiEHauFOvSybJg2hLHUtWYiKixaoLMSE4oBhHeU+010BSOQJVsalG7+8EWn7ylYy41oOZYCcwLmoeFNgkr0cZgDtlmhjkFrOpCj2ipPMVSMpbmv+FYv0wy6lRlnQ+gGFrMCA94oKftF5RMgVQYaGbQgUTacelMSWQ2S2KpUrLv+GZr+VSvSiIXiV6VBKlkyNMyxN4Jk3MJAmAvEUSWCwNVkxBI1YpsQe7s9pXmC4TLi3fUCDfXNSiNQNTiZXwyg2iDQOOoO+vMTiZlVsh2Yi8oA2NRqbSyrdH9ymZ9INtK8y4uRGcR7RAsxLqQYtl4hFA4nWJXUJiLFfclqCNVQShjbKhxc3DMusTQy4d067izBIY1ZKRFpwksKXhqxHwdS1b8MxK2YGAYMDiFzuGfRQNy4MVSpTiA6hkRCMR/hWjcECVf4YZOmKFtxepxDXrhBcO+h6gbhwhEDg9PtmFK7QyVb5lOxBhpa9S+AiS1qCjKM65mClZEi9Rl4j1vcBUcw3avPUqD5JTo5i0Z3zLLgmso12JLAUzIEs5zUdgDEMMSjQIxrG0KCc/EhMG2oC1KiMGwM3ONOohZfiXBipZnMLltS+o1E8JUg3cEbZOIHdREmjzBF/SjFqAhi2zuNULPGpevM7l4FMQjqYFT5uMdwALDxE4klwo97SpF7QxG+r4iRFONzGgwTMKbZizLkINeExWEc5w0VkZmS4Z5QaKyzIuogdJfiIVlCYlQJhP2YzS+kHFRBMjRQ1h6jjVfSGJB7gMiWaGNdw/QYL0a4hWuNv8Ayb+wxQHJNkcJ3BD3mVVuGIIfZBAGJilv4lNGF0YaI9wqxiIHN4j6ln7qIMyHbwyhV5mUKuBoW+kwBxLOYSCC1e+4Vw/WCN6epeljmOLA8xZtUJTUNyXZo7/r/cKrtqZlcRhEyQ9BVRWyWSmjL2BAy4RmTjnaipkqZqGB4IFDEoiSV5RqIyF+yExT2gpDmByI5jBlhBXgjpVRe49U5cVlLaYFTz4lQi2aSuZeusPMxBDesjm2iJKnqW1TmCN7Ki/2EYghOWJ0bMVjceJmqsQZSWNAWuByRFTLUSIOYy5zDB1xKZdI2X92YtSY2rY1qqvMBYYyzD6E40lALeGKlPEv0477i6lXBZWOnEq9RXW9SkS9S4Q6TCmSmJbC8fbuItTbEl/MCK5ijOVUf+xsWKeJtNsd4dMVTyQ3U93UYtMwKeRMB2I62PmIVZ/2BbDiXBZuKFxujMIPDzGFBViTU03MQ0gCBZrEopoy4fDLhFj0JDKVCC2R94WQfnmbXXcobEQEAth3xEalHM9jCGm8yjYR9YBWGNpSwcwoeHqI4cwILNYl154hsBeYdseppEBV1Ec116hZtlgQFBqIxVSybhkhx1FWhKR3v7Qbq1E2TjUwbUoebVN4hjPJ4AQE1o6lwGR7RaHFLTBEDUtgqP7l1tqWA6PUDIcD8TccSyt459yOm12iRxHPcDcMY1lcVFeMXNGDR4uAV01UQG6hXHprOKjAWWPZXWpczAKiabQF3Bj4gXN5lJXLD8T9uZcGu5kwDxM7czTgZVxtGUrvnx5iXotnDEYR7JUDXZiDm5gYiALeZm1N69ogisIT2UQxJVfesfSA0sRyYcwwP7RZeSIKSwGWy8xGchWGpeig+8Jiu+f3mXRNlHERkA9qVFU4wDGVJ7w+leYQvFwiP/txT7EZDCyyjiG88RZgSg5oZYsQdLGC7KlbbQEtFiwrFn5jAjzNSr/cs4Dqe/sDW0zk6gpF0AiBBT0LnqFBW5f4PzLnDWoofvnzDLbOMcTOCpSaSyBh3DQiNzEygxm8TA9IDPVfkipSNGqziUZ7YBqn+4V9Tce2EDa+Y2FXDOKqIZIo3EJeov2zKkigAvLLMFhcSiiQLmcE3Ha3JKVcgtn1zgSO4w6lgFZjexzuYOEByy01QzdJ5mTMgi4RILzEaRrmJQjiowSiWn71FNLYToKXCZbTDCsv9AjTkmo1iANHELm7h59pYDrlFpT95VYcVEIzDOYu4paOkIbpFRvjmNpgvRmLmE7mwD5gECE+CIAiRZmeIrlvHtGovdiBSAESxI4QAcQFR8RFGFR1bi7UOf396hZ4luW/Mox3BjgIhciUkiKTa3MaYYiPqHaYuAoNSnbmUqQXAlyr5lvyj6w1vf3l0GjGt3+s7PLxCbGCpRu+qleZbimtYiVC8xdDVXK2EqYLYeYAQiJ7EuVYd/GczaDFdiMDGYFAOYJ08794VUHklgobPMPTA0bCfeVFK5rsyhpMBeYoc0y1iVflEVUYleO0qgCvMLUBED5E2VfMQIj4iTFk2ZbGg0Y/eYpaCdyplpsm/BgQBRzLESwejCutBzzE8/1qUxxKwmOoEa9S3NC4rPbmLp8uZbNiGDUSjQsrC1N0QjIam1cizksWwkxAhhQmAtVcZt+7EF2ZWldQXMzNplCHUGxg6Y0uD7wPJR9JTV+sUM1LSjKWNVykBuFRjC7tIIWgEXHPxGevUMmzxAubhoZqHY39I0745gOlzSG4JllLVua4gT0mPBLhABAMrBKG2Yh0wQr9XAVwLj8jmEAx6ERkljR3UFQ2hQozLPILlIe8y3a5Y2MwvxBli5Va1EujUqYCZL5mKzxFSI+zEBcbYCwcrN5mUvCNYg8NtywQKacZlC0lTscIweWTUQHkhwnzKSvP7x4HtmIRsrEMhMTzFzpcuvEoaVAYNwXjnWIqzR8QGyILCeYflzIU5lKgwnG5jBeTmIENOYubl4FHiC+JH1eZuSGFI5gm0RyCmFFMwa3lIvYM39ZfRdYhkbPcQIWYSNoNTGpRZLAdvxMuz7JQammhMC2IAXjUTk1QBS7inC8Txw1g5iKaUqBZNNRgtXEBVj94ktxqjhC/vLcBfcSMUjcmN1TuA8viDNDC6DWYAc3z9ZebxrX4x06hABECMhEgWxSBM3ZEHSvMREdV+IUMwOClFGxhRHglJDS+YyToDvc2JuVuJflDKqglu1QjDUBeYZg1f2jwYOqrEpCjRi5ai1n7uMTShZUS1ALa4N/LBT3Q+5KIFqWxbiHKgPTZ3GWGfPUTKsCfQVPnoDQlanhBiiBjllwj4mGqK3FnYXLLJF2aZezGDXMUxMq3/wAgkEFDEIAh+a2wo51HaS5geWk1F3u8H4idP/caY2h1cQwDD+YTGblDDqJczzLvFJY51K4cIhd1TeXj8QNaZlrViWTY/dxegxBeb8SvYVr8/aW8Rr8zIB9IPLWQrAIoSqpjTpDaC4d0uoK5JWiOI0JnEDAbiV1glGQ/VIs1rUcWKNyhrFR4Pc32Xb/eY4FxMt0vdOoEKoiM2QkD39ota9zIK7gcvCXcIlARrgdxDD5S77oFCOIUhX3hZfbkmp7yzfC8RGjH5j+VM7ncpH3wiVlcGU5p+YDsJhJuHgdQHfJWH4ixO/RqW65lBRi6ixZhalljr7kYfhHRUSLwS6XFC9XASjE7cQND++0pVksVIGz6oAqsVG6gplLuLMcBLCIwmo6GMsa3HcEYHtDYpvmG45gRHRCqhRKpV6mQruILOsQ8VuMR1VEd4pr6QDp9oEvLmUArEON6mV7P6mjyYA1q2ZhYgio2JMEpgkEBMJA1Yu7GVhQx3BFGUuVHKtijFgyJVWLwG0yEv+IikyyktIT2RMkCYFwrDwwsFcMCIct/iKOYEMNtx7qqKKyXCBAJjtCCK2nsHzEc/sP7jdyH78Sq0QEjlQKqiLhzLxW33QlTL5mN5i44FxvMJT4hSLuG1v5ld0zcsVNSo2SDYQUBBQ4EfDB4VK1jEGZY9yV36qEAb1DkTUuqF7NQClYChk94LTxDLEsxhGoIFQuFL4BgzBmBVKlAFxCgmvNYlxQLqCQFolN0YO4bmWYmwI0g2RnjqK9XiZ5X4rUzmDo6PxBb92IAYLo8GXS4DiqIBh4TcfxlJhYpBJhIBLGQovctUSAO+FwIs117QSE4YnvfiAYgJtLGGhv91Apa8x67obshaWZlIGb7xGeXs3HG2l9Kq/MYcQTNb7jFDctlNMJPKFyiFa5lgI1CALDqGfg94KpKlCy1RBAS1yhtSZSsxFRNjELyliwi1Y+0Xoue8sWr3BYOo3EEYFoT/qJaCy4vGiHMZMMjnwwarYK2MEVgY3CIV1FhGmUFG2EzPtcAdvzMgCQydKhMollVlPCmpQofqo/irge1GKZalChAvDKY6WqJJLoJlXd0ILpEP9YCtAckFtwJYRE7qcSMTXWvqY479j/cMZjHKTkuNUqBg4lY+bZQMojYYwrimEqFChXoapOoYUg41EwCiYVKlYbIZS0guBelQANDBQEqIRo4ga+sIoiRRbsnH2jExTMMp7RKbsz4hFSs2T+k+ISEdB2ZZwaiz6DU8SqnSAY0Y/cwLEzDoXJArBhPUN48LNyDn3QOpBLL/EXISqbziHIZRe4zgsli7WPWYUfMGNxkvC5lmGAPeFIN+JkPPUoU4ZVAKXmZqW1AaExM0oO4dyM4ZWAiPjDZ2VDYJq4d1DiACipBBVyyLAHihaGWVRkNywrKFjG4gNGpRq3FDViVXAgwVLiuOy4y3gyogcZePFkJoMNoYnmzHbpauA5/MEoBM1sRReyWF0WI3xYQqtQvFKXE4YiF5JdWCUGoZaRNL5gaBuBF2gALL2qLc++X9+I1xtlKXmU0xwvFmpwozBEeX7uHAm9lnMvRT5mXsiqHcNFnGo6A/EfhEs8a4dlZ762TLDHiApLmowXqn601Kr1UQLyRQyeuIqnH3iI7WzJYbHmNzlnf9p/UWYaT7cI0xeIdbCdlH9wk5cy0CPUwRAUbrqA6qvvFoMu+JvpL5xecItruIHvKACjxLtmVyjRZ5zHV6x18ImIH71AaN/eWeDUFm0oElKwlFViG7OIP3mpld/0lqPiCWucxOg2QljGU6QWmh4xiEywMCWbqe0yFvepiKdQFFx9pagxAyKQ0T2ReMDFavzM0rb+35jCdwEKolaioks4pjEn1mRcaquIUwIAsyxBiBCyJF1uUA0gWJbH7cBKvh+fzKbaoi6Zq5IsuhE5rqWxxHH77hk6Q0a3xB0ZOJZbXKKu4qwUT2RzxTmeQhAILb4jPob/1AqMruUG1/wBmtPBzvEqjtg6RZPJMzXBQaVlUhux3Dv0hl6S25r44hcBv3mK0l67mWGJQ6i/vWotWYSXDORABopNVCabOPaHmFsRQCq13HtGV7yuSvvD6k03CXvMzv4mYuL1iygttSi9S/wBuEwLnfj9+IgBsdxJUpjyohlVVCSmIStCkTplUbk0xNqxCwfHzuA64mhpGF2NKP94dPZ+ZXZly7LgYapmz8yxvD7zL9iIIagGHMp4HAdMaNkpbLnErEQB5RiQloXF595isQSowUoqUbBjZ/ogi1blnUypf0wKyRXSGYOoklBtiwYIEhQe8EW4FXytykFnJ/wBg9tGF6pIKaSuwL4hk7oO91/uKzIJrDJcOrZQQDUsShBvMxKbXbORqIEADI6DzCJ7Z9IsPKBsrEH3QwwpduksNWTEtPcEFz/cddMWtGupcZKm0XHcKlyEZMS9QtRbiqYEuDaV+KFyJe4jCSpTpuoFKywNsi/WJd66jNeCyJaOEyjGasozAvrllJDXNFBbDqU2ZxFTHUsTSpiTMSxA87PzLrmILXiKb4hzdn5ilmuqiXcwjZM1vKGtfd5qWi5wLKRSGkBuMPeIsZkDDCCpgsEXTvuCKQd4LBWX8T8wIKlDqJXZLDJnxNkWSpc8Fw1zQtsbaOBqZ0EV7ljbBxKcKHZJCAq5Tq2LqHHUqLP8AkN24SF0BmTyxUyHUKDImEKMDkEVysjuDEbv/AFNcDqMiiKzSpkHEJ31NAiCBDOYRlyYwFwd6jfghAXTAHEtbniMopXxEF0zE8Si7ELiAK5uKhPumkWYyjeAltymTi8RpvkxP+r/8iOxcRM0qFbYrkqpazKEHQOpc2SUJBYtMxiS9xCjRdGoN2WamWEihK7dWkegbIV0cMPwMMbtCCIO1bEUBHlUvYIU9mOZAOYhXGpmrEQXRCbCJVmKm33lOTKLvDcYF5utywXb4jTwXMRMQqLlghmfv3iDCO54dBgRdHhjgXPNyigDXESyzAHdx5pb3EUdvEdul/SCxqG4gRcUP7shVjiUup5gtf0TJsagBeaIfTCBYuEKj3ljvGWVzkfmEVwc0EI2j1SVSAW/qxBb/ALpSIWFhS9dsHozB1c+02jHU5kOuu4BGiJ0Ztb46iSMHvMJeyJF6YQs9RAtSv5ozLDLB2bYX9f1NJjV1LtmbiAEzFkSOijMW2oTa4yFxEje4/f8AkXfn9StG2YQckqp1DILLhWaIHQTPYiJG4lsfpqBiquJY7qYverDmyMUzq5hTcRcjPx8Qgh9e4aiU6gIcIKurcEF2+ZmTMFlOtLLPsOsRaBXcOPmJzqOImEKUPrNh6QN+kNi4HAtS444lnF/iWCczEctysSnqOpcU76jVTJcaq1BaCxczPcS+X9zGawH4g41biqfaLfGZZG2eZuM3EL9cOc5icc4iA6uJQ2fjMZ0VGiAtnEeuA2wRdiohoTcrFwknxNWEYImtiOV8QEF47mSYCBLc1REuBX08wgbXNVM9ymfiLwzCDS5ZTeJYDBVZ+ZUJr9+zCzI1sTAoQWYr6+8DhJT6H+pg03nLGaebqGgigpw8xVmE+YUAeQJYDDhu8RBeE/MVZBf6gMFkG01lmYdEyKN1j2h2JNm9xq6jmOTH98Y9KpZuS8+0OgrylDvqMdNzz2EIOz7dxcqDaToIgEdktRuf9ynMEd28QjOv3mWhMypWe4SiAokVLLQm9ebnz7S4xUQ67hXsJeAQc/MJ2JGE5eZR4dr7wKjfJiyQVphPnMqDDv4jcHslU0QgkIMPoDp5jBLuEYRgXWiWwx3cUC9kaKX9MsmpqEQK794GIgEoQqbYn7qKjwm2OQcEpdcRzatYiljU1Bhdkv7F+OoUX1mJLYNr2lVDiAGUjHFVYhSgsPt8Rpjb+/aNLWn7TIDcQMxGLw6lBwblMtaf6jETApRLMsHYMuLbZ1VBS7SqVxcRT5wA9H5mUu4w0Yr6fv5gBSNo+ZTOukiOQJemIsPO4Cwr24hYepbpYmpVZjCCvTDEFVK1C2i9QYL9IZ0gcLxKIlB0xdpXBF7T2KiLb5lRRSb68pwsVYRbjEIOyVJzLZ1iEjLBT+JZwikCqYndtYAvfxAyGEYRq4j9omyBCuUqH39oNaylO/8AkVpDj5jMksoVxIcuaiB0j9Z0CD4rTiJA0Ii82MWIoKSv1mDqYgXZEK+iF8EwhfzHkYjvCmAadHmcQIsOnvCbfvEEeIXA5xCsXBqc4lQzCfSApNv/AJMOn/UFXiKCVCCQSY06hHeR/qMrRjiA0VlkULCbLhE8wsaXVwABTAD5xrhKhtnh+YlXJHXD8TnCAiazCQGNGNYy8kU5bTTBUQHEq7a8VB0muOLhsLITzlNFxrtrGgwTXKgtExF1aYFYz74mPBT7yrPLwy7KXAAqE3dolRf7mIf1/wCoG+HiZOlSvVpGVZRkYqmRKgiy1xbgXZ8wlDKCj4hdymhSVNGzIOPvMyYpmIg7Rhei82SvmWs1LNETrxLAlJT0lvQjTC2FkaUn0nRRCzYwzbEYJx9Ml33BXLjwmQejJ3KEX3AV94RzgLx2ZxKjif3RpLAp5ib+I1NvDH2EAGiJFTM6xN/MRdvMM5T7qHJn3h+YSvx+YlAay/36k3RcfSbPmaxk/iUdQDOIBiEnfGAYIhc+wn2UBf2mBM/ZgGIisIAQI2iC/gjHaK4Ia+cAJ7nB6iflmQPf5ja+PxMgXdxhhjyI7Jj+zBdXMWeg090NvefeP4jQZ4Ylb4m/sibxIK7gKJAXAUlHyxoZaS4RVxwKTtRs/8QAJhABAQADAAICAgIDAQEBAAAAAREAITFBUWFxgZGhscHR8OHxEP/aAAgBAQABPxACaHcB7J04zXN49cIgF027P84zMewU9v7x/NI2AJ7EdMj+8ZM7KwMBPrr23h0EGvSVHnAHgdGGlMHexFQL4eGV6zK0S267e+zKhEbbJTXqx1hFUaRqiup7Zpvi6r4QU+Qdm1xeYw1bIo2BZ6Txiu3QqKEQ0NE9/WWkVpXjNCB1CEzEaCsa2Mx69UKFsUxAlehTuaMSBb6F+8POclVSNBBv/wBysYUuN6BAMV8H8Y1zL12lFPziyWUgLWndJ8ZQbiZc+p8KecK8aBUMU7W27wb0T5bS7o+zHjKb1CiShtiOa8OpBrb2E794cdl0B8o0KnNNAhDBA8oeDL1hCEUMAtr/AB0yOAPYOnYLRb9g1kYau4u7AILfn35cPiqPLWq+rr594NDCQMQPQsPeGxyCUqBDxHThl0chkPwaZs/WWn4qwAIPcs/GNIHDSEVT5N9+c82SFQAWOw69+cPKqVgBrstc9HqYyEaIQEsRGYSB3Cr1SxOJ5PxhhylssRiL4uF/nDy2a8/vDZ0bOWhKzXfN/jGH8g6tTzbJ3i73gs8gAIoI695rxm1aJ2KPJr5XmBHiUFPez8T5wNN3Ep7P4xBsuwIgF8EP5cl6phBTAYOpt3ori8lUkhoNGH4d9xhjVAI4u/wZ59y0nfR29fHrDsBw0yBDxus8LMVDhdPLOpWvCevV2enzBVANJD9vrALjRLAAodq7TxsuBKrWQu1KSF47wQTVOlJxyt1hDVQYajJ40MO3imo2tFquePGSL6ClNjYd2+mHiZViNAKj8aPjDNISllaBOuHnEBbStE87fRiChBviKB68Y3bYB4dz8YGMol8aps0p08YurEIiUynKB7PXlIUCkACgZRre1PoqAajFqE0Ihy/OcGaQ7qUlnmfjC7YPYavp7D8ZYxWJo1uaoqYRKBkLYg+4BD2uFDETX5/Llakc5WahtRZtB9mE+OWirpvVBsPWPmRazLRsPoUtysGvNiFia2Lr2+IujVpwr0U71xmiFeQ7d95hFx1A3NFq6eSfqPXhdMBRWCKEU1fWMgGd3ZC1rckM8bNmAPCD58n3gELG7tAU9F/ecvPgQaHRRZvxzz8aQhqrHbwimtms7Swew0QXcxBBdvogJBaVVAhB8n6xaLWTESHYJpu6eN5sjgO2TaPU2dxyGAOogRC1tvnxjmDZFoSL4OhHkx93cCBeHzwafOQR9qRaGHshTWsRXgtEgWdc/wCMnESwElgR7smu6ymKISygI2unXuP0aigD1GtHpxkHbICXrtYszlMIYmwKX0Z8AszYCKvdL304SOQENGjcefxj4YU2FDv6TnvFWjontwy2TInRopA0vjCPfxNfbXi+N3C3tyigKzbffzlQluzr+g2ceczb/XIBKOUnCDpUAcjKpIs3oQmkfDePGaZldAbFSlbXOY31SzfzpY0vcf641ZyqAEGed+LJNe1PfQqr9gDJzpG/blJRIEg8wfo5OiWHzNAesnoEOLCg+EBiETnFRQfyGDqBGLrJe8IWi8wL0S3QX4cvAJ6wQWMeAA0BaRUEPeXRJZWdgbUVrQhfG7ppsscbCeMJi3QYptXRmFMhTBKbp5buzwy44q7mKtOgItapUmNlDXcH4R01U1dbDyJ4fLjIaCU/GDCXd0ovoZ+UFhXoHQaR9uaqeNFdUUFI91e5eD1lDISjYgdatri9ka4jvGZUvBUkCi0f+GBk7Ci2EWAOV940DMXCFLjUF6+cMQ1YQCJXapINRsuJjoo5vBR0bu38Y+RhAK7QXv8AWSrwRu27CC6f+Lig0KhEHolA6bYTBMGgdagjfEnXXi4ASVmhaW1UUFgmDbW0jNk+SjoJr3rBirsnnwxzCjRhBVGq0VTyeWIQQEcG5sat38hmrC1xEVsAE01Oq41roI+OkaB7rojq4ScMA0bCcQ1buYyoKgcLvRnaoD20NnydxDYdIuFtUIqQj+8u/JjcB4gAQ+SnbhDciqIaELVd0Ocxaopqs+chwi3IadJbxr5FIKyRH7MvUE+KmaF4E6FHUO9OB5zzyVcw3ZtKfdngxmBdkVYAWIa8fNhG50dJ8TwAV/jFsMJ4UZuxLPvALcwoIbEAjIz5ydsPF4BD9AYQaQOh4vnAkYNWCe+YBuf7aJk83z8aNrjY6Y4gBv8AaWD1/HPQdIINHYF3B5xm87AO0Ap0gSS26O8aEO7t6NVNWnjKq5BAUVI+kTXu+sNQC2WNE8j18WbxYf4CYoRu3mghp0YpLyF2FaOHoJpbxpNL5pArUaRC0ibzWRQ4j1fzWYM/jUXgzaadoLNaDJwqsFu1qrzZs+UAhnYug9ihAhAaJdjEFtUFYBVAFcARqXhAsL3RzKl7XwNijh32NE5IC3Zu9u9gTp49WwqL0R8vjuCES9zwxc3LGI0aaA8tB1DeCptVaHoAAr6djj2kv0gUakAGmhksG4kAYwAjRVR4leyIiAKYkEDdbfplt9YXQQ1/ZkjLjAbPyPl/XnFSwwi6osQhia8tVXzGlYUBBoKk8gOqlo/EqvgATF37bP4xgMDaLCqhRYBtf3YgXEX3KkB8633AzsFeNu8qhLILQ5s9B2LebSi8BR2GkphCfnWG6giA8Dw0adLW1EOMgS3pmwaTwt3glStSiSowDuuvML0z5RFanCrzDV0igFodNrYaXc7G4xrSqfT0iO4Y7cdoskNeDOV5gKL8tAKjXNJ+HL0KRsulhFt9FDtB/j6xXOhGrK18jDxMFDGLQjwoNAdIYBJCKAQQVEdoXj4KuB0pb/3c0BtbJ7+s7nFHbeyd4m8Vbe0n7yTAZgSqAev684YmAGeAL0KfevzIuRRJBzKnRtq/OWbNAJkQCnaKBopl5yowBQUZqY9XGg0Sa59SZqaIIfMZWV2bMomjvnXnAGiiELDr7dLWsQW1qgKM0wJhM27xvNt7RRI2EJBHnYjmmrCogUPjvcSdmI8sKn+8nssyhIU/OByVLVAVUik2XwyOr4uqQAaANvWPnBHWkQW7kDa9AwYdBq1m2nbG82mXsmVS96BkDdX+3fjCzY/1hnPSeTSDruVYrdIBAWkEKs7tr4FyBuhC6Lh1ErGe8dZZFRnmEvz84ceg88MNBLUCiiS4PNXUmkUNC0TXrVyWJFyEAAVY8IA27woSXyoCgAlW9KqYuV9D01SruE2917zpxUCK7fiTxv4z5Nb/AC4JNd0IAnyW/i4WViyUmeS1I+39oPqtJ5mQDKmtwKmyCI8ZRojQtmqZCgTTcfDv9YUVfI4w0+kd+plGNpfjIamjm0d2/wB4EwSE86t+8kExD81/2eO+MDlyFpWz/h59FxKFJaqBSgQY/o7kV0cqTaSkh5Z1JguOEllOoKPw243ZRnseGruu784gKBOWY/lCB5XCxCuXBEgg3yiML7Mq9F6NIuzu8JxlEQVtMFWr5VzYbdPAYFPesasKSCThlT+HChPwqEEdIHtvj5uFTM2jQ6PacJNRlgw6LeOBJnaqtrgeBtFEYBAK6nnBrUpFoc3ecxGmxYnSwXIKRPliTVALIKR+ztcUhRUHp4Mk2A3b3rzP1hyDQSiBFjcLT7NawF8p1EQFWQKvhnHZ0PfNA2Pa0SK7xXWUF/A94PUmimgoQ+zJplg0gmvV+G5gWZXCJ2YqBEpFTqkW6yj4aQAhGW4Tc/bISDzz4fxiJB2P8GWoais1w3TXgtauPlbjAqgViPTEBHNaYqlSfX2uApKWrwgTjA9IvMZhQtagkgQR51IhgyMVtNaaduhRNlwtM4kDoCKbgeuesb0KmEAgvfkLZh2jzLbV4PemTxo1Gur2NRCLs9Y5SwkHF0AUUR/gsAN4LAg8Ak0EPWSeH02Ug8HnFpiJPWBmn9iS9bv1zCAsgMS4RNGz8H4S9YF1KVfwTfmEQHvoGwbXQ9jAoQwq2+WvnAKEDAV8T84bYzW6U5/n4cf0X37x3WBQ2AvyZ8F5l8CCm0Aml108Waxk04upVfIAbesSqe0aFJWuxH5xAO6the7bm644mpWIqw3rKHvCslYbyB9m1AArc9tb+ssqAWCguXKPnW+Y3QfNiig+9mtvphZyiqqAHA2b/nG3RYqBE18cnnGFxSqQVWGNMllNHT6idxg3kGRVkVr/AHvFAQmjgN0hfBpUwRbNCpZ0GvFflfnIIKSA0J0bGYKI0IwLY6DseC7Cr5DIxVxpdrPNoDefOMBH3XuKB2pAztze5dSp2E2V4PgBx69PocRs+U/7i+IjSYd0TbMt9/HHeIBOlD3oQ9w3r5mTj/8AmoS4KijtXxa0luvDOHSmnlXWsQF5VRBt8CD+iYSBWDaxoTyAD8Y1o1ViwWKxSK+dKWeMEIUYtwaSk9R22MxwVBaFFFUDS034mIqIPxQAL8A1V3iJSAdbnj5f5xXAiYqgLpk2+0nHIRVgFubMSb3q9s/7WU4HaSs/H45g66gDSA348/f4cKRQgjIdbQWj7coUMr3L4Ogi87oypoiTwppNXE08lwJoE3ScB6Ah+MqOKSKFO+JJ7wOpIEOKV4uAxnOy5INKit+Rg8WwQji6VJRs8cXgARtsmnBDNsPLkAPHrDwnudFitTfZtrmaZvDW6NeycO6ycx9FR+IhumvfvINkKB1zS+cZ+O8YNaKeOPQxrLDHxE29XXnHHYGhIaI0ILc0wjO4iK2O8amAsaQcfWHAthyhVVE/J0YPrJpmRSyGUeb94NFe8hG+Qup1Xy5rMKThpIM1vW/WeQVDBRtjR/73IOBIeJvfxcUSCCHbs0F0kfjAELRW0iMC3Vqrk7OOCcekQnx5ubvyjgpsMFEYa7gaOB98MPvKKgg0YBeBNgD1kY6P16wdOb0dknz24eyRp2Cs8iku4ujJoyToRrFJ5HYb3hiYxeoTCFgFIesrgQGlVHcNLt891jQ4uT70ifA7vN+4CSUA3fI0F1MqDh5Br5pRx9pkfesoGnSABvyi5XCkIpsm2nlcBsKTZoImtP8AnEEKKPK6JjZjah2JuCsqd9GaV2ZBu0N9D6d5GjkFjTo2V9d8YiDzEsKvmg89/oT3TLCgOvGz+cOsP9byiAbOF0m94dr7CrANfkde8YCO3R7ub1CixHoN02h1J3CIVpMrZbt2DxMQuwEdrc6pEmVgCTVKhs5f7wMYieul20fXnGo0aCT2iaZZw7l6u67kzfo04FA5vwlOYBouK7uCmge9ePObx/jEUGiyps9v51XkUQEsF1usvMhCjShtDsE9OJlgQRrD5v2Gn5wYhqTiBvg0oeI84THaAR2XUoG2hZGboEbJJMN3Brn94lrk+Hotvv13eXYYUOhh5X+7jrWgBu3OXrsMkIBej2YGg5hiMRIqEoeHdZ2MwaPTR6IfO+ceZIR0BLDQfmUwlR4A1Gw1S/4PRkltbSk+8VQ1aAAtq6O4SrQBbBQgICIb8ZpvuqSrX2vxs942lnRbNB3VpmCtaCPit9v36mAZ52x1vUIbrt5nlUTh+8SehrlVN2UJJ5PZkavQkVCTWUU44mNQMACAR4RX8PkzmmuNoiJ3o/J7xVLasaQprdfnHqyIC8JsVMRdAITJhgijnwTLZA1Ogo7yqa+IlEZ7N7+fkwGhiAWogO0gAc+DL8bQUV6do7BO/tMuLBLdL+6dC4QEArUXcSk3k+UjYRacE5+seN4rt3Yzx478YP7IaTIaHhZpkm1xFtRQPQHG5qVQ+MUwmB0TA2gcdeP3joybxKAPq9x1RNiEgYPAGR7yCMLFIkAedfxmiRDqFwBF2P8Azl4DBJK7l9nIjcaIDL5oaBrJMBHaaujGHx5+8A0nKVCbavAFX3iOWIBQJRPib51xN2pnjjSQQLHGxBoo0lBTRgdq8OFV1uXm57+IoGmzKs0JTbQ24lw0keVLGjUvx7cOdkaMS6HXlN5SOSgXU8970c6xzaufQ48VnSLkA4MLp6zLEwBJcSVKT2desJlKOi73XT474w+5+xkKkO+gCNMA3V+Mq75cTygwuuwEBZlz7FSCAnaLHeIlQSoiuN0NfZ844fLrBrUSFfHj4wtB3SXAqVr48/WLsLBmHm9ZQ3waXO+BvnjD75SKTl2rtXy+c1Leijw0MqKd85vkEjKPQJ0n3i3UYgnbICDp14wdfNo2Rv0Xp5y41AOLhrWsohHwQIYHh/zjmg2o0xEa8Fm80G7xD8pBsBoNx5hDYQUV9t/VxCcI2oGg+XM3/UKR0eCC/wA3Nq/KryfXrj4xQjWm/Ny/mje1Qba0v4c07ddcoEuWhRG4hFpUHfhgeLcXlAgAUFUWBxbqIlS+KCneuveBi5CICPDzQ347hnhpBDqwwWL+7tCp9/zxR4YLVNAKhs8b+NGrCEgggxCEPSkN0xUJnw/EUs74mzWdsVoOohvPHJj+tl4g+s6TGE4RWpD+XB5OvZjSiF8+Xzjh0nMKaVW6TU5Drm5ODYiKypDa/vGkiE5ruqCOun95rBFZODTkVmR2mdG2tXUL3/OHyTywiETQLyvIbxWMEYtxUcEcJFhAWho74vHEztg1LSa5OePWGb3i9XL8OuvGJipAJALT73niiKwBCvjqbuARJVEUG4KbDQz3kgiMWqMevvX4x6x53L3Z4AeN4tGICXZBT2+MVOCv8sO1+idebHIfjFinSNCoffTu95dnqcbOMK0369YWxIagBED3ePyCkshVYpej+M0rshFomk6z3duM2Q44LesiQS3TyDDIrLCUrf8AOPfXhSDC9sILNPrHpidjCGra0Ik/eRAOrVUA7Ea9p3Rie2+MUR813ZPGEjAHiNATbv2YQERLXZAD2+8SdFghAx+36Bgr7eFDaeHTd229xcHUhKED6k5xuW0GhsBGxpoSdwq5dTQZb57hqXJINu24oDjE8OHLrIMzaaNBFIesIAu6yh6ZN0xl7PNZ9NIEGAxJcKYNAhHDUW33PW5d8N4PAZ4nubyGrWiCi2SAQCN4Iw2YEA2AHoCz6wzSYJ7Dpw53USDonYiKrr7xhdoZSmyGcZ3ydKNi+Q7wwp0Nv3pUKq0bCxogVBEXA8QTOJJRYudaJzHVKcNYCAI745tTmxumnbVPveiXE+UbQkrsNNvttwsTKUN0FDSukacCwEJ5fJA+/wDWSbpd3AxziSOwjrdUBcie2qZCShviPbXYZNccAfHdrvzm9SHBE0LqNIWs1gQiABfSt0216fJC5SnUmKRCGUjpOZp9JBayCVAuyPs4LaiA8SnwNbf0TmKxBEUUjNiLzYx5cd7zUuA4gqqbaR1K0V9vRC06Avgl3gcBR9UQK6IuKUYCQqaPPO/WMyIJfYp/WL4xrGvCD4NKO9dDObOtCvSeSoAlqHnCJxAAyNtFETXom/GOyaZgMMMYA9oldYkLaaTr+MJMgjJ5v9+8twtTWUR9056c225/vjoJVQ3gkjDpPI244hGQWoIg6tVfEuy5C6+NdNS/cepASShw1GokcAU7JrBNEOU4fnJqhR2uxLKQ18ZF+EflcPoVOkpfOua2jNYTERG23yzpYOeEBBV5kgUGwc3P72xQNLu04hoPQRq8VHbT6iM9jLAK7Hv5xiFFpC2OR6v34xCFOgbJoHawXVrcMi4EobbCUnFBx9zKDQgrG0iPkU84MA2wCCP2T+/Rg/HrW94ZKYtsIspZTfpt3kuuNIaV6UIgnK6yoH5IgbZOt07KouC/dIG9Fo6OgA7uL9VEQIpXkx0dvvPeGj04iaYekcmneUYCs00I7pATd7NzNnRUEsz0mw8QeSEgflH0D7FWCPGaOIzQRqrzXH1MVqtUoKsuni+2vxjOytMofC2vGzQ6eew3BFgyt6g0zUWeo+pjNUT9pECRsjxHhxvuQfCbSAntqWUTcK5AW+zLcGBAUIn2gjPTzIA8IHvFapPU1sa8bmsTnaSktrWbDpJpF0hfvxh1EJQmF3tRZs8kR0USwowiVEB5JbkwCRnS2yuhUiu8AlPzs03UCbTeOgVAXHg4QTz0n4VMoY+KL41P4wNinQvtSota10w4qO70AWoitk/jRtrBQ2Fs+feFFVAPNt536xYmGhN+EF1rze6cfQA6MCIVsrrywJlog+i7GFgNEOnzRBpAMMRIFNrojlHuGoCpqMmlwv4Jnf08nz41gXGa0ZjNJpx5NEFiMUHvUAiwoblvNYk7GkM0GRaOrsv7ee5VDbpBugWkoM/q0ocHqOUUFVeB2TDVmkiNoCBVde/eXRet/wDhT+82Jagnof8AF+MhAD/VQ0ev85YoTnAugh5PTsKKEAVCncSavqJtxCrxgUUaahjR7vxgLOt4JGYNkrSX3m+WCxSCaqNgNeliaN0ISVl8+f18YX9GkIpNwF+WvDuKUwsorpY1TpHvMlIA0uoS1AG4WDpi+PuKJFCFAy1d62LTUKCPTSlDNaxpdQ6DM+eLPjBYAcpEXQMF9k+Mn7Kx7NQn5SMD4QYTGbV26Bt2e+cqWiXYX5/wwVoVHERb8RxqkxYlfnU+n/zCcAoQCKBS8YBgS4UB6VBefIMRmBaaXSiJ+Q+cFAR2D9f9/OWCnTV5g2UUqBiqwaePTkj8/wCWJahzh7T6Cvz84RA5DFVSeh5IHsxEGhdXUYQ2qta7k5c1DbFEDQK9NVENexQa+NZdDbsFPiXZ8zK3pb595wsZMRoc4wGscVp3zRHQoun8v7q3dZABDSVPdfOHmGQ3JgKEYNrt0QwhKFZNEP1Pj1jTDqBJDRz63kN4ro6RKb2fxzCXACbCCTY+SpsmSNYJGoatFSl1t1nRyiq+aBsVQLp2tRAApDpKTVt/OFDHswYTibGt7YAAGo8THc4gBYEgsVpjs5g+68QASBTj9ZrdxuqNI+hCJrwwYjPaBIHyfrlzzIg+fLjsBQ7jxj0FfLyICv28vTk41Y7chKLZDRRuDihVrh+EtWCIoWGMECF02Wynv/GaDyOgmJTpFeJnXlprCF4S5JlY2F/k94mDsyfzenReTBxhHznoRKjdvL3qEAWn2lzYxXiqgmDSq+h/z3C5kBfNoW+aeuGUCk6YmiOtfQXGHwaJDBTfAuK+KXB0wE4zaTmNbe3J7O+rAbNnw4h0VlSgh0iDHutczZV0iWmhSlZsNjWsPmRaGg4tb5DfegmeQ5IV7sav5wGAqGh5v3P2Y8H4+akaaBjxt6GOq0MURBdxoAAhvCZ59pEfJVJu24G83GkO4Sj9l84WmJm70iSG07s+sehoB1YEVJfh/Wnulsk4VZilR8O/GEwdMWEdjwTipZvE9bpmyOu7Vi7PBvNs4iZpcKZQhKbVFA1VUaM3msz2iGio0uFev1JCEFbwPzhko+xfRA4JLexeYjnFFQDYdemr67vEAsv2yAgJRmgqcCjBQDAguy6joPGsXd/u6VR9UDa4JDJIAHKaW87jUR7WxYaihs7NLMdVpph12EWGPnwuBbHLG9yH5Tyb1g4hRsOixQsSLx8Li9hF3i6pR8zik1PN0bYYbeCkQyxgC79Q33CMHVqshp8Oz8/ZgjYEA7CDS75G3443DprAKJVtUa9PO50jwhGCCPhabHZLss5xURC3aA9vzjIqdiIQAWBEfE+sNIjyiKcfXnNj1ZmhAgnfpt8Zrad8xgUhAPDusREaY4WcBuXnnBDYcaiaj5YH6zRM72xdQ81ZjAs1lAVEtizXg8XAJC4a/sjIhwRGJvb2Q+I0cO2vu3QQ8QascbJ/XrCfO2rDE2dO33rOIKRibcRoJ63gFr4FFk+W7+c2H7fvHJZtTbOgmt+DmAz4doF4E9CNecdm+moZQa3X13eWW3jDm8D+XBM57hf4CnH3kTDh1Jp8aNjD38YBOwX6ckSaokEJ1cXrvR7wgmoZT3QU2SKm9ZD/AKYUaeyiaST1i/KKAC8g45g43qxHibASWHgPNwQapBSKVH9Y4QpAgN9ILb4BfGBwi6Lwm9272kxOSR4clA2pM2ivchb5gQzSlY6X+Aa+q6oWMY9wT0JErt71zLT4YVqi6XZig99uSALqKibDlSErb3Eq2BPWhE2glINq2NYJBWJoPKYdDXjNKrIUAWiRg18fGwAJ1z7xR01FncNIaTEAKcEMJr38Zf6KAQKi9h0vj4cXV9uSTlHQXd9bxl8phRq/AX6xU33QQKqpuOh+8U49mFSstxoBwBhAtPMQW65oL6NHZfBJlYrhKa9Sx2K1JgjyJtE3hqGruzgwKvXuHt102vXLKqMtkQkdTfnzmhwrSY1IkoUPmMf3hkvIwaKHgyqRaDVndPl3Tv6GzuOELJsJTPziG0FDW6QioLvDpJ8DJ58EOo+slP5jzVPAZXxvLIjOBRbngOsU+lBXV0L83BOdPliQ13G9duAsELEMEdqRDqqTdSyRxSlxpxamC6aZgUn4TI/2QiULwFd+XnJiogFbSihhDz6xwpUF4CInt8e9vg4jgWQ1sov0z5yyVrKtkKRp7zTqA6AQAANa/GO3j6cAmsLfby+skfEFFsuv5N2/GMG0LUICPTnMVBCFgkqE07uMDj3IwKJerbY8MFQ6kjGVR+gavDsZXRObF0G3jfrJn0KgeSHzzFuKqOuYH0OFn1iKS7dbTa7ibE+i8LFoE8D1MKzZ0ia0KM93+cfSncTODRPe8/cv94Z7CXDSSHAFVPrD+D7VlRQKkd69JjhUiNCotHff4YgA0GHth1w9n3gHELeGsGhCfM0mC83KKDKqAb0HygFh6MWYGINWB58uibh25BaNjFfV+fOMvroAsSDy3w9YaQpz4NsuG0PDeLqtyNG0SDRsuvjCkZE2H2FfxhE0JoHmIN9s967jeg2hm1/2zSrza24j5Qqc+TC6bahVCHwpDRDY64S3Y9hDfq3e9F8FAmIq3xYvnSa9uLgAGKhrsZ7zUeThVpM14ogKaST+XNRsg0qX+DnjduObXIGACp8nous2H6Kazc1tpzYaR6kAJjMSURybS7PUxapQvAVUR3bIb3JgSBwChCqKgR2u111lDAgG9FDA6NFvvcNqcmMKE9wf/uGZJ+/BRRrA3PPaI6mMFASWCd6eM4A1rsgl2dkND+HDtPMkZRXUcCMm4nGMwsxAiQQo2QTWjvMLf+4KGwoIBHxlonBmK0QaNv8A4aYGUkX6lJPNe4ngNToQD41s1aMxptGWpkofnmo6fYm9sNhWQYa0ildU0u0xzUwGGMAUbpmm8R1GOcttSa3nJ2Q9y9ZXm+cLAzWPzllVWQ3rr1+8NEwUbq3QUpwXlNY5nXYMo9B3oLpEVT0fjZTVwjYFUeTjt4um+8u3CQ4A7Cf5fGbJZuM7o+n3F/Dz6wtzGKxhQjCfbrDEUHucjZszZyCY6G0nrHYlVg5kMBGBYx6Bjw/vE3zEIlw3jT+TF8DXm9i/6yZoGQUE0tmTjTDwQzZtQtwfG/bEzQYAEeAao2odMELgSCSA6lBkDymbE6UwE9vIJeFO0x9uAjQIS7gMQbNXKrr3krpQNrQfk+zK4HSBV2Nb+VWG8utgRidCa9lrfJYtR2BVsGM1r/OTjEVqjnRqeei8yoSTUKos9bOwxqnAlcthRULp8+eevAZ1dHil/W941UpAKjUgh0Mda8ZrinpbkfggPvQub8yLTalUL+jJ07QSCc0Pe/HrFO+q32U2i6X47MBlSg/UJD6x4pEBRLsLkPGWUm2xiQK8fJ3KFRjba1Gq8onSuW5XQx4DUfHRmS3rgggCm7f1MHF7s99wrmbVgGpUX0iHXDPaOoQTn5awAMSKzNwe6a4ZK1YpH8sT6pCIWbp9fGLDuEaiYYCAp8xTUoyEx9Z9TCDAvjLedZhaBfDv+DLSGl1q6EQTUh84pSZFmgLChE/NuVCpNA0Qq6irseuRhgtEo+HJOevxiGwoIRTWvZvLDp1m4jT5t8IYiKrgSYzLZQUVW73aMGCy8GgAxiDOauNB9TIFSrbH4IekxVhYkh0XUGBQhedc+WhK8hPhj+M9T1NSLoDvR4+83iGGVbNICv1i6KpdPAG3fw8y0HICr0ebP0ZS2GEh+MskE0Kf1g7eNtE9bv8A5h6j0xVmZiQm1bXvHmO3xgGPmstAd39dxBigqjQAU3ryY4hDoGR89b5y1Dqga1+x8YlRNGjS7P1jrEA5Ct/nuHMqAzsNbH38sKMALYIwFVgQ8T4xMYACj05Hbq3fN4PP5ZOxUTj7mKE4gaDjr6chuqt/ebfeeu1TcWGDb6ybgLSjKaBeARA6xFQqXwcBFUVXqCxzQ59Fgw5vXiXXrLjFAPiiNn015Pm4ZAQJfOaegRwp8Nb+p8uGWYdewxnY2Fk3cvclAlaTTq5vWOJg7Aq73N/9cf6yXc6Omjm4hRPzkyGUoDUyhJVHvvweL4xIRsB18XaH6Qcf3Uq0QOm+HzmuXQECXm0MpVEXBbuPH85dBfE/OJMA41Nra1epjLX6s4gFKIIOrmoeNcCSuiz2/eKMwETUdJ4QbkrEp0APqfeacFuj4jSjsOzNymh7O64LlSLYnk/vBot7egJfNH/nI2tK6hpmWZTthVqNeE7xPOBEcmZpBqOPWnjB+/BFvVIPAB6F+s0mBNukgQmvibwRDESI7qiHT2TruFVtFagiAV/0e84+7BaeVIS252fqs/JqYdb4bd4xa2IgHRhxmVS3VjJJNlb1lzyzdNNBYRsYJgm8v2DCol9BltybukEhCXVb6y8KBgMV8b+Dz5M3IENoH9TD+zDk1OFftyDG3dNOnmz6w1AAqx8DvPMm8THUK2I/vAVJ4hycg+qjf5yoV3+Uy2EMa0yUfn8YzPjU2xpTrTf+sALOAc6Tc7gojy1Ztb5XeAzTwbFGO/CX4cKqTy3X/OIKiMP444Ze2wnOPjAO9wL4aNXpcDkSNAjEE8zvkmTLpSLkRRzI8EMX73j6RaIo6dPCW/Bj5RhGqO3m/ONqR+iezNd2mGi7dMNjh252y34xL0OUfTZ1Oe82HhFVvifH/cxOGIAgSb0O8LLcRGm4vPPMNIkaaQ7xyto3HK83HGwerW+/lyAnE4j6MWCBJA4aL402NdmuIBCoiBub2liCn4MHjXjcJtO885u6BVNXmn+mKeqOH/z85tqdV/PYrBS104J/P+ctgDqUXy4fmY4NLv8AfCEiNlOq4ZsFZ6E35jrL4aq77d7JvdyOdvQH0cPxkkeafyCudDIAb/Bw4EiYxUTYu16vjuRTTEh+XZ/eLJWNTaVoUwO2jVLv6Y/GM2Fv8k2A/EwEOYBJV8TiPlDo29tf584lTvZO63e8K8jVKDQkg/GNXGkm/c+WM1URO7b1/tlYDps18PH8YFjZK17ExRAQELJOHMSnOr9tFvbPnHQ5IRqb4MWSvC1/cGL6Jdq/GhcAlSDak+v75ZhEsAbkt8ecKJxy6+OOv84NRXsL8PrnnBqyE2K+Ddsy9s2q8PRfWq4wKYAQ6+jz1g0ht4Nj4D/vAstNlCeXpOY+JyxVD9hlGKaHptt1i+gNIYmghebzhE8qnxZkbQxWkfmF/nCBAkEBxtSqxM/MMQMRX7KoXB7rX9o7gkADaiPX/vWA9H6f8Y9NvRhfMTWCEe9IP3p+MqXjLwy68jW0fPnIgZWRF+8aTspeQuwOmmwswODDKbfty5nYOt4PRsnxX36xrUYUFPu5AsDgIZCKh6fw4noG+GayxkNJ9jcQjRBV8eX/AHlhUXoL+/OOnQTwuSEGxLxzY+jjxAXhQdestDgYeiEGHq/a4SQV6wxFl8pMT2IFqtUpKeGPQXfNMCk9kLud3hWPk6a3rHpIu0WmERICUZXs9+X5HkxS+lIz84BSvV574wBVJjAN6zZIrtHPxjDuizen/hzJIRyVuBy7h4fjB0XkapMVKTwdYtT6xcODTptjnuKyxjfcd0hh06HP/GNEV00+cICnLtIK7RB++5Lt6FMmdfFYShEPWbha6p/TiWppPuL9OPchJRf7jjZaNSX61jOV6rD63hSio6P+t4olLF7H4ygrkx9fB/nAI+akio22+Ws73oToD4734x3NgVVMvkGQab/vHSVera/ODAA0qbfOxf3mnbVlj5mEAxNJI/v/ABksQClE8ro78e8WDQtnXM6SEetxhBbSA9+PGUX+AmHCTQoQa8feaXjfX/uXwQ3fL9ZKa2P4YBgDkRgN8Rgw60ucZkQ1KntlCkELx8H6yRoIKaX/AMxb8EWuu+soFlpCEXb+MWNjW6VNaf6yF6QYrfTkNdeY6/aQJXU1H84Q0lqA/nvjNoNE/hTQ0c9sm1M6AXT6NYolMDd9erh8gGYb6T/tYEIBLH9SBgTUIWnXVmHO9BWz947a6IjPxj6AeRMqdDveIC9EjjsJ1+/GDtCdm9/abxYozsdxUIXPlgggfBk/OWLRzFdBdGiGHcDfrXxiGj+4v8zB8YiKK/eUSObBW/XcEWe9p+cklT+PDHpGMi97zhmjpFNPpf8AOMzm4vx8GRAZJNT9bwqQPhliWpPFmKUod6Xyjge2tn24pgICdfvma/zkYRTR8PM0oHwfjNHu/Q/1gAIxtEX8uLDx5CJke9t/2WKdEd6P5wV8yGtZ9uU0s0v9mLkpqP8Asw+qN3/nKgl0PEsIiGzFwYQ9nz5wcqJ5J/vG8Yeqfu5uGePy/eMgg0H+795em5utPuYeBXl/24zkjTuP5wyEGk7fvIuK7B1/OB/MNdfzjmKmpOURB7D/AM5aUCWBz5wMNbrc3kds6qNMRFJoY/xm6E+AifnIYsaaH6xBXngv7u8H1FRXbs3lkotkD/OUIDqoTuLoyneZPQPgfsOUclNA2/u5vCdnHRh0RTwcZMVHc4/vEoY9GvN5cEUPOtP/AHETxWwn+f8AeQwdKb/wyJOnwn84aFqPR/38YXLjbEX73k9cQm6/T5waQRaKmv8AGQiT4Rf2OJ8FRAAfdx53/Jx86csSpSpP5cEFYmhBhgTV1efrFWBnP4echCXe5z1bgcOwgknnz3AIarUT489xdytDOHG7ybVkIlAQ24VClBAVqSzNt4ggJPCodwQuPQ/zg073vMq4lAPAO9+f4zbp9Nl/nBHd7Nr84pCP2P8AnO4IdYR/ec83yBn848TTTt/xjUNOz/zgMv7mfxhypWbcwmvlo/jGJmz3dx3Ermga8ex3+RiRkiXuQdF4j/rH7q+HGwZXm4EtnFWk+MDcad1/6x9dvBf/AHFH7U/1jrq/mYSpA61nQsvnGhr5Zuz/ABhoRPWIBsvzkNIDwRnpH9MwZQuRNCA8OBCcPZg2nZ3GkA+rgCG/scXRS82YN4sGYH8YVVH6HAjwE0jJgaPhiV9fIwjR18BvGykDxLg+AMCIFiOwfPMVNJ3mOtTfjzi6IvDYxBp04ZSMG7f+8eVHoqf3giPun/eVTbOeD+c9nb1/sx29v/HnG4OdOj/OBIBk9X+cmBofBs/nCkAXzYKEUdXd/OJG5PvV/OUU3Emj+8u0X0X+c3Vre/8AdiOqeoX84GS/zkyKfCh/eQrJ5an85ThiHB/nLIB+P/fC5Jv+e4dUvlv7cD8N7T/diQhhuEs1hHkK/wCcNYEmgHg01d7LEovlMEOu3jBu/GRxnDU/73jYAPgwut3kGJ8k+DLLYWNWsN97cUzbNNEgFYG3CEUH5P1NY9Tw7hzX6eEJovkGImre4MQ0N+Aa/jPKj/31htP/AB+MFbB8mVmzPScoAk86Yh4E1rgs6e4yE6n0/wB4pNhvhMU4/jMtv8kZuqw45s6KvXPWD5MTBU8YQOD7YpVPGIbC+sDdLuFSSnvIIF/bzFhR9cxSKte1g9Z8xy82n5MUKDrsxIiW9XWGgN+TBpF394A/ztMhGEnnBbp/ObW9+TNByfDgBgjq5I6TM5pL8zAJ1f1jnn8YTG1j/acTCPPhyxe67MWOp+HAOtZABf5xQ3L+MFppPrN/A+tYC+vrEfB95tn9sC9HxcFRXxvIKn7cs9PZioH4ZQ3ZgYOx+c17/lkFAg9OKZ/bgRpnZt8Ul/djmINe8DW4kDpODgAYV8TBmjP3ghLfWSwv3vAN8O7yg3NdnMPEP3cTw094DILfQ5IPI005lroL1mAePvCKsE9mKAh+9sgeF+McCVPKOPFpTHMUX4xmYkDsif8AOblhJWyqa1qv67mq1E4eQ/pwSFTfL85AW38Y4tV5RiwBv3jzZ+awuwf2cd/Z8rhQif8AnzkSoLyT/OHlT8NzZ38Fx1gfljyP1GEE24dhfwxj3/dMZNS4u9mW1zIN0rvuBrxx8hrFfX1l/CGBqCZTwfjK1aQegV/gcQvGYA8V94pdz85Zdt+3BaqygUHBFtgxQEfrBHl/WRR9UygIl6mGAExSSn1m7X4Jco2mHi+qZR0r9Ymeb6zoCfNDAb2/AYzifPtw87b8ub0qfWJVl87z4X4uHAj9maGhfvCDSnlMg8v1Mahc+JhuuvvWMEkfOUoj7wQJLnhI5kIMmVcB8XAJ+owAO0+cqJ+WIQ9F5iUBf3jzMfIYaPFkTtPrEPlkF0XQ4jRCepch4b8TFnU+T/7kY+XrGGo/gxfV+wwfV/RiIS3Hrpyl7+8WBue6ynFPms/sDH/0ssdfvF5VcSMAEK5MwRSsvEw5Kedgsc+XnvzrGk1YHQH9THHU2mvnEE2/eCnUnhzkbuGe3+MSI/wyuV384qG4Z4G57y0BfkzYI+MoP4fWXtUnjHuR6wSbfD/5gHcDijW9YMW+OYpMUR5vJETVw2l3lRuTB7HfWCVnfnmU7N34yyzVpvinzF/TmsPPWKActGKYefca3xyQ7N5Qguv6zdULhSaMfUZCz1nD3hZnsE7gr0zc3i+E1lWdy0fxlwOfWdf5xw0bMUkJ5xZYZWzLlX9YotfZjelFMI69wKkH7wKNGsMj+sOa6cMoxZvmD8+u+XFwrzGfFPeSCsfEX5cXNr3BeSYqm5hraB5+MiO9OzEVuCtyq9zBz29YwS9+M0l3h9sVO4ICkw5K4bajGzicx07ubHcMiz+jGi4oPeKghh6sCi8OZbyc+xmuGSiGKhBQTV8Tfr9hEXNCTc378ZSuvftiCejKbv6xDg4kO4oDb241s0fOChXUwasc8Z1gU7+8TKqzJ35O5b3+cEHqXJ8LhYr+skZv2OHWt5xsmQdv1gqOtdzY4/jKoeMb4b95f59YUwGF94p9vJ3AU/nCBE/9zbquWr6wnTMHakxh8mQ3CnW8URyhZpylMCvP4ynwwErgYlwojTzj5R+81jNZpVaOwcpvdMzwAbk+iecY5/OCXx5MDBwXjLueXNBfOIj1MBz43ioaxBDeUWeTJwYh584sjfow+xliYstncGPOIppynaYMP3u5424pXsxAb5es8QVc8id9YBF2zxhNQcY/jFGTEBwhT84XBrB/WK6PHrBBO4JNGr5yHeYrrx7xjruU0WfGP2gq+PORQpgIc3c6ahTaAvrcxjwJyAGvzv8AvNgOf5ectfGeqfrKt3+8q3rUxChMV3mAhtM40/nEI9M2PJ4+8ETtyA3q+sgaw2fJ8+Mi75hDjp8f/kDrFCb7iLPOBU8ZY/OCm8OOed4QYokve4eNIfY4zbf7GLW3E+vnCxbm4zQ9LmxtzR8z1h+GU8zZpzcvctt1mtGh8Y4O/wBYJUo+87VXGiOjFzTPjGRXv3gVPneG5ztjjWrt85IQb85TT+8WLvPJdnjOyv2Yxx/GN2/rLT6wi0+MOhnjEUNOeIYVWmIEkznv4xzjD4y+Gky24IXszZ94JpeYiwgYyazG0pnDo+TPuriqLM+GkxA39YKzzcsmLVvBFfOBTdzq5lpvKqYL9YtjvzjhiQZ7KP8ABhp1u+y7ycwgEeC/M29xWRg8cRf5XCdACA8GFE9Z8sTTLfDALjD3KoMLOus0B/eWvf8A8BR6/rPP6mboGs9n8ZIF385bcOBwCiWeMAtMDarvNC8/GPy6x21mt2qCsUHAGm9OosMYLdX4yQ3ggA4lncEPZhmzH8Y+D3GUD957X7yCr6yIdGR7MAe+PWaFvIdL+sq6NnzlR3eZKlw9rvOMO5YN0/GUKH7wM6Pxh5lcTe55BvIIrPlM9nMZ4NYghZih8FyDSR8Y72/xgDRjpr+s1a0wRlf1kUBrihbrEdrH6wL/ACjqhV/WcToCyyo0HykxaEJRl0Zw1vdPeKAXUJ/KGS6+NX7hmIbNogjsmCrDeCGTOgm8Er4xHwU84Rt7y6zfZkxMA+GdJf1jD5+sVR042dubA3ZmpSkwnIiQTxoP844/RfjV/wB4RSj/AFXy/PfOCgHVfB3+nFwNZC3xMXdnPOab1MBbiR1HP8YIYGaxX05rx5wl155hopzAl8/JknX+Mj4yTXa7y+HDHTXM4TzjmphcY89YJfOE6r4TkCajbCPxP2uRvUjvgL/rIhqubduNHQwTd8yecRW+cSvcDqucYOaypTuePr4w2D7x3cCTDRXebNn6uWd6/ONa1x+zry5ruzeAvn95uyZNXW/eIe+5aSLrrgHvAgTfrDODQzfChggQDX246Xp/WdbvZz7EpidoipX84l8cwTv7P8aYkwN4JP1mxphTa81MZKuiSf2ZtbVQsVQ3AV+sN3jMtgxFmny+ssD8jCjbooOOXCgmIm/OCElvp2dJHJUDmRdkMRPaYsFhQO3k7Gvh9TCGgGDuNCwgjuMxSnuwFwkRdzl784upndF8qA3HCEiztCs8gZ95IigOM3CWuifWSE0+jZX46/3lGYiHsaAE45/hzy4GkJQFlAkcDDd5aa6TUuzIO9YikIDABUOpvU7GYsVBlBsmushpPGgFTavdG2awGFEDpHEg+cA3rgABPUxba4Ubck+m2GBg8ka4FQg8HGJrSoD3sgnkn38bbCQaS7EbZNYLcC3lBaYzXclLbQ9AVl+EsMWUgElpPy7yJVCi5F7kguDo5r5hg9Nx02bsXt5kDY8Vf8Y07hugmLHeCGaIsrADq7/WIhI7d1VPD4t8OJA5zkm1YA68s3Z5DOI2x5Ot6a+uFxL7Cqg4s2KbxYLOluaohGTwHe5F0hruLT/eMMdGQYWY7u4I3fpiDyo8YG8AV2q17MLdoCUBa4LNX3hRsbD9Yhs7g7Subtv4ybY70msg+/eEfRglpzCTBBvB33Db6crH/wCJl78GB4z5rc4TIFsHOG/zgl1+MDZw6IoDcR4fvCnWrh05ZF1iFFBDqJMxZeSLp8kHqRzFrADcQ1FRZ58foW5VB9wWT9YtmkHobJ5v3kXIUYGNXCPERUjtSaL6PBDNlvgmJwgjP7xPSaoyWX/ZwFk2CRRsjwGLVmneJTMMptmlYxe6zyeKhpRBQkmiy62kuk90eBw0iJTwH+MuDChUslevCVySNVeUF8efPi4XMqYl9oqLd6R9NuI8qTDoMZqJtZSap1MJliDLWNFCG3Yq3kCiIhZOI4fJiC9jiHq/SuGtJk0Z3wV28+cMoSY5gUumMfa2FCXZXxBnxixzACPhFqfdy9VUdA0cinv1M8Yzr1CYC/Ab75uSEAAcF2c46HKqCaCj+QnnvvLNYsNinhoSb3c0yzJBu/P8GXHUEJfgp0fGASipapEwCaHvDyYqVOEFr7dywf6HRySslkkR9XfMEpy10+AvEdHzvJJ/egdMZtP6y+jczf2tD9GMq+8QSX8XFZJCnymv8fzkIgigxm4fxkViVJ9pk3fHnLHvAhhHDnwYFdEnFUCiuqF2eCYOsrmUgiXPtk9dDmArsDvt84Thw+ZrUHgBbHO52zYo2RToRHvfvE4yUBaoItGR9H1caAOoGjsRo2GjfCDhgFi24GKmwappiaqV76Sm9VhCCe8XF8p2Dcu9+H9YHV2U8dk78YhwCqPoBRxK6rF60Vw15H1mksuWeDkITXvC1glaWgWURLfH1dqvACL1EIIzcZzNXarDhg6+MpfDhBNmPnUx4upEAaEHc/v7wrmCFt3810dB+ZjGyK+4B+vP6xFEQYRsWbDXU/xlrJvBexwOzIa94D5lyx+HLDXXFVEkNxGrcWWblkcuToEBiktcNxya/JKNJR3B8Ph1hRuX7xb6LinBHjl/J2oE0OqoesE+70ELA34SbccxROzhsRdOK2eLjQxgj54ER9lmUydOgMdmnIxM5BIT4ymRAWUHYpEd+CVusJodAAnaIsVh4PW8OrJ0D2DvSXT9ZqsKDiy6nz4JlQCxQ7g0fN5HcAO2ubh3AnBCovFCPnXnOLKhGJ7R+OZXPZRGLp82nzlLSEW7A+3R9GehllVdibQk+ImIePpnv3CQBp5W8Jc2haKCNiVem4e1+X9VFBI/K4kYsAIlTeTtdx6zeug+JlFRdFQoAlBC7X2FdqNiJHuOX0mljB5MC3bPJgu3h5UM+oj+cJ2y6PNPil749GXmzw6N9qWoaVfUxGiTMXBHYb0PlJvKDqFIoEJNPDjh920UXARk/bPwOHCWjthSo6AHeiNxSkWmQQaUmrNH4xPODbPCTRHqJ85TU6VFbVRzuIRAk5h7CPm6yGHT5IDvYCm7+Jk2SSEnbE+RNhrCo7lKAAlNJPHnuJAZOBmqE3yXv2YiRYFlV4LSEhq+MsQmMDsA0qMY9etqDaFhI20sb6nSHlgQjiEoonnjl7dQWnfyesLQlpTgm/1gjlUAhC1+X+c4jWU7QHT8VscNY9Am7/cyZSdpDG0EYx28mm+csMc1eQLoLuX94gmamBrcXpl+WbvZTjgBAgUYUYjcRkxMZABpSxqwxpx0KbT8u69LfGbZ6LCTbfNHk7hP01dQBhaqkzvSJCHsNRjObMgrREqWtQbHyvjRiwaCyKeVp28MmsBF7gCq9fG6mKnEJ7dU+Y0umuJGLpCy2Ot005rd7EEaVqB5CdNYOfa+HB4pCteuIaACJN0i61dPnBAVCpYMk86mq6MCbtrUlqZrN2mCmitzi44fRSAJd9rqbNvMPEgoIRSLsnws8XEuvVKBUHilP3kT6Op73Gjjp3rK0/AmLLri0/DlBRyIhPdCfnC3DgICrBV+guVt4ihQewkDp4u8G6BTW6VpGjhzUF8I+h/lMSS0fUi+iJ+tZcQWJIS4A1CPgxT8o1acBHnzm9c2EAMliisNe8UMBZrrTYF+H4w3aLRYafDZ/wB89pUIT1q5H4GPndGuvhhe45K3UMfKnZ1x4HfUHQNhQZGKOlR1kzEbPdjXm/ObIbwffF+4/Pw4KHLNb01Ea+cYK6Qh9xF38ZRAzjEbEytHvCd6QQobVqYShfWbinzRbQo2C3TGegoUMiiJfK+nH4mSpCoHtu/5uapK4ICVSlJ6MCfq9gdy+I3XzfOQkkbhGKAmxDcXugDhxqxpRoZtOwGaFuBDyAgNfVzY1BURO0/GJQT4CCMJRqX1i+YCiPso2ti/t4EMA82SlScJJpcIQkEACmw3Pxjwit2EwL71vEFBZVCngYG0NzXyByX6dJaJAyMXB1JFCzQQCkXfXk1kRkSuEeZ883rAQhpSFpW7LW/Hxk5Juq5YRdM2kPfGkEfbcLwVHakU8Mw8OpQL38MxgttzoAf4yhYSSl9md4APzVyVUwT13xVqhlVkhzUqNKnqsBoCAXF/3QSimmgD4E+JiQAeYIQ1t0sb9mCRwnEbYCm9R3A2bKeQL0RuJpXxPZjs1d8sTumjmCcBo33oVLaa4PrNHiJQ0NKhvVeQbCvAiPAVoxBDpfrFaBMpMFUxB9eI5odk/SKQiF3BdmN9yorRqFkCOh3TlISUyTSB+j43gpLROAzdoLtnS+F35AIHiK7eXkfOaSGuiFriZTw1NEd+eYghIhJxJfOkwUs8B0uA/NfrA8xlGZ0xOPzjNqN81156z+8pBa05LzZ6wWvQgxTTIXwu8ChmiBeCc0+/OI3y7ToqenTzvzmlmvVJ4vmAIIpDHSyIqJQQVFqbUp6OH75omx8PfjNc5glqCh+Lfx5zWBhrlpQ2U6MiR1kdihgbYKCIhaLygCk07GqwG4CDW6YBk2sb0aQsd684owGKIosQj4ef1jjgRK1Q0SYoyAW5JdOXmG8PX1NBqw2/BkKailM9ngX1+sNhJ0oOvw/KX3gRDJOGNAgNg71hGGAENNh1FHfD4wlhrn04V/W2xkeHwQm5cpBOtVsZJaNjakiOFEgUHY6No1rAE9oPA1t+d/WO2uTRdpPpbgDojJ8vUf1lCx3hUgnrZfx7yqCXCQOkdPbkscCtMkwU3RphNGkuiYoq6gB8N7gagARnlOc/lxDgdNUR9X6aH4r62kLhmqgvXOD6xI+iaVRs9S/nBGro2ACvsB/eDbvjeytukmjuDpROTUqqvSP3jWeINEbr/uYEEVVaBopwh3BYpGjHVpl29HbrKmB2j3Q58ElMql5soRKdjmM+IhaIANLw84SPINA36D7wWSrV6A1widBrDSIVLoXS19LTLd4rwtqGQfnTiXFEQEBRja1w/wAZVNIfgqkBsHwYThkjUFtKqDkn5YYqjt9f2S2yYw809W+YAAZ8u/TP3YIEwddKh63l3Cku3RBaLnvbg95IhEPl+sbTCNv7M8ZCYGxBzYs6fmtzq+ujvOJoGh/HJFslhnYHga81BRMACLoDwfsPxjbFBxdSacF2QhtKFdKd0DzFMRyAiQdiA1IO7zCAqXJiJBWVAPFN7I1QmmEXKEZxTxkUaJVB2KsS93rfvGSVpKx02BUirXuQAuSPNNMETQ0b7nE2akXYM3odhwce3ogISIz5mG3/AJmFAdnkZaPo3k3gBIaWBFK7WoXYruyEI62FCNHDIxNEwlDCVeLuveOaJBR3S+FgPrWF0mmwhNBpZLr5yziya6KSgk0vvpl1Jh0FAb0m0/PvLeh1NogolXZv+s5TaGygbMKs1XmLE1nlVLYp2J6SI4eBsrAVEh942RBTFpxG3d50kRTTPuoio7fo+Ey66QYvqt/IYmAjKwD6kN9tAhlr+IIaPokTZ5NXBh9Ir0O+x/rCYaBrgl8Z5kCSwq7gnjk5EeYtZjMZAn1EEVVHCXVnkqoJk0AzzqHmMwJAJJUtW9MKeR9Zu6xjqq3rIHiCz32CSZEDsQNWNf6yoTKEIJeBRTwPow/NLAw0pl3g4ecG2QAMi0IrFSI7nnaM8RFCq+owNqdFBEkTyR8f4yohMn1hWuvF6TBNUm9kaQAClrqR2ICrU+80AUuiJso7wJ3QXYFBDYbnzPeWjIH2G23NHwYiQwpdkJC2Eb1pxIm7VoEHWbU7iAIKwRps06uWVqMj0Go1AlZDGsWl1xB3pUWYh1dPMHBk3CEiULp0Ifed2IJEKjwoS/8AtyhogRZ5cdmo6kKawKE2uz3nIQT63DsST085jOeS/B/Jw7uY7qlxoABVv5VGTcxCErxZIpo6NZ4wvCEAkGpmgqEvz18lUuGz2FD4EPOSjmnlDZ9xw+x9AMAQ7F2IF5gjq7RRcgXSYE2GFBQHnsTt86mQWJ8aSYFEaoQd4Rhl07QRGw2nTmPzVNoWoGwWnk0wt+NesWVtQL7fgDxRcwYchKUTd4nnmbw3SonZthub845NQrOGVdDYeVfeEFzEVgwfocJpxCVpy6FQhNXeCdG4ErBt6R2TeE3GqQOVCIE00mcXVfE2EVUZpthMUaaBaRA2VIBAuvDFKMpbRTub3XyeMBhC6tCb3GGguzXEtV09pUoGz4cpgIgZCFQr0WP1qmPxzrn1TNHSuseTwO4fa+u7xQH2uO07STncAonrDSsCiyMi1niiiyCBQkgHya13FOF8zHhwKb+cnpu5bROvn1m4tst/DGQ2ASmuUSPmIFPeW4jaOPkKb1+zwY4eSNNV0eAZbinCXxXcq8/77wxre1aEe079mMDoTE1SOm1OcClb5bWDFG9LyWutVZAPFatIVVELX6BhwzFG6kEBv1Me8MdpsXSOgL6erlt3kIq5xYvCvDeW06Te6CsIDrXPGCAQFFJdAWSTmP3Hq7/5BMYWiRhGLFG0PKdoYNWrdzFCBVKao1uudA8mNZTQMPL8ShKgwEwE0cVfrG+XJ1BKoX94gS3dClBU6Rhx9Xn1ReGjsIWXxmqsF9NRHKXZYT3hlPGUsd+hFjOscavXmtuhQ0dQG6TFaKxsChanu+POA6YVUCA9z8W44CxrU3iPQCk73BnBSJKHtsDV9bcdJwZua7Kl3NLzJv8AJFCm8Pq70beG2XSNd7XUCp3mBYBi0GNv1jhEs4Ufh9Y4dLQvjeRg7pQWxRdFE3rITtkeLQ0Lvy5jOWA6RAaQegLqYj4sia4KCioyO8JhZ4TfkpN6nctjuKiOD4ShwPrFwL4kF+Jmvb7x9MeicFAOypodrJia6apYmgN6I9Owc5DwwCmzx4P1hFqafu6aPl/xcd+Q3q8pSDCiBCahlPC0UxhRvibH77lBrHBKlqRWrWthoxGM2SAKfR7VX85ESgECKIGg969+xrqLRg3gr6ArdSJYASNC7pd6xEkLRho636L8T3kosfQJdGAoiqafjHXWSyYqKDZF60K9xrh5tSF8umibYCLiYpFWh4B4V4eY+sOiWL0P8kyTEmQOhDSVT4binVOHuHYqgiPpu8qiLKSggJfk8f8AjVOEHNDqaLW+vDin3ojcJl3gBY/OaSigSKDtCoL4KZGLhtZgWxNVCkSVDQEC1WjguyPRgDubPRi1Zipv0CDjSyKqePDkw7g1Wrwdb17M8dD0o0tNAMNtJ5xJ7uhcephxA+GnPqbsFh8zxj5zH+wmrcLvWJZdWmjuCgUThrows5AIib3JVoDQisYJ61BAlIx/Xg+zDIj89kL84SaDIkQo3tdhQauIkYKke6mq0VfK+8k2mRILH4SXvEdWCDnbmsUhSvINY+THvHbIAtnXNNKzHALSoogp/wB3k/PraaA8KqFCjreuI7CpEOzVUVHmhhNUnpRAgEQ3bIscJyMFGN2hCSTz72PKNxuxEIBkfFzSVCVHkgpU73z4MushIyx1S8SZLwWFbwKvk16RwV4I8ZWunI/WAU6NDcL/AK8vDlRInyRv+ME7mQhDSR4Q2esKbljilT1dBv6yp8LCnkC/n1iyiJR57MaDXjIkrEcX5LV1vxhutAa0IIwOUsoncKasO6B3Du+B6qZBAIBwqWoob57xIgidUo0vhnpxzaqOdE6MEaj2/EMGgKEopdID6ehzSVaL2gLt9Hx/BhGn5O5sK7CZu5bSTSRugHKzmdbQVMsDE2NbN8iYMqSLy4vM8+b4x5lrN5psQID4qnqyjtV414fJ+I4Shvsvk1tsDzckx9Pr06WzRfBzBQ1CLLt0DhDXmecUCaFKPdheN6dH3gUUMVtiKEq63F1iSTqj50sRAbmikLduGiQ3CAk7wtFcDp7bVSbB0J5wcRmtgoBLE/f3i3k3bAAF1dNO7hUd2Mu0WvB9Ka1MfC5BqIlNubQvhl+lohBpvdfwmsSgK2q9SgCPdGFhAAHhf/rNzjV+PD9YqTpSKOP1jDshz4Nnqrz3zBNBZPHrnO1KBN4B4pgahYZSSukGuKFfyB1DDRJX0t/gSvxrzhob1Zeoy2g6/hl7CtiJ2ebFZNtbhXb9oUGlrrWklwfQQDetRPH4wNyAepZbCzfs04sLxnaiUB9D59YwJrEyJWsqV99eTGMNC6ug0W9Hs0mIEacbEaeSSrVW9cUr6iWqBUZ4H+8ezS1V2eT036TIUoEJwd5a99JtNBt89NWcyAY7YuqbIglHnKPMLZqWDph5V4GS3JpHLUrbbSWyGg5C6ZokSrPAoqevRqrHoN0Cvsg5RpuPTfbOqehXNnkAuw7I8FPjBl2QQAL5AUzcuLHc+aeAmySEhvCdwP6MJ3FAImtY5IexOlyxANJ4Q8YmcqpZ8MNILvZ8uMEqABUVFPq4knUDBro0H6UxQimYD5GD+8GSHwwieKJ4nXDAyWdgqEIAruTuRbGl7KDTyvfeIk1LUWH59jxsxsuQgm1BAWIkfZw3FcyUBRarxB0GJ9Z5l5QNsYowZkxwNFLFF91Ptfhygrjgj0KunS685WSQ7R2Ci7NLw61X2kDkbYBoNL3fOYYpjEKoY6AdGoI+sSrKxCYGwqKFkNGCINHdkWRY/IwDDZF0Sen8UXnrIi4YbwvUNgvkYg/bErZtpvwJoBHO6yjZNs8HW21MagY9WAhr2pAu9b0w0SIJtUURo3u4AE3pAeidHj5049D61Cr7Ty/nCxZFTFLWnh+8asgg/A9Zv7WRCkNbHXImO5oD5NV5gVM08QQ6MUL8hg+3kDqMHfv8HrH5iE9jZr3rz4MRozcYtCn26dbwxZC8mCgo1C+e4FoAgthdPaXp0LjQotHwFUMke+HvFb8KIND0gI3SZc8AtwrKQOHzm7d+pbkAFFuk5tRoMMF10UIiTrf7LDXHNcI6MArfLDAtOfLoOAabpNN4YIC4jKvpwTG9YJkL5+TfkyL3F0xbNiTf2YchiTw/LQM8YDE1hgfD3hME5VCDHRBPTH7h8NaIZHegm/nKaONn9ZU8/OUJOuoSxsIP9YXTbaQ9Gpvjdu+SNdyAy+z/AB/W211JupC7KAjWPciUhV8OpDwGg3hI2T1dG40YrVdHjDGNvNm3tEU+H5M1QQEjgB025h6xBIex0eQU8w7nZWGA3Q4nhO4Laruwr1ebL/rC3Ec4Mqd/7zhhkCL6RL+oZF+o7KU9HzJ3uA1CfMAKGxEAEtHet1+x5BAhA13z1hBt7mzXhw9HjHFNlApAJueTt19YQGh9CuIc1J3ZgzFaiWhErUQ5PGNIGiNR0qx635nMA1uDSFFlqbb4+sGAEt4gUNV8m8P/ADHudL279OZMPloROh+fy3veBUtC/TIHkE+snHgEDCUQ0JN+DHl5AUiKoE5yYica0QPUk5P/AJhdDRSQNTQLq3gLhX1QYigUC03ssTIxdQRSKuHsJ95GrEODsVRVg6XXjEnFnJVPAdA0wvMRsTFS6LfC6bipqy1WgLBkSQ9+8BYYWi0m+OG+FVSvtegV1secaeSyIIS6RYPjzlABRBEUClB4mGyWfVEbgoEeQSmHLfm46qvlO7JrFdEdC61FnXyGamBd+Iowwhrb14odx0CH8DRv8fzhhwpIMegYHj3l6hgO0LVstV/HMOb9KLEoflPGQIHQqHnTVXOqemRG+b5rzzk0mQDE5De0hrCF4QXQ2MO5RaXAnUAIIgAa0/rGHxFZq1STpLswPQ6Qui74DU8YNLZN6KD3/wCMcFwb4kmpE4EN53Qk56Gpb3RhmB0IWeWB3TzCPVSaEFeWhQ84+eCaRqWCpPL/AJwFIzNgYICTUIjdzCgTDkB8oTWvNdyzn5VHkQLO/Dc0WeoOhCJaK+bM11xCKpR5Kc99xkpAC1uUkRdgnI4nfrt2CX6HvrNQB4hU2O097m/XcP0+4QaaCGgHph8KTDYyLUL2fEB6yEIVhYmlIDWzZvwGJGQEqKGncDquaiBvChdtnibLIRDUoKENaa9+3KsTsSbOqLCe/wCM1YavQpSc2MuydcrlMXBgOvox3Cu6wl2IDhAXmUmNApGLo9vy+zJko0DDr2w6uvVhr5KG3pWHeqfjCcHK27gFsXnO0+cg7azGUShSgBs+ZnaNsKaT1G//AHIgUlvn5Dcj+TGVetG/kwV4mQIgH9+f8495KWiygRF1K89hAEySCLYHwF9HW7wXgEwptNu/eNArRpU7UijR8NxgQQkeUjYKts0rIYn3NsIDJEWKm9HmQTLjCn4bgo+PoMYbJgVIAWjFeF9zAp5EZj9hCr11YGafG4kEii2SH7ygadJH9J1Bp2vjKOmqREEN6s0FKnheJpLaLq2JEkrBXXyWKd1dFvlMBMRRNzE37Jo6zkQwI4oqRO7Q+7lnl8cVJT9ZByFNWiVX8gYRKLcGtTFvnjtg/wBK/jIzowtECg3bdZIfBvg3UIXQenc0lBC4fPE6urngeshNNk81Zs+F78YJC1Gii8IhE8nNYIxvGUK8FNj6MiNkjSqgIBqnsddJTB0FEhnFfRrpmij8jolP5xiOIAGo794I2I/idoGq1fH4xgsIJbyJgN0umwMui7U+CTqChZwsxzRKBQATvrdeEmzDTOEB93v85IEtcVAGaXZeGFgtwPIa1sR/OG3yyRQo90kv39GXL5oIJLPXj8mNiajmpt5W371cEvVRHfCk3NHnmb/Xelhg87P5c1xWGIguENOZRuuwVuwoGIduQrQAs0FZ7wLBU6cAN0MOU3vDkhEfGgQG9LfxhZYHSQbjrX8bbPmArQvFWCuv4YD7kaWaGP8AE45fAIpU2P7KYe0WDRXgV69HdhloO0abRXNKkvbAw+PMBqHzor/xTEGmKk9Gk2el/GRA9s0sDXPGpiVKLKoKx8dwEaUKp8Q9vcACRfEIGXxyYrRISgCfQi6y1+3GCNVPM8maAuLF0So6hiInRJGHB2VkR4KmRQNxAfiEVR61eGL0KiJQsDnQYEltXSCSwpFJ8/Bi0/0PhJQiovvArpMCSt+iPhhV6YZFQE55uvGN4K9A8jW0/pi2Ki9jwrB/OCopDMrIQbEp97x5GqbqqR9cfm7cF8SCSNOB4s7jsoBLVlSOquTjLOngbi3kwAIba7kAzYfg03a29i+S47fxjkWx7SWf5witEBNs+8bZBEUxC+jwJVhN2PAiQyg20sLLJngdVyU2p5dl0fOXwgqtgDbyii+H3TAIBMb78P3s/LhIl+n9IKWp55+lnmUWk6aQF/yuIWuUNTQh13B4BQQSN6LNZdHnRBBE3GN+JiweLEKrftNR8rhkIKJrASb9J+JrGXYvwJDfBzWdtT+CAswFDV8lHY0JruEuGhqTp0BKIKi2CS7gpWw6hTQEmRa+LHGSuAFEEqEp8DjlNy3o5btWa7/eIroak8KFiijIfJhwYMSBqJCiU1ePw1aiuzB3wGGvw+8DxRpoNIW0nskcyWIdlX0ewDy38MjFJRC6DqFuveLJ6XtYANdveYmbH9Q3lIFGogoZFBJVR6CCV2fMXDJuuoT4IM2fgPGTfSXYKeCKlLvzqZwOgeyK/j8mBumUlDx1/H84QEtJ3iX+TCtiHHO9fxjMpqxG18C7fGTEl6H0uwofJ59bwN0URoFBtfk8/GMx+DbasNoCWC9UAcUWKzLwDNF14+Zh7D6yoEPpT6r1jsqF1JofCpBPnKUiIKTKRULWLdj4TW5dIpRG7QO/PMkwvXXy+f4wK6jFCFB5T15wJCdRumvo8HkHw5KbQAlRQN6dQ+cvdiQJRWmoyUj5wA0smrnBYDnlcOzKEGNwegX4+cDApURF6VHrtOjveNI9XUVC/kRPxi9aG9GgdAEFU0K9DE5CU1XZ7haPSTA2g10ZAUut7AwpqZoe0+DFEaVPYnRFKw1uIdC+dJXznjisa+8KF17QwYdAQz0HWOFcliqrXtFe6d4ivBSWiagf4YgoI0eur+YHj2ZRBcuMKxrZEB6TubImSeOcDY4hhzBt1USQroDmsmyieu/NjGZfVEDvln563itTC3EAnVZwHp84qSDsooiH7uOrLDOTZ01nw8pjSo6AVAbRB9HxglHe4BMTW9/r3NJwxbIlQoJqo03QABYoFEjFAAsa/OHGWGiRo2bScRNjmgaP0GgAjoGgdniqFylR0y+0wMVQTUoAJyBa0hEDGmTJ4sCn7H7xyidaQCVfLFgehhqTdxhu2jRGkdExdlA27etAhKTRd0xIlZ8hJDtrptDiwooaL11YbIMnNnHeGAaoSqQTxDMhO+nsNGrWFXrWE5tQbqE2UlANeO43XIKEKKI37g1gR6WXEHQCbPGJRhOBjVd10e2tbGuLayy0+kz61MGE3d7c75a4vfvLoGUoj0N9Rh2Kq14ql/nHQkNqEvYJQBxSesOm+PR3fBdtkVvrX0G0DUBhQni9MFwStAgZd6Dn+MW5pU33Y/MfnAnI1KCL+F2TU8MA+KHzXl1IVfIe3LfSGmDRSTafQOMEGpDcIga63kvFa8Y1Ot29x87xHuhyAQURa+sDXhwihdIeAPfW9YQ1BI74B8qb1PN0DNSA3b8PvHYhsXQCsjUHQCKiQctHIgraiqpqP0wANFqSGBLU+LfjAoZggN467FKErpDIZSjEaPHqSt74wwJCFA0S2U2dM9Y18bWODL8tqDpJMS7CSEZOQihfnnrYVxAgeD0SWFpRcU9VMBIu72uNr6xUO2fdWk1EZRfkuEJQNGl3QgPQ06y5FEBXlFppgC8Z4xnCdDIVeBKFosuC0/AYNljdz7vzcSG/VqhQFgkvn41g6kAMBNopvziG08bwI5twieajJzIOsqnrFV/GCIdte68M6YcoG6/E/TNXBmTkOBWBIRmrMAIWhDIYPgA763NDxZyQrqAOsGDZrEGnyZdXDApKskP6EPrOPgmFCAdaPP7cyykZgpYCFp5iUXBB0gwNgV5twOHw7QENuOx/I5H6V0KV9+sk1UNLAIAG3yf2yOqOpSKnr48DCxXUDg+Lt7fOsfKrOsAAh8HwDtxng0I2LAL2A6vU8YUiApEAPH5ny3pPmOiy0/IxHqMJoESJEjNv2OgBGTk1PVFJ3h94IFiQqhIB89/F2YBoi9HWleWECfrN5MegJgNgs1qfHHQj3zeD0NFYap1C6YlVJvFNX1sehUIX0esOJuWUEPLBcNZXVTUBFs0DYAxxdvhBuGgEUCLOekSck8unC2IGHBTDliQpfBXXf58Y/wAJyvsz4N/jESp0NPPRoE9H1iOjTcCmjY8fI81m0hEtJdv4NY2UuUJAAniH5dkxYUtfJ20EggEt0YnMJZUVWedBrDO0I0A+dfr6xlqutA2SC5EUvSDJ2IDutpufvBI0OADe/wC8MKUNaBXwWvwOGU6wgiVsp62lI487pWQN/h/CaiZBtA6SQlfMKBddNkiIMAVCkmuzVxjWa7AFjo6pprHmU1E06IvopdXzjhADtbfa1Rvtr6m7tkRAtTR8nfvHQqBUg9ffO+cbOSumLoURMni/aHTqqDni8x188WdXXgCiVjs7dfGTmsuxpbz9YDQmsSPYMi1ZjaQ2IhPPC3+cICqJSt1izaHcInVrIBWw288ZR30BdbDtpt73gYEhAxuUala1wx02noqVr5V+3GdabANWDFNGvZhRf0jcZFPl60YYvsuroNzauk7rrgpuRBIAHiHZw2+MWub66eWMKPiMGUoHdEllBCTdws7xCiB2F6k8R5zc5XYS8AbBQtkOuCV09UIfBeivWeTjQ100BWPt0L8NYiaRdYHx9D4aTFOi5AcI1tdLT8XN9T6daju6x5eYrToCsAoJrb3L84gAb8ajQVlfnG/SmZyROEWWzG+EaTs0Fepr5+cJDkDQBRaP1grg1ceFJSOrx8YYIoSjz9B08mbTCdWK60CN3w50FqIdPC/0YiLskSTDaJbpRwSafBICp5nWcHCim9XCPd3g6nDEuHWbWiKfXn9YwhFfrQwXo0h7eMTJZ0QOxNiFubxc6wTY6SH/AMZX9NZs2eelef6z6QIasbkaWp+GeLKwMIBBLIaTqfjuRcqBKiHOCtpOoliAiE2AtZwgO+A1jXXgDUEXw8gj6Xg5PAmH3Q/lhOQh9bAG/NHw/eN6oKPO3o7pBzmjG0agEFSbPhPR6IpctXgmaLM9p84rRfavIkuyVxSpevWcUffw3vNsZHB2BG2wl8831UCW5J5cEByxC1K6ZaMPaasAOI1P/OCsPrpCidoIx1TEgEZqpoP1Bmo3tuAs7DQuwhTebGMiAAj0AF9ZTBDRAGkJHkLabvluRmCnZdOVJF8vhnFGgEdKk8MZ9/GCQ5PZLX3zEHXBqK0FSVGX9ZYvmuCzFlnmdw6igt5NH39hTzhymsA7jITUndLcRMVjn43BFdQCOjDjhxhiLvQ8aKGUxU6B1Z+ATGvCAhDt2n95tKKEUIAKQ5OgyhAUm78mRoeuY5jScn7Gv8es4+5HFQBpE070mUhAJ0G2HgAOvjmXcYFoNaicvdPMseVKJNIQjW4B84LGo4gDC6KfZ5OC4COu2wCReD82x+DFGy2bnK+Z+CnjAYb2zEaPh94Vg0r4CFralPmBigMIoWfxHjnOYtU8OZph0UDVpTqK2uUxAvLR0PPNgGcQUiiJONdmLOYSNpbeU/VPq/GOBSsfgjRo1HCHJk/BZwiIEA0C/GWkHTWxOelcZpolDNpYNAZqp5yCR5ViINiE8nxCOAo04oUiCAfXvBVwyBpCQter7wMKoY1UER/0YS7QGpZrRODzdHrEX2JQazV5VfxizYz1YvgA51ujuHjXNpKMvcI8jv4MpRyozSsBqrXXlOaxU9AqIqDWkr5+83eEPsG0NInPvWDgM/kQCwpSYBIEggJJDYaI/OAGZUF0JQTzz8Yc7QLeehFFRL8OGCEc25Aamy964IFZVqdAAdZCiewX9OATyNQVIVXfM0Y8IylU0R8OvnLY/wAGBQJRp1EnyZ0dBQptu9095YRAV0V0XRNeD6xSY/meNtFUHOuWWyqMGvoaeD3jCWQK+0vv84cx6QAr781oNz5x2tKpFjZNjHfv2zaqINaACDa9d/i4QENyU9MjDx+MJKZNDUalNlN7wOgUyhHfshu12YnZTNxV6BKZfLikxSnQAHgaN4xjjwQbCHabtxJWIUFaoIbTxisfUMcB4NM13WfKa2lAUc+bzF9rhgIUo79HBuHc0Nhl186YqiovmgY+/wDTnIKiHS1i5ZgmWNL453GeJBpvAFOXf5EgbdHsLDRRCa0DDDTlLwG70gC827vEt5JoSolZNTQAhcC7N9oE7b/7eMccqmqnLqPUpgxvkxxE+UGNr3rlbzd3jxsBrb79Y3JstSkNY2yTSJmrEZUCKmj/AJDHfW5oYBT/APbB9wZA+ASA1/Hx4VvKXzDPp3wDHgEgKpDo3g/nBdVBattdDXtwm1U6DKNaFt/GFXCDLj7Ry/4wqtbe0oE4rmFENAh6JuBFovvEJNeUHREZuGEkYD2gJcKeKbT8fGHIYEeAh31PnuHrnGg9T8OvjBDFEfBgNOiPSbtxb0K4DSgCjy345iqdFmRPQa2G/GRiYCyhMUVXq1r4wGrDfKRVTuvZ5Hc2nz6BQGAxOGgM2ruuBrXk1PfnAaVREGueXfM2PtJ0gmwMC+Axx1btzsLX1+ZTznR/CrvSIRuIJll1IlPt6P3hDQ2crR20t9eHADPkIgVCsbJzWmmCwNZoqSpdQ6JXcWqhQYhaAUph2GHBCD0hUIqc+LS++RrLoMGh799HHfUckyaHfTmUMIJcCq3hwmtdlagGaEE6Cm+mRnwLwQXRaUOeTC5CcBasGGR/WMY3Ykp84kXv8SiKOBgk1g+zhQeC+Tb9E2OK/NckKqAgef4PmnwkSw3CbU0Hj1ksMzlqgyRpdzNrhUE6o1tHNoYZZbioAtBYAqZTl4XHskLNiOsNWEBUJVVrt/lwI6cVAaWeB/WfBloOGbAH373vFeATNCdTz+sPoaQChseqgIBb2TBOPgIuCkHXKn4xCBWKAeq1PsTBQEFGwLqnqo/jswmFQaAZfFN8d8YG8Vr6iQMHDae8BaT2ENTZLD3Fx2oLGUMQELsdOrTJgogQQbA2aYIskhobAOcs6whwmOYIjhtpLbNmo12ZEnboi1sdChR8iLaBGmqtNaGKWcv2b4HBC9F4FxqLUtuAPtPONCmCxPROqAYBQtbrUwABPOkU2Bkm94pl2lCC12PSUpjTBrR9gXXvus5p0DiaBCbPLYbfGokneVqCryb+G58Ed6gAgjnh8FSVYeiVQqimlvxjQd1CZBsM9RdO9XFDhSUtHqqbMfG48p6WAIF0IFH3Lq4vSkdpx5rAM2PpceER7qckbKEYFdbwDQf9lXaLr69YrtgbERB0KK7361XiwawkdQA6Vun5wmju9pH7/FyPcO7jn43jO0hft/54CllqPIPaX941B03CDkVGx39ax2ntPlew6F+PZxMniwdidGgAPRX0g2CloJsa73xh9Z6USY8ry0uz4uTsD94VToHZT+FwIYervOGVNfFuTQJa0jKDsdp84ZiaXUKb8h1J8XyYXzdMJGJsgJUrTjvJIjqKAKXQRBdVqKCMlRiKrAFLsFuaCBaVj2RKhfvKW0iGVGsyRv8AGEPN2NBuqTovyzxkRwn4d2AqRj41hFg6aQhfOi/FmFmAOHqK3T65TD3sK1WFE1vyaJ2t1ovBKMdYaPY6yYZRYBhFvtOnfGElABpaQ2h0H84hbpK2Nf8AnMIiHcQC9kCTCwnrS4WoxAeSECESTWE9gGzbUmlBXUypBScARRroWezCe3aB8EoA+uTEOOUhd+Qga8eMYq5zHtSO9ecFBAWQ3NZucuEKxwVWNyNImg30svj2WhYiCBppZOYxfWNiNgiKuvh5hj8EwSAuj4ddHLH7GVFPd1uhrKXm2WA1a0ylPnHs0kKc2VuV0sH8DVIkgpofJs7NbszW27CzGA6Tp/G5NxNYL626TVN7cesU0oxPLXO5E9itSAF6rNuq184tpaEc0gQQb98Li+PSlWwJ3fh8a4YIu9QDigGxH2u+4YbAn1TjdVPDvNpC8OpUUNtzbzeYkKiR1PYet0KvH64tB05Yh3HJMkAY1ElE757mlCn6IIhCQ7XvxjuFCVRQKoSLv+GcMj892fAhJup9YkA5wlAUgvQmi2ZfatR0UbrNefvhu5AiegREi9r63p50SQUFZZZ84O0D+A2uACRFUtc0lBveJg1bE1c0miJqpu3KEArnYwCeVPa7MUOGUOKa756+8G9ka7Rgo9Ka3L3DOldg0bE2gb9x8YrgAyZRpac35k6LusKpoT17N60YDmsdWtQCoeIesN8LX4dh1UZNWUwAfJTTIiEmLXybNvXQ+HyhvOwow4x5yUoApsf3iJcnpTq19jTD6NRCUHvrxlS6/V2k1BIU8zzGU0IOygqWoPLQhCEpM1JafaGIaAi6KvEfd8UyMhDQ6U7DBBoUZcW2HItI6oW/Ls4yrKdGrZA0AicmXmLLoXT4GH2/DgSZSLXpLIoetp5Sh5nWoF4aihpmKlCYNWc/GPH83H6qWAsQJUpSqdEY0NorqjzfDM3apw4ignt7gKJeoJQO0lj9nTISkeTQ7UiqpzyuQhM0EwFj7uCKRJXZpyADyjiDE9Fu+4k3+jAAJ1rySPaM9Ece+F5CoFoKlCR1rH9DbUCE2NGiNMEaxTgUGwXh5rxhI7I7QKAfiqez4zaObXd0ugEtfLgOgWGUgRxoG91vAWIbvET0Fgd62tMCKgdIsWanyP5+c2CdKeZiNPuTob7m6LDRKELPku3AgJQ2AXd4PBqBMb0cLoOgQijYvSYb7BBgqDHjl84ztHz7Le+TXxjcXR60a2dJob3vHMgJHhevzjBQtg2XyR/RxE9ybakVUFryO/WNSL3ezIimqnfGHramNQkdNTrzr1McE2rMViaIvr1imdSGQoJYS9EPHjVgWYg+WNTXg01dGu5zejtFQJCLsf8AJHHcUZbPsGpQDrLu2YIDXASJY604pgjHU1SVAGWoiCjljNDoABIzTSa4GGpoDboiZMUJMVA0C5p9zznhSuINvBLy6WmAXQ7ZKOv+/wA4vmteET05XlPaYZSqHIKipZAsoexyQbu2djRQdBGiWjg7FrTmLL52vhfG8Ne6f7eXsgrsRDeDXhn0Aj6eYtV3gM4Aq8G/FYvLv5xojsIedMhhnhFkEKsXF2EwJH1KCfPhP4uLHTm7dUXetooLrWXXRSV7a0kieZPopxAJIwGRRUijzpM14THsIfIpr9ZUJ/IqA2azZow1Bc1ih7qDViKr3R5TG33fqanPB48bMg68VsKukYlj4cde2JARWax42Pi4qwhIGqorK0q6mb8qI0r8C1/eGtl32RX9Gl/XkxNkOyOgLhbidhtdn84zAUKzSX7+sLJvYCIAS92A/ONnbuSNJ4EU33twRNY1H2D2AYxNahgqrDzv1jdp7iUH3fXw4r5AxA6BNaBtj/MaM6F83EQnnT5LhpruqgNHAgAHgxNRokWoVRG849wDuUMYCoKutUBgC4AVIyKg4+fFDLJ7gI9aSEL1h6yhLNKSFstavNUebvvxHUEnrmFhUgRgqAOmhKhq4l3gEgNxjwPzhoKrJUhIdrTkD24AemMAorvsDf8A7hoLYo0igHXvfkmATDaDAHUAoyh5iYsO7nC6IN1FsM0YMAvCChrlj35+MDj0jYIhvYSsiB6YRd3OsPoRGqPETQIyQKW5GB8B6H7PqYhgWKnegYMS3AApvVJB75eABLio56wKMBIHyuWL4QeVX4EviYDYLU74ERWIxVbQygw4AQJZxJNQXhvIt3wQIq/JJ9uJLdPCcH96/vKCrFLzQmDCfDUNHw4QsagaJQewfxj0tEKAkOsUUa86xfBoKqjagaLsuecLFA7A+3fi/vNPJD4G+EpNesiwOItBJ4rDa9xMUnR8btY7AuhcSqoEtjlUegEOcxbp4CVF/wA4Z6phMqPKkRS38KMjh5ND3yTxGuKfakKSCOyrW597xV3VzQoVrRQEAaLkOukAr9AYgJOIg7GCy8vvzhzan5INCIgvHOOltefUzo6hqR0OgO+9hm6qJahYEdh2ah7xPJEazUippp0olF1gtU2UX+sYThQVPGNh0rrLM1FTc1wl5R8q6hcO1dPvFqLU1IXFi+F+K5T67+bAPQWfmfGaeUv0AKzoeKutpKAB8RDV0RPKJHaSddqqwIYkIqExu1pEbXqzbxdBhI0U+XfD/wAyNkPJLjKAA0m8ApTFz2oAtYRaDgWDbEXqSDEt0wKOVVgC8lH8WazRgbRDRKooTI7QWCjLKjzgKKVmvpN4xXQoEJYY6heXAm1SLBAy72EpFpHaQAyAKCKqp87wKbAESjAeKtzq+s07MmqQAPO5i1+7gMQNuyQJ2O8tFuU3SHvbB4uiObt643vtxk3jEOogSvNoKEc0JoKJ2wQsQUJrzkSxwYJ79VcN89tWu4SDUURCowmj8BLAF01XXxhdXVNAuV8uj+caIGXpdDoh19iuorTVuKrrtUJ5K6mdyEDQooGuyHAy1GQQw6LV22A6pZKo6nskoEUJQ1TxcRCLIlb0Qk4Pc80K21sV743hIowCIWBQRknpxfSL2CCwmpm3sVwj74EBdG14NbwzYA1h5QgXfL47jZzutQcrQMfznYLxWnw8EsWOC9RZkPRds2Xub1AHSOwEOh5J8DajYsgd0S2KCe8X5BCoTQ6A94njBGIewkkpJ8613AKqq34MBX07PWMaUCNq+LsvRGvnlagstHYHwbs/HvGNAgPAGr3k/GV00C1BWV1Up5dYFPiok3U76lV74w2hYLstiBT6o1zDViKIYlB4GjTqesh2JYcgmlB318ZWHjIu0NPM4sOhcaDimTQ7TroL8BjIGuEUHRQET37yeJN0OgvYBXXz4yaX0ERAbARpxd9uOlsWjZm4Qqz2+cYElYMEK1uz9mTsODZyBo4WKANrCJ5CL+8EOwMCIbSqeLvzrFce2DJ0iTsFpcT2alJUoMFle3GQyzfWtu4Ha4tlvnWq2eumEAQRnbNf4T95yCKZ2SP5yLUXUDRjWvGF8okBdhW0GvnnqLGdnAltA0Rl+BgrAg8v0RubufqiCG6nY9/pkXoBB0LAbotQ76x1Ruqpxe+AmrLJDd7cIUkUmj5r6M0gvLEdSPk5cD8cBRXNmmvJrjhVAwbDegTW1r4Mo7B1ndb7M6k7qYt39iFge+ofjO56VjoCXGzbo95VUoPRuij156x4KNaD5jr6+M8JSQVHniWfjBHbSmKolZNnvfvLnFSkBZEoj5+HET88sdLRhY+HEQQICDwpN3wPvEyOrjatOutPzj4CWwQx+8vLBfc2h82PrR4x3bg91atou5+D1g9I7aoQVgEI7iGnmFvJvUSOz0HoTuIVRiwDZuxnJKe4Q6KIaVZezYL3bvJXRrkxu7uFMAA0T5OUbjJ6NtAzu/8A4XEIA4Hg1ff3kISQA44Ep5b9/GGGpnZEK30c948wLaxY1dsB+Vc0PdHSsbJtDlwvREgAVqtH13xMAcCBlM2EdIGtuaLELBM0C2bV8vjHwdK9hGlOlncNdUgohDTHfrT9OFcOSCiKHTazdvnHJgqDuOpB13XPjNgIqnG1SbCxPZ8zAkaDaUehYGnzdyEwO6W4BENH4Hzh6yFDB269vjLJEL0MEFrtuTjkDwhapFHgsWbvlMdXPYAieeqhzk+cuqkBN2pAplU0pjWgEzqqrRVHd8GObjw+AHp3UYYqiKpdaWTehPC+Zjqo9Sly2I4WUckcG4Hy4L/IPRuxbheii3inXo+u51i4VPASk0xNu6b1uLG9B00dT9MJtlQl1beHB578ZYJvEIxYIPjvr5zRXbwIiqeAgV+8SAAkgL4FtN644MeoQRJ4/L/jHveMpNgIV379YzDchHR4daU0Y79uVLYo7K3e4wGkUAOyLzcpfOQ6BQEKoIQeZwwn1Cga1U2N9Ex20PUgEk8i9+Y48hlmB7K6qhq6VkuJp4zAvi/M9Q8u898tNaqvfL/BkzDusChXe9yfTMH1qpN5R2d70RhldoQAWMXRA99MZ2ANmwBtbdVOfbTIAJAPJB0GE1Jq3mi2eCv8Z2+8btgWD6h7xhoJInTognK3x8Y5IE2+W0qr54ZpnLYwAAB3qrUq6DQQlUa7RQ5qPifLjZCINodHib95GMQYCoNd6XwDjtVUe4xXy3rWzWTEtRRIlgk73195UpGxfY/jNjQRryJf84lDiMYsdsmzKczQjS74AhTy4jGIBzsnBqO/eIsmYe6mkvPXrNWzt1YaEABvN77g8oFkJVTfNrm8XzKd9ewR5rRl+oiwJ4OiIeZtx2pJEagAKlKnyG5h/UBjNVS0z55zFVhzW0ARNFATbgNsxkahNXQ+hvLmrnUyju6U1q6NI0GbdtGbNGvO48YegwurVA0xHrbKZ80A9wKTm9Yxvp01kAeC+btfxlfLAhFBXmaVWlK6dhooPAIuazQQVuCG1HOFZgP8LxFsadgTxa5rIAHVYTVHZ5O/nFisWXdBD5QxnV0zsifxiS82jgW9lX4CG8BUENrCgPJ7W+ZMm1VmhJqRZTV1iAL8sAALXYDzT2m8NOl0mt7vvw9wJpBVb2IPA76yi1SugXoekGz+clQggCaxW+fWa+EKIjSS6im99bakWcUAQFLs8D88wOuxoCNBCRcP1QeKXaMLPJNmKjwNZQfhuw4y4RABPhhpulTzc0Zj3JhZ56p6nnOr0LrCj4onNXU42+cTCokCDYB6O6xIQibKAFFNVfnmRrdL5gpuIXWrifkp6IHu32ePhziMIgBDUU2k/XjF3W5M4IBpOHwxh7O67sJRKkPfM9UwrChVT4/OdZJaFHUbANfH1lMOjgFFfDSb86ycixEApBBSX1rXDB1NjJoSeU7us9Yvjn5KhAjauy67kMEQEOA8624ghR2tnkymEfCCoVEXDTj5IdaYwPVpFQ8qs851MgwUhqNkf/MJJGIhoa6DyevWbhC42DB/mfPrA9I8GRFUoKUdiacoLUkDAXlQVakEwZaEKYI3GxEs05fZYglFIzdFm15+cAFxmAQrQ9+Z4RGZ6JA+UAErQSbSvnENYDiWGRoUp+XrJAWP76+QHSL1NTAU3YWzw5P7MPLVyAVHahgWdNa4pHmKBIIAgqIEwB2b5qYpIgiqbwL1JKS55WJ4C3fVyEHi8OL40GItisuSBuxLq0eHaaAY4lpS7AfWgDILtmqsbU1TZ7yGwbVGzXXufcyNsVlisD8j9OIjhWrRpBVtE7DfXBaIbht0IJUvEjPDq1LdVmbbs8z3hoFRNC+T+ofdzyQZYmbc2hAmk5mlJbm0zXpF4t9YVThNQhuJvr43M3WmOqmiU6Hiqb3MKM1jaAUisLrVwdSpBgYId5x+MF9+ja2UFrTgcS5tiWrSWDz2/ExOV/vUErUJ0w/2CyhEp/3vAedH93HxwwYCb06NceKP4xQQiBwTtl1xncFv5iUgRPv0fEzsIghFHpu5NZC1VAKe19nEIKo5AANUoR1zu8ZisISSgd6sYyfOJKBpq0mlIr1vX5hYZp3mHKT0lI2YoNISNimz0IbBt1kW6QIKxfZ7CffhOtrloiFE2UXbrxl0kiADbjRatknrHQMbWHojSGyujncVtA0jXiI+A8P24iy46AQIur4+t47tXsIgjyF0/rA2onSKBD6DB8nlh0iwgg33MNUWdzgw0DGrHmjDLtYUQ43mdfDveDnAmrTTBzE8PlmGN2vWmobbRoN/iQtkN4hDEnG1j7Boo0tr7MdaKseihVDBUR8Ga5QlNPWwm+e+5rgZXsWzrTk9tkHECxHemzNSMwaKHZq9jrbdwLkGqRBAWj3T4xzBA2A29Th7+MRigJgiLSKC+N2AzvD1ghZggC7xtKby/Z94FDiAN+PHPGHAXtShfBHgXFkxtUGawDQh5c7reO0gGBgRgQHZNj4xJrJHBtHI2dm2AUWhBczQkUaE034mR2Dwto22zYzfGhm1khRENkWLQ86dYuRrtRiIxHx4eZYuQ+CofQAH1nkntggq+/ScD7L9a7Wg6O9E1umFg2FwgC0asF3wW4ppSWFTR1/j/eXQBdVBGye6/Dgh4ni6tBVfDG2rJgSDYKk7kBNrC2Y/ncP3kWcKeLPGBS5XPRAk31AZjilC0jRWau239+FdUJaG3tb2c7gBTmMVEfMs18fGLaNgQyTjqKnF2ZmvdyjAU7EjwgwwFlGi+bX+zeQyUxbK717/AFhohSlWmMv1Tnn3jvWroR1GxN8PIarrNgi0jXQAZInFQxEkUpXT8n7x6YtZRWD4/tPODCCGHtgHQERdNMcR3kE3qpUHVb+SQ7D7UCgxFfQvpztQmWVbZ5gz5xP11mkdLwHbnuesaHwgC0DCdhxroxgQMy3hCXQQDUxTTJQIAoS6fQs/eAO73IRtH95aj4oddAX0AB6DNhEBOKgK7IoAL0FIh9ZQAEJ2rSEKatEclOBiMfD475mOrgyIDKebv6mOOjxqLoFgBFbooU+Z4BsTgA5oeA0ZuOfIENEfNAHwubfYDVE1fhQnn6ZuSCQTtRjQkQVvIAKBNUOg7Hzt948HdHHt9YTvA0FCyO6vPi3jQ+SwKYkapAtCsHIQbddtLZ43vJdmlDdeJvDRdhNKCeghZIAUM1WC3SYCpp3HG/esbXEXjbb+SfhwsWpVsfBf+8GI4QEAph9rqdzUsQsFUUY82ennwqWZR3iS1umRju6xBtrUFAEogBqYDVgBuQN1QER9vvKclhlJVfN8h95oBgCeBU3vsdcXeAzdML76ZOgO3klyKIMwHCklCMYPJqkNRqfkH4S/jxje1OKYGfJ+/wC88d8DBSqZTz47gkbOHjSBsGio8jzDDPIXqanaFL+8TeG7GAdobAaj9t7+cLg4rBSGrYMUdvEV1BUvh/zjiMPJvPGrxt8YD6pHpCJKBQdlNUuGd4jaUQeu8DYYShw7AQV53z4TvcWhBSCYNW7y7fFxGetJY6by1Qu1QAbojG6BoXQPgIKtAUEQBL1pvWLsQnMMqO6KL8fOaKSmLIt3gggT0Y0Hs6ZmMAVpO/zhnaEVlKyY0BhTjeNU/RQa0vQjAW2BHKqz+nG6H1WkbBBdv6TMtQrZ3UQJsbRGyzADg1fFH+8NENPAN1a6NaRPWISMlNqiPkNaJ7cb0hEEkFUAnm8/dHh2Ehdmpu1/F3gr5DDYHiuLNzYOGZUsb3UVV38uI3QgXUU7ofX9ZqgQIDqzp06HuMIkMoCdI2pqTQTALB0A0wD4WD5l85oDPFvryq1TScfBN7cKdXAsCM3T8HP1ULtVBSeNzS9gUlMEBDUN+PxjcsWoxiFtaNAC4Q2CjdMTYPyR5SuAMO8VCWF6bNg85ZhBWt1ERAxVpo1i4l6xGgAEoUGvXcjiJbQgkLyWFlxad5ta8NatslPbbTcY+kpAGnVED1cTqzVeAUNm7uVrwEBzLyJ1Pn8YFYbm0C0huuEazLI1qB0HwIPR0/eIZo2SUSBxsgIV04UaxS7sgtpKIdkoCtdsaoQRPH3j5OFFFDrxNP3nFf8AwNkGti6d6ncPBNE85doLBWg94FgxNqKEIRYBDAbN64YpD9NNi4h65B6hIGIhB8OYlJCzLAijcXdoBjyOi/ahGoBdplWX1QvPQKCEeOIQFm8BSPxvmA2RCjNjrXZH84XKRwMCBEd1ZueIP7iPBWuDwbGIU50R1VYPh8+PjBmXLDteeWvGzuKmxCiELggAKkjzHN1UhdIaQq8l4TVdVhSkOk1fpPGLV6pDtQ4IO/4R2EDaenWBAvntivp0cE+4uwP5MmQhUymlxPaUusS6WSAZO9uSicqZAI0TqBvdhhnh4O1MiPbNF3ji7bVIe+yhPTox0nsd4R4GxdB/OPBlkPAp41MdASJqBd/O1/eCGm16D/4yhFkHa1DAatY0Ut775iZbklItiLsQeim6JqIUSCg4qdUYlTyB4cR/PMHwFMZtAPBB8ecDIuDUoeBIO4eDeA4MkQqJGiQLeJ2Ua1CNCKYaKUUNisIEWTAnR531/jFJgxZV0gmLPH5MtNjAyNRb1f5blHksSBGbIJV486dVwP8AaY6QorTJ3KKoD0uocPOEESTXQR/nA8oaMAhb0rsUqXGTbSh+55+s2xNaRaWqFHvx7Lv5y4jAmaSWIj5GYXwqESq6iScJWYsnRwMwrvlV23KrBuGtSu4rqw38MMMJmxSd4L4+JPIUCbPFKezFFsmVRqzh5c0mOA2FESOoXfjZ3HMILW6iwwCAx1XTqhstkrYbTspT1R1zlvFlUYXSrrbL5EVbzOEnScg+QH0oNuoCrvMWUVoUD3pQNxIiFzKBxVG1eZtEClgm1pDzk5Txk3omQXWpGAVQVQsZkZxsRsaJVwJLXebAyFJUAbYTki8zJU8qTRqTcERAt8xdNDTLAJsGIpptFbtyU5nQBW4HVxekoqgnar5k+F3crtgAEADEWtMCw0TY7aTj0jFk9AVt5Yt+cDR+SME1Ro1JCrMpRRrBuC1HgmuQcYXWkFFLpQm/G6sWAlDJauv37wOwhTDALimotsg4EyANUApoUACeVj6c8Yg1vjq/p73HBFmkw07LGWaFiIrDPU2EWthJv4bAHVUYqsaFd/GX8v5ASohC6TzayugplKi1qwnHjM0sXAeSTr3k7j22YAcaGOyLrW004IBb5y9ghg4oIKtBXl1DqpmeQTdHQa/BkgMON7U4ApIq66Fuz/LBEASZlZegrhbPjDFBQHUErFuM2+vGHJSsY6bEr57OZVItkPwIQaLWZJpy2Er32/buXsxezqFdnRy+D4xKoUB54u6qlybNRJuAWDOLPznaOpKIhK33lVqqqkVDHthp7lpEgoFgFNaLskYmFvaLxo6PtxD8cyg1+IMooHohdpco2RRYSJAWoPxtyI7ZZDt3Ni/nIA9X1DQHlWtc8AGwrpoITQdKM0E8ZrwrEQANege19u1iLS12kV0pwd3rNRnwANu2PiQqb4irJAoWHtaR8l9YgaDVYpqQgdxpiRNKpBP2y8JsJKoiG1cuVCKFiYuvgeecT7nrdZKAoQ6PjRhobuxVdzjp47vLG3yA+AA+PWFGdyfJqT9Y9yDqPd39uFvwelaa+a6y2vrQp5L0/I4U2PDaqLZL5C7AIlIIjdfQgqNQ5pmAxtI3O0h94/QAQDztmqImMzBDvti78ENJenrcEXPaKNiO5BRZ7QKuYDvortbYdn1keg9BSya8G3+PnDHA+pPkjf8A5nd/zEIA6dHpk7Ms3l3tVJMzcORuRcIhjbihJXbPWMDMh7BQgW3TXkyzIsnZPIJ3JVr+kKBTh7mF0cUhE2b35M8fdnxNB3xppcsihwQCgqAFAeYvloVFUkb2H/BixVdxhUXJsz03lKDR3EWISAcG67cPBDPBtm9BGuzWV9iSjVXrp5+C5yowMlU3/wAZKkwUAIG6LRnTJ3BBB4o7StJ9LiebRxDIBBsl9LAuPVWOtqg+cfehpMCdtsODRRdu2+Y+vCBS6K9mIrlfqAwhNXbmlaZojBOhhCiaUANHGw/Znb7HE4hBPA3b62fJGikdQ6edbY5Bt2F7ZXYs+PXzlQ6uPOUwU3Sp84+hEcMZl7leT+VwtwLdHRGbGjXh7ptecqocW6ePLzD3yK6FDYkO7pNesCwyVYEhsgHTpu8J0lCS2p4Qj4/fqGZ3T3NjgybZOOIeGUA5qLQafXkxdzIgXRkVTTa9PqB2qIyyvvzD4mBSUJYdgBASGg8J3L9DSOPmruR+D6wtRx0Bad8NvziOv6ao2IobB2HMlIfP0YDmy6fWTtiFZqB8xryYkZSLQLKB8efZ7yW9jwwbm9G2hP6PtJAq2hWaH/lk6QZUJa8Quu1rWJbiUMhBd7NJ1LE0+OeqMBE6bfJ9YBcrONOhfH8j05TgU/0W9q6PM38YY52So0W0kdPd08s4HjI0ClQKNz7DgdgBwtDTa9l4ncmigIAkacl/Xolm9sOUaIkdCG8LXH21p2B49fnF5wgzFoB7xk9D606T6Mp3SCG+TXnDHCCtp6oaHWbOQHfBVvx+/nEVyDapAzyaJJiXgioVbZQCHi4bTnqEgjJdkAlFblG3oR8tTZJv3fyMg15KVOHBDfd4DNcEjHQGVNOxSO9AK4nyuggzQU19uUaOgAohMb9Pxij6MwKUIjcjlOSaKAIDZ1+XDxbXL09Nio186yksYr1FUUAO3ruD92CGToAqtvdYF4AgAwI+qfmfOAESqWxzZcWpP3y993O8SG1NsfGsQxekNlNNCdHtHCOGfCceflbv5njANX1oz5XXq19YtwzQHnvgVkTHG5WJb2hhB8/rKyQsITzQQTZ5fhw8QmQN3pr5Fcvnoz6vXxb7x2ezaumtM0GH+bj6TQaNq6773nRn1ZjiHQ/LzWA1hKrfADcv94B10luiUAiObXnHUYPDOh16miuAK5QIqFHj4whw2nU2Talut6nzgJMs292if0Pn9jgkvZtSXZdB2BVblegQLFbo5fub7gQ8hW/AXV/ziz+AShet+MSShqI+wwSG4Ie+TZiKFtE+cCplcu169zRUulS++FIE2leRcfwUeHUP958WBLvyY6ptlFXR+MVJaBBhnzASj2LhpkAIF4Fx2JNKo65haECUZvxil85VYavrbrHOmZiCsffD9YOdNCie/wCj9ZBIPAf4DhzPZGYimyuLTFJVp6wMSshsNs94wzIlL5xMCYhCgVo1h+QKQjV4+MYhPELsLvHWFUsUvWssWY3seF1jyq3Ve3ye1OkndYLiUMImxs8OCx9EMqh8Vf3iXICE0M7xOEpKgOBvRkXMBXTTGDrAw+CJjJy0Ytpv8H6xcdaKtw+NMUgljOmMjqCotx/bNVXh+MEAp4J5wjNuHNOk17rhyNoDajue8eAwNLevjDoAIB4knjJFu3uPnIxhBdBH1hMiYCo4CtoViEn6aNfGH/eIo6Lz4xxKoUnReM3W560rsesboRzh6PD8mWIJufcu8U77uuXfhcDHiNdQT+j9YgoEQN6Hk+8NQG8HvPK2WmecK+WHh6yMCBaG45xUyvoesBs02Pq/D8ZsRBI7vd+aH6MAmIrvWSb+MfmCho/BlUO3ekxNoLZ6eYsSxwdWnu7vbhAhwEVdnrNmSqq/mZ5gn/pjBECihvAgFkFuLX3w76MgX4GdANu+ax2Stat8cTe7yCVlhN8azjZClyaIHUNbvp+XCGGYQgml8Cn05Xe2IELH1CfRigXOCvNs0crBUEa1cdBvf5vFowfaC+rPMuDII0Jd+sVI5Kw4eDJkY0B17xSQog19usAMAg80GC/lxiHrwnxiCE3YPznL/wDAeGf/2Q==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import Image, display\n", + "\n", + "display(Image(\"./media/BE_banner.jpg\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "keywords" + ] + }, + "source": [ + "FirstKeyword, SecondKeyword, AlwaysSeparatedByAComma" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "abstract" + ] + }, + "source": [ + "This is an abstract (...)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Introduction" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "This is the first paragrah of running text with a citation example " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## asdf" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "metadata={\n", + " \"jdh\": {\n", + " \"module\": \"object\",\n", + " \"object\": {\n", + " \"type\": \"image\",\n", + " \"source\": [\n", + " \"...\"\n", + " ]\n", + " }\n", + " }\n", + "}\n", + "# display(Image(\"media/...\"), metadata=metadata)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hermeneutics" + ] + }, + "source": [ + "This is a hermeneutic paragraph" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "jdh": { + "module": "object", + "object": { + "source": [ + "table 1: label table 1" + ] + } + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "table-1" + ] + }, + "source": [ + "Editor|1641|1798|1916\n", + "---|---|---|---\n", + "Senan|0.55|0.4|0.3\n", + "Henry|0.71|0.5|0.63" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hidden" + ] + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'3.12.8'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Check your Python version\n", + "from platform import python_version\n", + "python_version()\n", + "\n", + "#!python -V" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# pandas package needs to be added to the requirements.txt 's file \n", + "import pandas as pd\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NamePredominantDegreeHighestDegreeFundingModelRegionGeographyAdmissionRateACTMedianSATAverageAverageCostExpenditureAverageFacultySalaryMedianDebtAverageAgeofEntryMedianFamilyIncomeMedianEarnings
0Alabama A & M UniversityBachelor'sGraduatePublicSoutheastMid-size City0.898917823188887459707919500.020.62999929039.027000
1University of Alabama at BirminghamBachelor'sGraduatePublicSoutheastMid-size City0.867325114619990172081017016250.022.67000034909.037200
2University of Alabama in HuntsvilleBachelor'sGraduatePublicSoutheastMid-size City0.8062261180203069352934116500.023.19000139766.041500
3Alabama State UniversityBachelor'sGraduatePublicSoutheastMid-size City0.512517830174007393655715854.520.88999924029.522400
4The University of AlabamaBachelor'sGraduatePublicSoutheastSmall City0.5655261171267179817960517750.020.77000058976.039200
...................................................
1289University of Connecticut-Avery PointBachelor'sGraduatePublicNew EnglandMid-size Suburb0.594024102012946117301480318983.020.12000186510.049700
1290University of Connecticut-StamfordBachelor'sGraduatePublicNew EnglandMid-size City0.41072110171302849581480318983.020.12000186510.049700
1291California State University-Channel IslandsBachelor'sGraduatePublicFar WestMid-size Suburb0.6443209542257012026843412500.024.85000032103.035800
1292DigiPen Institute of TechnologyBachelor'sGraduatePrivate For-ProfitFar WestSmall City0.6635281225378485998765919000.021.20999968233.072800
1293Neumont UniversityBachelor'sBachelor'sPrivate For-ProfitRocky MountainsMid-size City0.7997251104373793298699122313.024.75000039241.037300
\n", + "

1294 rows × 16 columns

\n", + "
" + ], + "text/plain": [ + " Name PredominantDegree \\\n", + "0 Alabama A & M University Bachelor's \n", + "1 University of Alabama at Birmingham Bachelor's \n", + "2 University of Alabama in Huntsville Bachelor's \n", + "3 Alabama State University Bachelor's \n", + "4 The University of Alabama Bachelor's \n", + "... ... ... \n", + "1289 University of Connecticut-Avery Point Bachelor's \n", + "1290 University of Connecticut-Stamford Bachelor's \n", + "1291 California State University-Channel Islands Bachelor's \n", + "1292 DigiPen Institute of Technology Bachelor's \n", + "1293 Neumont University Bachelor's \n", + "\n", + " HighestDegree FundingModel Region Geography \\\n", + "0 Graduate Public Southeast Mid-size City \n", + "1 Graduate Public Southeast Mid-size City \n", + "2 Graduate Public Southeast Mid-size City \n", + "3 Graduate Public Southeast Mid-size City \n", + "4 Graduate Public Southeast Small City \n", + "... ... ... ... ... \n", + "1289 Graduate Public New England Mid-size Suburb \n", + "1290 Graduate Public New England Mid-size City \n", + "1291 Graduate Public Far West Mid-size Suburb \n", + "1292 Graduate Private For-Profit Far West Small City \n", + "1293 Bachelor's Private For-Profit Rocky Mountains Mid-size City \n", + "\n", + " AdmissionRate ACTMedian SATAverage AverageCost Expenditure \\\n", + "0 0.8989 17 823 18888 7459 \n", + "1 0.8673 25 1146 19990 17208 \n", + "2 0.8062 26 1180 20306 9352 \n", + "3 0.5125 17 830 17400 7393 \n", + "4 0.5655 26 1171 26717 9817 \n", + "... ... ... ... ... ... \n", + "1289 0.5940 24 1020 12946 11730 \n", + "1290 0.4107 21 1017 13028 4958 \n", + "1291 0.6443 20 954 22570 12026 \n", + "1292 0.6635 28 1225 37848 5998 \n", + "1293 0.7997 25 1104 37379 3298 \n", + "\n", + " AverageFacultySalary MedianDebt AverageAgeofEntry MedianFamilyIncome \\\n", + "0 7079 19500.0 20.629999 29039.0 \n", + "1 10170 16250.0 22.670000 34909.0 \n", + "2 9341 16500.0 23.190001 39766.0 \n", + "3 6557 15854.5 20.889999 24029.5 \n", + "4 9605 17750.0 20.770000 58976.0 \n", + "... ... ... ... ... \n", + "1289 14803 18983.0 20.120001 86510.0 \n", + "1290 14803 18983.0 20.120001 86510.0 \n", + "1291 8434 12500.0 24.850000 32103.0 \n", + "1292 7659 19000.0 21.209999 68233.0 \n", + "1293 6991 22313.0 24.750000 39241.0 \n", + "\n", + " MedianEarnings \n", + "0 27000 \n", + "1 37200 \n", + "2 41500 \n", + "3 22400 \n", + "4 39200 \n", + "... ... \n", + "1289 49700 \n", + "1290 49700 \n", + "1291 35800 \n", + "1292 72800 \n", + "1293 37300 \n", + "\n", + "[1294 rows x 16 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"https://raw.githubusercontent.com/lux-org/lux-datasets/master/data/college.csv\")\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "citation-manager": { + "citations": { + "k0rod": [ + { + "id": "9147593/SBCNHZG2", + "source": "zotero" + } + ] + } + } + }, + "source": [ + "(Krickl, Mayer, and Zangger 2022)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "citation-manager": { + "citations": { + "2wpzh": [ + { + "id": "9147593/UE2I2DNH", + "source": "zotero" + } + ], + "eruli": [ + { + "id": "9147593/SBCNHZG2", + "source": "zotero" + } + ] + } + } + }, + "source": [ + "(Mazal 1986)\n", + "(Krickl, Mayer, and Zangger 2022)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
Krickl, Martin, Simon Mayer, and Emanuel Zangger. 2022. “Mit Machine Learning auf der Suche nach Provenienzen – ein Use Case der Bildklassifikation an der Österreichischen Nationalbibliothek.” Bibliothek – Forschung und Praxis 46 (1): 227–38. https://doi.org/10.1515/bfp-2021-0090.
\n", + "
Mazal, Otto, ed. 1986. Bibliotheca Eugeniana. Ausstellung der Österreichischen Nationalbibliothek und der Graphischen Sammlung Albertina. Prunksaal, 15. Mai -- 3. Oktober 1986. Vienna: Österreichische Nationalbibliothek.
\n", + "
\n", + "" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "citation-manager": { + "items": { + "zotero": { + "9147593/SBCNHZG2": { + "DOI": "10.1515/bfp-2021-0090", + "author": [ + { + "family": "Krickl", + "given": "Martin" + }, + { + "family": "Mayer", + "given": "Simon" + }, + { + "family": "Zangger", + "given": "Emanuel" + } + ], + "container-title": "Bibliothek – Forschung und Praxis", + "id": "9147593/SBCNHZG2", + "issue": "1", + "issued": { + "date-parts": [ + [ + 2022 + ] + ] + }, + "language": "German", + "page": "227–238", + "system_id": "zotero|9147593/SBCNHZG2", + "title": "Mit Machine Learning auf der Suche nach Provenienzen – ein Use Case der Bildklassifikation an der Österreichischen Nationalbibliothek", + "type": "article-journal", + "volume": "46" + }, + "9147593/UE2I2DNH": { + "collection-title": "Ausstellung der Österreichischen Nationalbibliothek und der Graphischen Sammlung Albertina. Prunksaal, 15. Mai -- 3. Oktober 1986", + "editor": [ + { + "family": "Mazal", + "given": "Otto" + } + ], + "event-place": "Vienna", + "id": "9147593/UE2I2DNH", + "issued": { + "date-parts": [ + [ + 1986 + ] + ] + }, + "language": "German", + "publisher": "Österreichische Nationalbibliothek", + "publisher-place": "Vienna", + "system_id": "zotero|9147593/UE2I2DNH", + "title": "Bibliotheca Eugeniana", + "type": "book" + } + } + }, + "style": "chicago-author-date.csl" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.8" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/article.ipynb b/article.ipynb deleted file mode 100644 index b340dfff2c88052b99c6b9ff8b7e44ec432c6304..0000000000000000000000000000000000000000 --- a/article.ipynb +++ /dev/null @@ -1,633 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "editable": true, - "slideshow": { - "slide_type": "" - }, - "tags": [ - "title" - ] - }, - "source": [ - "# Title" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "contributor" - ] - }, - "source": [ - " ### Contributor1FirstName Contributor1LastName [![orcid](https://orcid.org/sites/default/files/images/orcid_16x16.png)](https://orcid.org/ORCID_ID) \n", - "Institution" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "contributor" - ] - }, - "source": [ - "### Contributor2FirstName Contributor2LastName [![orcid](https://orcid.org/sites/default/files/images/orcid_16x16.png)](https://orcid.org/ORCID_ID_IF_EXIST) \n", - "Institution" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "contributor" - ] - }, - "source": [ - "### Contributor3FirstName Contributor3LastName [![orcid](https://orcid.org/sites/default/files/images/orcid_16x16.png)](https://orcid.org/ORCID_ID_IF_EXIST) \n", - "Institution" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "copyright" - ] - }, - "source": [ - "[![cc-by](https://licensebuttons.net/l/by/4.0/88x31.png)](https://creativecommons.org/licenses/by/4.0/) \n", - "©. Published by De Gruyter in cooperation with the University of Luxembourg Centre for Contemporary and Digital History. This is an Open Access article distributed under the terms of the [Creative Commons Attribution License CC-BY](https://creativecommons.org/licenses/by/4.0/)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "copyright" - ] - }, - "source": [ - "[![cc-by-nc-nd](https://licensebuttons.net/l/by-nc-nd/4.0/88x31.png)](https://creativecommons.org/licenses/by-nc-nd/4.0/) \n", - "©. Published by De Gruyter in cooperation with the University of Luxembourg Centre for Contemporary and Digital History. This is an Open Access article distributed under the terms of the [Creative Commons Attribution License CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "tags": [ - "cover" - ] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV4AAACWBAMAAABkyf1EAAAAG1BMVEXMzMyWlpacnJyqqqrFxcWxsbGjo6O3t7e+vr6He3KoAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEcElEQVR4nO2aTW/bRhCGh18ij1zKknMkbbf2UXITIEeyMhIfRaF1exQLA/JRclslRykO+rs7s7s0VwytNmhJtsA8gHZEcox9PTs7uysQgGEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmGYr2OWRK/ReIKI8Zt7Hb19wTcQ0uTkGh13bQupcw7gPOvdo12/5CzNtNR7xLUtNtT3CGBQ6g3InjY720pvofUec22LJPr8PhEp2OMPyI40PdwWUdronCu9yQpdPx53bQlfLKnfOVhlnDYRBXve4Ov+IZTeMgdedm0NR+xoXJeQvdJ3CvziykSukwil16W/Oe7aGjIjqc/9ib4jQlJy0uArtN4A0+cvXFvDkmUJ47sJ1Y1ATLDNVXZkNPIepQzxy1ki9fqiwbUj/I+64zxWNzyZnPuhvohJ9K70VvXBixpcu2SAHU+Xd9EKdEJDNpYP3AQr3bQSpPQ6Y6/4dl1z7ZDbArsszjA7L0g7ibB0CDcidUWVoErvIMKZh2Xs0LUzcLW6V5NfiUgNEbaYmAVL6bXl0nJRc+1S72ua/D/cTjGPlQj7eUqd7A096rYlRjdPYlhz7VIvxpVG3cemDKF+WAwLY/6XelOZKTXXzsC4xvDjjtSN6kHLhLke6PrwM8h1raf40qjrGO7H9aTEbduucjS04ZrYU/4iuS5Z2Hdt0rvCLFdmLEXcU30AGddST62o+sLcf5l6k7CP+ru4pLYqX/VFyxbm/utQbx/r22ZEbTb2f5I2kns1Y1OQR8ZyofX+TjJxj1Rz7QQVnf1QzR26Oth0ueJVYcRP6ZUPac/Rx/5M6ixO1dhSrT3Y1DpiYmx3tF4ZUdpz9LD/dSg9PXES0LB71BwcGjKROuV28lnvnv7HHJsezheBGH5+X2CfSfRbMKW+5aGs3JFjMrjGibJc0S7TJzqjHrh2hDybj9XRXNZa89Aro55XBdbW5wti2c/5WJ7jJ1RolVUn/HWpb0I58Tziup6Rx7Dm2hnbRP1GM9PW/NFmQ4PtVRVN63Wvxfmu5sowDMMwDMMwDMMwDMMwDMMwDMMwzL+CpT//F/6beoV8zb2Jmt4Qryx6lTUCsENQ75HOkhXAO3EPVgyQtKtUy3C/e+FJg17Zjnew1Xrdb9InbG4WqfUAftG+WhLwPVyfg536+MU7m4C1CMk4ZznpXZzDYI1PDL2nS1hpvc5cNd7E2sJg05Fe7/7d3Fln8Cvc3bwB616auxsKl4WPghjemHrDqyDWeu1UNW5s2btPnSQ75oOdunEwWazfwgVG0kqluYCM9OIjWOGnfA2b9G4Ha63XKpvQ8perTvTifJNhi6+WMWmi7smEZf6G8MmhlyGq+NqP8GV84TLuJr7UIQVx+bDEoEpRZIz42gs40OuN4Mv8hXzelV7KX1isH+ewTWckikyVv+CfHuqVF7I16gN0VKypX6wPsE+zFPzkinolU9UH8OMGvSpnZqKsv13p/RsMun6X5x/y2LeAr8O66lsBwzBMP/wJfyGq8pgBk6IAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from IPython.display import Image, display\n", - "\n", - "display(Image(\"./media/placeholder.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "disclaimer" - ] - }, - "source": [ - " (optional) This article was orginally published (...)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "keywords" - ] - }, - "source": [ - "FirstKeyword, SecondKeyword, AlwaysSeparatedByAComma" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "abstract" - ] - }, - "source": [ - "This is an abstract (...)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is the first paragrah of running text with a citation example " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": { - "editable": true, - "slideshow": { - "slide_type": "" - }, - "tags": [ - "hermeneutics" - ] - }, - "source": [ - "This is a hermeneutic paragraph" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "editable": true, - "jdh": { - "module": "object", - "object": { - "source": [ - "table 1: label table 1" - ] - } - }, - "slideshow": { - "slide_type": "" - }, - "tags": [ - "table-1" - ] - }, - "source": [ - "Editor|1641|1798|1916\n", - "---|---|---|---\n", - "Senan|0.55|0.4|0.3\n", - "Henry|0.71|0.5|0.63" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [ - "hidden" - ] - }, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "editable": true, - "slideshow": { - "slide_type": "" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "# Check your Python version\n", - "from platform import python_version\n", - "python_version()\n", - "\n", - "#!python -V" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "editable": true, - "slideshow": { - "slide_type": "" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "# pandas package needs to be added to the requirements.txt 's file \n", - "import pandas as pd\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "editable": true, - "slideshow": { - "slide_type": "" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NamePredominantDegreeHighestDegreeFundingModelRegionGeographyAdmissionRateACTMedianSATAverageAverageCostExpenditureAverageFacultySalaryMedianDebtAverageAgeofEntryMedianFamilyIncomeMedianEarnings
0Alabama A & M UniversityBachelor'sGraduatePublicSoutheastMid-size City0.898917823188887459707919500.020.62999929039.027000
1University of Alabama at BirminghamBachelor'sGraduatePublicSoutheastMid-size City0.867325114619990172081017016250.022.67000034909.037200
2University of Alabama in HuntsvilleBachelor'sGraduatePublicSoutheastMid-size City0.8062261180203069352934116500.023.19000139766.041500
3Alabama State UniversityBachelor'sGraduatePublicSoutheastMid-size City0.512517830174007393655715854.520.88999924029.522400
4The University of AlabamaBachelor'sGraduatePublicSoutheastSmall City0.5655261171267179817960517750.020.77000058976.039200
...................................................
1289University of Connecticut-Avery PointBachelor'sGraduatePublicNew EnglandMid-size Suburb0.594024102012946117301480318983.020.12000186510.049700
1290University of Connecticut-StamfordBachelor'sGraduatePublicNew EnglandMid-size City0.41072110171302849581480318983.020.12000186510.049700
1291California State University-Channel IslandsBachelor'sGraduatePublicFar WestMid-size Suburb0.6443209542257012026843412500.024.85000032103.035800
1292DigiPen Institute of TechnologyBachelor'sGraduatePrivate For-ProfitFar WestSmall City0.6635281225378485998765919000.021.20999968233.072800
1293Neumont UniversityBachelor'sBachelor'sPrivate For-ProfitRocky MountainsMid-size City0.7997251104373793298699122313.024.75000039241.037300
\n", - "

1294 rows × 16 columns

\n", - "
" - ], - "text/plain": [ - " Name PredominantDegree \\\n", - "0 Alabama A & M University Bachelor's \n", - "1 University of Alabama at Birmingham Bachelor's \n", - "2 University of Alabama in Huntsville Bachelor's \n", - "3 Alabama State University Bachelor's \n", - "4 The University of Alabama Bachelor's \n", - "... ... ... \n", - "1289 University of Connecticut-Avery Point Bachelor's \n", - "1290 University of Connecticut-Stamford Bachelor's \n", - "1291 California State University-Channel Islands Bachelor's \n", - "1292 DigiPen Institute of Technology Bachelor's \n", - "1293 Neumont University Bachelor's \n", - "\n", - " HighestDegree FundingModel Region Geography \\\n", - "0 Graduate Public Southeast Mid-size City \n", - "1 Graduate Public Southeast Mid-size City \n", - "2 Graduate Public Southeast Mid-size City \n", - "3 Graduate Public Southeast Mid-size City \n", - "4 Graduate Public Southeast Small City \n", - "... ... ... ... ... \n", - "1289 Graduate Public New England Mid-size Suburb \n", - "1290 Graduate Public New England Mid-size City \n", - "1291 Graduate Public Far West Mid-size Suburb \n", - "1292 Graduate Private For-Profit Far West Small City \n", - "1293 Bachelor's Private For-Profit Rocky Mountains Mid-size City \n", - "\n", - " AdmissionRate ACTMedian SATAverage AverageCost Expenditure \\\n", - "0 0.8989 17 823 18888 7459 \n", - "1 0.8673 25 1146 19990 17208 \n", - "2 0.8062 26 1180 20306 9352 \n", - "3 0.5125 17 830 17400 7393 \n", - "4 0.5655 26 1171 26717 9817 \n", - "... ... ... ... ... ... \n", - "1289 0.5940 24 1020 12946 11730 \n", - "1290 0.4107 21 1017 13028 4958 \n", - "1291 0.6443 20 954 22570 12026 \n", - "1292 0.6635 28 1225 37848 5998 \n", - "1293 0.7997 25 1104 37379 3298 \n", - "\n", - " AverageFacultySalary MedianDebt AverageAgeofEntry MedianFamilyIncome \\\n", - "0 7079 19500.0 20.629999 29039.0 \n", - "1 10170 16250.0 22.670000 34909.0 \n", - "2 9341 16500.0 23.190001 39766.0 \n", - "3 6557 15854.5 20.889999 24029.5 \n", - "4 9605 17750.0 20.770000 58976.0 \n", - "... ... ... ... ... \n", - "1289 14803 18983.0 20.120001 86510.0 \n", - "1290 14803 18983.0 20.120001 86510.0 \n", - "1291 8434 12500.0 24.850000 32103.0 \n", - "1292 7659 19000.0 21.209999 68233.0 \n", - "1293 6991 22313.0 24.750000 39241.0 \n", - "\n", - " MedianEarnings \n", - "0 27000 \n", - "1 37200 \n", - "2 41500 \n", - "3 22400 \n", - "4 39200 \n", - "... ... \n", - "1289 49700 \n", - "1290 49700 \n", - "1291 35800 \n", - "1292 72800 \n", - "1293 37300 \n", - "\n", - "[1294 rows x 16 columns]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df = pd.read_csv(\"https://raw.githubusercontent.com/lux-org/lux-datasets/master/data/college.csv\")\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "citation-manager": { - "items": {} - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": true, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, - "toc_section_display": true, - "toc_window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/media/BE_banner.jpg b/media/BE_banner.jpg new file mode 100644 index 0000000000000000000000000000000000000000..031e68c7c90fe59cebac616f2e86392331081151 Binary files /dev/null and b/media/BE_banner.jpg differ diff --git a/media/placeholder.png b/media/placeholder.png deleted file mode 100644 index 78a00be41f396c7535df6c061b0cfc2e2f698048..0000000000000000000000000000000000000000 Binary files a/media/placeholder.png and /dev/null differ diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..5bdeac1b1801ac68e1a005c2cc221634723d8870 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,10 @@ +[project] +name = "jdh-submission" +version = "0.1.0" +description = "Repo for submission of an article to the Journal of Digital History" +readme = "README.md" +requires-python = ">=3.12" +dependencies = [ + "jupyter>=1.1.1", + "jupyterlab-citation-manager>=1.0.0", +] diff --git a/report.md b/report.md index bf3eba8682581300433d00863754bea18ed315e0..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/report.md +++ b/report.md @@ -1,76 +0,0 @@ -# Report for article.ipynb ❤ - -## Cell Counts -**all cells: 20 ** -code_empty: 2 -markdown: 14 -code: 6 - -## Action Outputs - -### Size -**total cells: 20** -## Kernel Checks: - -> [!CAUTION] - > Error: Python versions don't match. The notebook is using **python-3.7.10**, when **python-3.7 -** is required. -> [!TIP] - > Try changing **runtime.txt** to resolve the error above. - -### Citations Not Found - - -### Check Output Sizes and Rules - - No valid tags found for image output [Check here ](https://journalofdigitalhistory.org/en/notebook-viewer/JTJGcHJveHktZ2l0aHVidXNlcmNvbnRlbnQlMkZDMkRIJTJGdGVtcGxhdGVfcmVwb19KREglMkZtYWluJTJGYXJ0aWNsZS5pcHluYg==?idx=7)- Table found in output of cell 19 -> First words of input cell: df = pd.read_csv("https://raw.githubusercontent.com/lux-org/lux-datasets/master/data/college.csv") df - -Total output size: 12.14 KB -Total number of images: 1 -Total number of tables: 1 - -### Check HTML - - -### Check JavaScript -No JavaScript code found in output cells. -### Check JavaScript (plotly) -**plotly** library is not present in **requirements.txt** - - -### Check Tags -- Cell 1: Tags: ['title'] -- Cell 2: Tags: ['contributor'] -- Cell 3: Tags: ['contributor'] -- Cell 4: Tags: ['contributor'] -- Cell 5: Tags: ['copyright'] -- Cell 6: Tags: ['copyright'] -- Cell 7: Tags: ['cover'] -- Cell 8: Tags: ['disclaimer'] -- Cell 9: Tags: ['keywords'] -- Cell 10: Tags: ['abstract'] -- Cell 14: Tags: ['hermeneutics'] -- Cell 15: Tags: ['table-1'] -- Cell 16: Tags: ['hidden'] - -All mandatory tags are present in the cells. - - -### Check URLs - -**Invalid URLs (404 - 2):** - -Invalid URL (404): https://licensebuttons.net/l/by/4.0/88x31.png)](https://creativecommons.org/licenses/by/4.0/ -Invalid URL (404): https://licensebuttons.net/l/by-nc-nd/4.0/88x31.png)](https://creativecommons.org/licenses/by-nc-nd/4.0/ - -**Impossible to verify (Other - 2):** - -Invalid URL (Other - 301): https://orcid.org/sites/default/files/images/orcid_16x16.png)](https://orcid.org/ORCID_ID -Invalid URL (Other - 301): https://orcid.org/sites/default/files/images/orcid_16x16.png)](https://orcid.org/ORCID_ID_IF_EXIST - -**Valid URLs (200 - 2):** - -Valid URL (200): https://creativecommons.org/licenses/by/4.0/ -Valid URL (200): https://creativecommons.org/licenses/by-nc-nd/4.0/ - - diff --git a/requirements.txt b/requirements.txt index 8bdaa0f5ffd793a301274d41076038e3d3356321..9d3b56b234bcdb734016fe507bb4fc3159414441 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1 +1,2 @@ -jupyter-contrib-nbextensions==0.5.1 +jupyter +jupyterlab-citation-manager diff --git a/runtime.txt b/runtime.txt index 58b4552ee9d0ae04cf22a83e758928e13cc39e46..b3e06402b1c1bdc0657a1a64baaa38bb11c6cfa3 100644 --- a/runtime.txt +++ b/runtime.txt @@ -1 +1 @@ -python-3.7 +python-3.12.8 diff --git a/script/hello.py b/script/hello.py deleted file mode 100644 index 5519c1b80a060c48139a290452e65a6dff55ad95..0000000000000000000000000000000000000000 --- a/script/hello.py +++ /dev/null @@ -1 +0,0 @@ - print("Hello World") \ No newline at end of file diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000000000000000000000000000000000000..884c0c9d98c6b965e80c7009afcbffcfad217322 --- /dev/null +++ b/uv.lock @@ -0,0 +1,1418 @@ +version = 1 +requires-python = ">=3.12" + +[[package]] +name = "anyio" +version = "4.8.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "idna" }, + { name = "sniffio" }, + { name = "typing-extensions", marker = "python_full_version < '3.13'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a3/73/199a98fc2dae33535d6b8e8e6ec01f8c1d76c9adb096c6b7d64823038cde/anyio-4.8.0.tar.gz", hash = "sha256:1d9fe889df5212298c0c0723fa20479d1b94883a2df44bd3897aa91083316f7a", size = 181126 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/46/eb/e7f063ad1fec6b3178a3cd82d1a3c4de82cccf283fc42746168188e1cdd5/anyio-4.8.0-py3-none-any.whl", hash = "sha256:b5011f270ab5eb0abf13385f851315585cc37ef330dd88e27ec3d34d651fd47a", size = 96041 }, +] + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321 }, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "argon2-cffi-bindings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/31/fa/57ec2c6d16ecd2ba0cf15f3c7d1c3c2e7b5fcb83555ff56d7ab10888ec8f/argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08", size = 42798 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a4/6a/e8a041599e78b6b3752da48000b14c8d1e8a04ded09c88c714ba047f34f5/argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea", size = 15124 }, +] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/e9/184b8ccce6683b0aa2fbb7ba5683ea4b9c5763f1356347f1312c32e3c66e/argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3", size = 1779911 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d4/13/838ce2620025e9666aa8f686431f67a29052241692a3dd1ae9d3692a89d3/argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367", size = 29658 }, + { url = "https://files.pythonhosted.org/packages/b3/02/f7f7bb6b6af6031edb11037639c697b912e1dea2db94d436e681aea2f495/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d", size = 80583 }, + { url = "https://files.pythonhosted.org/packages/ec/f7/378254e6dd7ae6f31fe40c8649eea7d4832a42243acaf0f1fff9083b2bed/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae", size = 86168 }, + { url = "https://files.pythonhosted.org/packages/74/f6/4a34a37a98311ed73bb80efe422fed95f2ac25a4cacc5ae1d7ae6a144505/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c", size = 82709 }, + { url = "https://files.pythonhosted.org/packages/74/2b/73d767bfdaab25484f7e7901379d5f8793cccbb86c6e0cbc4c1b96f63896/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86", size = 83613 }, + { url = "https://files.pythonhosted.org/packages/4f/fd/37f86deef67ff57c76f137a67181949c2d408077e2e3dd70c6c42912c9bf/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f", size = 84583 }, + { url = "https://files.pythonhosted.org/packages/6f/52/5a60085a3dae8fded8327a4f564223029f5f54b0cb0455a31131b5363a01/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e", size = 88475 }, + { url = "https://files.pythonhosted.org/packages/8b/95/143cd64feb24a15fa4b189a3e1e7efbaeeb00f39a51e99b26fc62fbacabd/argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082", size = 27698 }, + { url = "https://files.pythonhosted.org/packages/37/2c/e34e47c7dee97ba6f01a6203e0383e15b60fb85d78ac9a15cd066f6fe28b/argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f", size = 30817 }, + { url = "https://files.pythonhosted.org/packages/5a/e4/bf8034d25edaa495da3c8a3405627d2e35758e44ff6eaa7948092646fdcc/argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93", size = 53104 }, +] + +[[package]] +name = "arrow" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, + { name = "types-python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2e/00/0f6e8fcdb23ea632c866620cc872729ff43ed91d284c866b515c6342b173/arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85", size = 131960 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f8/ed/e97229a566617f2ae958a6b13e7cc0f585470eac730a73e9e82c32a3cdd2/arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80", size = 66419 }, +] + +[[package]] +name = "asttokens" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4a/e7/82da0a03e7ba5141f05cce0d302e6eed121ae055e0456ca228bf693984bc/asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7", size = 61978 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/25/8a/c46dcc25341b5bce5472c718902eb3d38600a903b14fa6aeecef3f21a46f/asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2", size = 26918 }, +] + +[[package]] +name = "async-lru" +version = "2.0.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/80/e2/2b4651eff771f6fd900d233e175ddc5e2be502c7eb62c0c42f975c6d36cd/async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627", size = 10019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fa/9f/3c3503693386c4b0f245eaf5ca6198e3b28879ca0a40bde6b0e319793453/async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224", size = 6111 }, +] + +[[package]] +name = "attrs" +version = "25.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/49/7c/fdf464bcc51d23881d110abd74b512a42b3d5d376a55a831b44c603ae17f/attrs-25.1.0.tar.gz", hash = "sha256:1c97078a80c814273a76b2a298a932eb681c87415c11dee0a6921de7f1b02c3e", size = 810562 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fc/30/d4986a882011f9df997a55e6becd864812ccfcd821d64aac8570ee39f719/attrs-25.1.0-py3-none-any.whl", hash = "sha256:c75a69e28a550a7e93789579c22aa26b0f5b83b75dc4e08fe092980051e1090a", size = 63152 }, +] + +[[package]] +name = "babel" +version = "2.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7d/6b/d52e42361e1aa00709585ecc30b3f9684b3ab62530771402248b1b1d6240/babel-2.17.0.tar.gz", hash = "sha256:0c54cffb19f690cdcc52a3b50bcbf71e07a808d1c80d549f2459b9d2cf0afb9d", size = 9951852 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl", hash = "sha256:4d0b53093fdfb4b21c92b5213dba5a1b23885afa8383709427046b21c366e5f2", size = 10182537 }, +] + +[[package]] +name = "beautifulsoup4" +version = "4.13.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "soupsieve" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f0/3c/adaf39ce1fb4afdd21b611e3d530b183bb7759c9b673d60db0e347fd4439/beautifulsoup4-4.13.3.tar.gz", hash = "sha256:1bd32405dacc920b42b83ba01644747ed77456a65760e285fbc47633ceddaf8b", size = 619516 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/49/6abb616eb3cbab6a7cca303dc02fdf3836de2e0b834bf966a7f5271a34d8/beautifulsoup4-4.13.3-py3-none-any.whl", hash = "sha256:99045d7d3f08f91f0d656bc9b7efbae189426cd913d830294a15eefa0ea4df16", size = 186015 }, +] + +[[package]] +name = "bleach" +version = "6.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/76/9a/0e33f5054c54d349ea62c277191c020c2d6ef1d65ab2cb1993f91ec846d1/bleach-6.2.0.tar.gz", hash = "sha256:123e894118b8a599fd80d3ec1a6d4cc7ce4e5882b1317a7e1ba69b56e95f991f", size = 203083 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl", hash = "sha256:117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e", size = 163406 }, +] + +[package.optional-dependencies] +css = [ + { name = "tinycss2" }, +] + +[[package]] +name = "certifi" +version = "2025.1.31" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1c/ab/c9f1e32b7b1bf505bf26f0ef697775960db7932abeb7b516de930ba2705f/certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651", size = 167577 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/38/fc/bce832fd4fd99766c04d1ee0eead6b0ec6486fb100ae5e74c1d91292b982/certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe", size = 166393 }, +] + +[[package]] +name = "cffi" +version = "1.17.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/97/c783634659c2920c3fc70419e3af40972dbaf758daa229a7d6ea6135c90d/cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824", size = 516621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/84/e94227139ee5fb4d600a7a4927f322e1d4aea6fdc50bd3fca8493caba23f/cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4", size = 183178 }, + { url = "https://files.pythonhosted.org/packages/da/ee/fb72c2b48656111c4ef27f0f91da355e130a923473bf5ee75c5643d00cca/cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c", size = 178840 }, + { url = "https://files.pythonhosted.org/packages/cc/b6/db007700f67d151abadf508cbfd6a1884f57eab90b1bb985c4c8c02b0f28/cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36", size = 454803 }, + { url = "https://files.pythonhosted.org/packages/1a/df/f8d151540d8c200eb1c6fba8cd0dfd40904f1b0682ea705c36e6c2e97ab3/cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5", size = 478850 }, + { url = "https://files.pythonhosted.org/packages/28/c0/b31116332a547fd2677ae5b78a2ef662dfc8023d67f41b2a83f7c2aa78b1/cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff", size = 485729 }, + { url = "https://files.pythonhosted.org/packages/91/2b/9a1ddfa5c7f13cab007a2c9cc295b70fbbda7cb10a286aa6810338e60ea1/cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99", size = 471256 }, + { url = "https://files.pythonhosted.org/packages/b2/d5/da47df7004cb17e4955df6a43d14b3b4ae77737dff8bf7f8f333196717bf/cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93", size = 479424 }, + { url = "https://files.pythonhosted.org/packages/0b/ac/2a28bcf513e93a219c8a4e8e125534f4f6db03e3179ba1c45e949b76212c/cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3", size = 484568 }, + { url = "https://files.pythonhosted.org/packages/d4/38/ca8a4f639065f14ae0f1d9751e70447a261f1a30fa7547a828ae08142465/cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8", size = 488736 }, + { url = "https://files.pythonhosted.org/packages/86/c5/28b2d6f799ec0bdecf44dced2ec5ed43e0eb63097b0f58c293583b406582/cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65", size = 172448 }, + { url = "https://files.pythonhosted.org/packages/50/b9/db34c4755a7bd1cb2d1603ac3863f22bcecbd1ba29e5ee841a4bc510b294/cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903", size = 181976 }, + { url = "https://files.pythonhosted.org/packages/8d/f8/dd6c246b148639254dad4d6803eb6a54e8c85c6e11ec9df2cffa87571dbe/cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e", size = 182989 }, + { url = "https://files.pythonhosted.org/packages/8b/f1/672d303ddf17c24fc83afd712316fda78dc6fce1cd53011b839483e1ecc8/cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2", size = 178802 }, + { url = "https://files.pythonhosted.org/packages/0e/2d/eab2e858a91fdff70533cab61dcff4a1f55ec60425832ddfdc9cd36bc8af/cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3", size = 454792 }, + { url = "https://files.pythonhosted.org/packages/75/b2/fbaec7c4455c604e29388d55599b99ebcc250a60050610fadde58932b7ee/cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683", size = 478893 }, + { url = "https://files.pythonhosted.org/packages/4f/b7/6e4a2162178bf1935c336d4da8a9352cccab4d3a5d7914065490f08c0690/cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5", size = 485810 }, + { url = "https://files.pythonhosted.org/packages/c7/8a/1d0e4a9c26e54746dc08c2c6c037889124d4f59dffd853a659fa545f1b40/cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4", size = 471200 }, + { url = "https://files.pythonhosted.org/packages/26/9f/1aab65a6c0db35f43c4d1b4f580e8df53914310afc10ae0397d29d697af4/cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd", size = 479447 }, + { url = "https://files.pythonhosted.org/packages/5f/e4/fb8b3dd8dc0e98edf1135ff067ae070bb32ef9d509d6cb0f538cd6f7483f/cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed", size = 484358 }, + { url = "https://files.pythonhosted.org/packages/f1/47/d7145bf2dc04684935d57d67dff9d6d795b2ba2796806bb109864be3a151/cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9", size = 488469 }, + { url = "https://files.pythonhosted.org/packages/bf/ee/f94057fa6426481d663b88637a9a10e859e492c73d0384514a17d78ee205/cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d", size = 172475 }, + { url = "https://files.pythonhosted.org/packages/7c/fc/6a8cb64e5f0324877d503c854da15d76c1e50eb722e320b15345c4d0c6de/cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a", size = 182009 }, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/16/b0/572805e227f01586461c80e0fd25d65a2115599cc9dad142fee4b747c357/charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3", size = 123188 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0a/9a/dd1e1cdceb841925b7798369a09279bd1cf183cef0f9ddf15a3a6502ee45/charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545", size = 196105 }, + { url = "https://files.pythonhosted.org/packages/d3/8c/90bfabf8c4809ecb648f39794cf2a84ff2e7d2a6cf159fe68d9a26160467/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7", size = 140404 }, + { url = "https://files.pythonhosted.org/packages/ad/8f/e410d57c721945ea3b4f1a04b74f70ce8fa800d393d72899f0a40526401f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757", size = 150423 }, + { url = "https://files.pythonhosted.org/packages/f0/b8/e6825e25deb691ff98cf5c9072ee0605dc2acfca98af70c2d1b1bc75190d/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa", size = 143184 }, + { url = "https://files.pythonhosted.org/packages/3e/a2/513f6cbe752421f16d969e32f3583762bfd583848b763913ddab8d9bfd4f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d", size = 145268 }, + { url = "https://files.pythonhosted.org/packages/74/94/8a5277664f27c3c438546f3eb53b33f5b19568eb7424736bdc440a88a31f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616", size = 147601 }, + { url = "https://files.pythonhosted.org/packages/7c/5f/6d352c51ee763623a98e31194823518e09bfa48be2a7e8383cf691bbb3d0/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b", size = 141098 }, + { url = "https://files.pythonhosted.org/packages/78/d4/f5704cb629ba5ab16d1d3d741396aec6dc3ca2b67757c45b0599bb010478/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d", size = 149520 }, + { url = "https://files.pythonhosted.org/packages/c5/96/64120b1d02b81785f222b976c0fb79a35875457fa9bb40827678e54d1bc8/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a", size = 152852 }, + { url = "https://files.pythonhosted.org/packages/84/c9/98e3732278a99f47d487fd3468bc60b882920cef29d1fa6ca460a1fdf4e6/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9", size = 150488 }, + { url = "https://files.pythonhosted.org/packages/13/0e/9c8d4cb99c98c1007cc11eda969ebfe837bbbd0acdb4736d228ccaabcd22/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1", size = 146192 }, + { url = "https://files.pythonhosted.org/packages/b2/21/2b6b5b860781a0b49427309cb8670785aa543fb2178de875b87b9cc97746/charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35", size = 95550 }, + { url = "https://files.pythonhosted.org/packages/21/5b/1b390b03b1d16c7e382b561c5329f83cc06623916aab983e8ab9239c7d5c/charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f", size = 102785 }, + { url = "https://files.pythonhosted.org/packages/38/94/ce8e6f63d18049672c76d07d119304e1e2d7c6098f0841b51c666e9f44a0/charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda", size = 195698 }, + { url = "https://files.pythonhosted.org/packages/24/2e/dfdd9770664aae179a96561cc6952ff08f9a8cd09a908f259a9dfa063568/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313", size = 140162 }, + { url = "https://files.pythonhosted.org/packages/24/4e/f646b9093cff8fc86f2d60af2de4dc17c759de9d554f130b140ea4738ca6/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9", size = 150263 }, + { url = "https://files.pythonhosted.org/packages/5e/67/2937f8d548c3ef6e2f9aab0f6e21001056f692d43282b165e7c56023e6dd/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b", size = 142966 }, + { url = "https://files.pythonhosted.org/packages/52/ed/b7f4f07de100bdb95c1756d3a4d17b90c1a3c53715c1a476f8738058e0fa/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11", size = 144992 }, + { url = "https://files.pythonhosted.org/packages/96/2c/d49710a6dbcd3776265f4c923bb73ebe83933dfbaa841c5da850fe0fd20b/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f", size = 147162 }, + { url = "https://files.pythonhosted.org/packages/b4/41/35ff1f9a6bd380303dea55e44c4933b4cc3c4850988927d4082ada230273/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd", size = 140972 }, + { url = "https://files.pythonhosted.org/packages/fb/43/c6a0b685fe6910d08ba971f62cd9c3e862a85770395ba5d9cad4fede33ab/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2", size = 149095 }, + { url = "https://files.pythonhosted.org/packages/4c/ff/a9a504662452e2d2878512115638966e75633519ec11f25fca3d2049a94a/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886", size = 152668 }, + { url = "https://files.pythonhosted.org/packages/6c/71/189996b6d9a4b932564701628af5cee6716733e9165af1d5e1b285c530ed/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601", size = 150073 }, + { url = "https://files.pythonhosted.org/packages/e4/93/946a86ce20790e11312c87c75ba68d5f6ad2208cfb52b2d6a2c32840d922/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd", size = 145732 }, + { url = "https://files.pythonhosted.org/packages/cd/e5/131d2fb1b0dddafc37be4f3a2fa79aa4c037368be9423061dccadfd90091/charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407", size = 95391 }, + { url = "https://files.pythonhosted.org/packages/27/f2/4f9a69cc7712b9b5ad8fdb87039fd89abba997ad5cbe690d1835d40405b0/charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971", size = 102702 }, + { url = "https://files.pythonhosted.org/packages/0e/f6/65ecc6878a89bb1c23a086ea335ad4bf21a588990c3f535a227b9eea9108/charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85", size = 49767 }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 }, +] + +[[package]] +name = "comm" +version = "0.2.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/a8/fb783cb0abe2b5fded9f55e5703015cdf1c9c85b3669087c538dd15a6a86/comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e", size = 6210 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/75/49e5bfe642f71f272236b5b2d2691cf915a7283cc0ceda56357b61daa538/comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3", size = 7180 }, +] + +[[package]] +name = "debugpy" +version = "1.8.12" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/68/25/c74e337134edf55c4dfc9af579eccb45af2393c40960e2795a94351e8140/debugpy-1.8.12.tar.gz", hash = "sha256:646530b04f45c830ceae8e491ca1c9320a2d2f0efea3141487c82130aba70dce", size = 1641122 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ba/e6/0f876ecfe5831ebe4762b19214364753c8bc2b357d28c5d739a1e88325c7/debugpy-1.8.12-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:7e94b643b19e8feb5215fa508aee531387494bf668b2eca27fa769ea11d9f498", size = 2500846 }, + { url = "https://files.pythonhosted.org/packages/19/64/33f41653a701f3cd2cbff8b41ebaad59885b3428b5afd0d93d16012ecf17/debugpy-1.8.12-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:086b32e233e89a2740c1615c2f775c34ae951508b28b308681dbbb87bba97d06", size = 4222181 }, + { url = "https://files.pythonhosted.org/packages/32/a6/02646cfe50bfacc9b71321c47dc19a46e35f4e0aceea227b6d205e900e34/debugpy-1.8.12-cp312-cp312-win32.whl", hash = "sha256:2ae5df899732a6051b49ea2632a9ea67f929604fd2b036613a9f12bc3163b92d", size = 5227017 }, + { url = "https://files.pythonhosted.org/packages/da/a6/10056431b5c47103474312cf4a2ec1001f73e0b63b1216706d5fef2531eb/debugpy-1.8.12-cp312-cp312-win_amd64.whl", hash = "sha256:39dfbb6fa09f12fae32639e3286112fc35ae976114f1f3d37375f3130a820969", size = 5267555 }, + { url = "https://files.pythonhosted.org/packages/cf/4d/7c3896619a8791effd5d8c31f0834471fc8f8fb3047ec4f5fc69dd1393dd/debugpy-1.8.12-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:696d8ae4dff4cbd06bf6b10d671e088b66669f110c7c4e18a44c43cf75ce966f", size = 2485246 }, + { url = "https://files.pythonhosted.org/packages/99/46/bc6dcfd7eb8cc969a5716d858e32485eb40c72c6a8dc88d1e3a4d5e95813/debugpy-1.8.12-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:898fba72b81a654e74412a67c7e0a81e89723cfe2a3ea6fcd3feaa3395138ca9", size = 4218616 }, + { url = "https://files.pythonhosted.org/packages/03/dd/d7fcdf0381a9b8094da1f6a1c9f19fed493a4f8576a2682349b3a8b20ec7/debugpy-1.8.12-cp313-cp313-win32.whl", hash = "sha256:22a11c493c70413a01ed03f01c3c3a2fc4478fc6ee186e340487b2edcd6f4180", size = 5226540 }, + { url = "https://files.pythonhosted.org/packages/25/bd/ecb98f5b5fc7ea0bfbb3c355bc1dd57c198a28780beadd1e19915bf7b4d9/debugpy-1.8.12-cp313-cp313-win_amd64.whl", hash = "sha256:fdb3c6d342825ea10b90e43d7f20f01535a72b3a1997850c0c3cefa5c27a4a2c", size = 5267134 }, + { url = "https://files.pythonhosted.org/packages/38/c4/5120ad36405c3008f451f94b8f92ef1805b1e516f6ff870f331ccb3c4cc0/debugpy-1.8.12-py2.py3-none-any.whl", hash = "sha256:274b6a2040349b5c9864e475284bce5bb062e63dce368a394b8cc865ae3b00c6", size = 5229490 }, +] + +[[package]] +name = "decorator" +version = "5.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/0c/8d907af351aa16b42caae42f9d6aa37b900c67308052d10fdce809f8d952/decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330", size = 35016 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d5/50/83c593b07763e1161326b3b8c6686f0f4b0f24d5526546bee538c89837d6/decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186", size = 9073 }, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0f/d5/c66da9b79e5bdb124974bfe172b4daf3c984ebd9c2a06e2b8a4dc7331c72/defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69", size = 75520 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61", size = 25604 }, +] + +[[package]] +name = "executing" +version = "2.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/91/50/a9d80c47ff289c611ff12e63f7c5d13942c65d68125160cefd768c73e6e4/executing-2.2.0.tar.gz", hash = "sha256:5d108c028108fe2551d1a7b2e8b713341e2cb4fc0aa7dcf966fa4327a5226755", size = 978693 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/8f/c4d9bafc34ad7ad5d8dc16dd1347ee0e507a52c3adb6bfa8887e1c6a26ba/executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa", size = 26702 }, +] + +[[package]] +name = "fastjsonschema" +version = "2.21.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8b/50/4b769ce1ac4071a1ef6d86b1a3fb56cdc3a37615e8c5519e1af96cdac366/fastjsonschema-2.21.1.tar.gz", hash = "sha256:794d4f0a58f848961ba16af7b9c85a3e88cd360df008c59aac6fc5ae9323b5d4", size = 373939 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/2b/0817a2b257fe88725c25589d89aec060581aabf668707a8d03b2e9e0cb2a/fastjsonschema-2.21.1-py3-none-any.whl", hash = "sha256:c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667", size = 23924 }, +] + +[[package]] +name = "fqdn" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/30/3e/a80a8c077fd798951169626cde3e239adeba7dab75deb3555716415bd9b0/fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f", size = 6015 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014", size = 9121 }, +] + +[[package]] +name = "h11" +version = "0.14.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f5/38/3af3d3633a34a3316095b39c8e8fb4853a28a536e55d347bd8d8e9a14b03/h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d", size = 100418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761", size = 58259 }, +] + +[[package]] +name = "httpcore" +version = "1.0.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "h11" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6a/41/d7d0a89eb493922c37d343b607bc1b5da7f5be7e383740b4753ad8943e90/httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c", size = 85196 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/87/f5/72347bc88306acb359581ac4d52f23c0ef445b57157adedb9aee0cd689d2/httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd", size = 78551 }, +] + +[[package]] +name = "httpx" +version = "0.28.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "certifi" }, + { name = "httpcore" }, + { name = "idna" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b1/df/48c586a5fe32a0f01324ee087459e112ebb7224f646c0b5023f5e79e9956/httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc", size = 141406 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad", size = 73517 }, +] + +[[package]] +name = "idna" +version = "3.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442 }, +] + +[[package]] +name = "ipykernel" +version = "6.29.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "sys_platform == 'darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/5c/67594cb0c7055dc50814b21731c22a601101ea3b1b50a9a1b090e11f5d0f/ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215", size = 163367 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/5c/368ae6c01c7628438358e6d337c19b05425727fbb221d2a3c4303c372f42/ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5", size = 117173 }, +] + +[[package]] +name = "ipython" +version = "8.32.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "decorator" }, + { name = "jedi" }, + { name = "matplotlib-inline" }, + { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "stack-data" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/36/80/4d2a072e0db7d250f134bc11676517299264ebe16d62a8619d49a78ced73/ipython-8.32.0.tar.gz", hash = "sha256:be2c91895b0b9ea7ba49d33b23e2040c352b33eb6a519cca7ce6e0c743444251", size = 5507441 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/e1/f4474a7ecdb7745a820f6f6039dc43c66add40f1bcc66485607d93571af6/ipython-8.32.0-py3-none-any.whl", hash = "sha256:cae85b0c61eff1fc48b0a8002de5958b6528fa9c8defb1894da63f42613708aa", size = 825524 }, +] + +[[package]] +name = "ipywidgets" +version = "8.1.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "comm" }, + { name = "ipython" }, + { name = "jupyterlab-widgets" }, + { name = "traitlets" }, + { name = "widgetsnbextension" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c7/4c/dab2a281b07596a5fc220d49827fe6c794c66f1493d7a74f1df0640f2cc5/ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17", size = 116723 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/2d/9c0b76f2f9cc0ebede1b9371b6f317243028ed60b90705863d493bae622e/ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245", size = 139767 }, +] + +[[package]] +name = "isoduration" +version = "20.11.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "arrow" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7c/1a/3c8edc664e06e6bd06cce40c6b22da5f1429aa4224d0c590f3be21c91ead/isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9", size = 11649 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042", size = 11321 }, +] + +[[package]] +name = "jdh-submission" +version = "0.1.0" +source = { virtual = "." } +dependencies = [ + { name = "jupyter" }, + { name = "jupyterlab-citation-manager" }, +] + +[package.metadata] +requires-dist = [ + { name = "jupyter", specifier = ">=1.1.1" }, + { name = "jupyterlab-citation-manager", specifier = ">=1.0.0" }, +] + +[[package]] +name = "jedi" +version = "0.19.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/3a/79a912fbd4d8dd6fbb02bf69afd3bb72cf0c729bb3063c6f4498603db17a/jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0", size = 1231287 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278 }, +] + +[[package]] +name = "jinja2" +version = "3.1.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/af/92/b3130cbbf5591acf9ade8708c365f3238046ac7cb8ccba6e81abccb0ccff/jinja2-3.1.5.tar.gz", hash = "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb", size = 244674 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb", size = 134596 }, +] + +[[package]] +name = "json5" +version = "0.10.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/85/3d/bbe62f3d0c05a689c711cff57b2e3ac3d3e526380adb7c781989f075115c/json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559", size = 48202 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa", size = 34049 }, +] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6a/0a/eebeb1fa92507ea94016a2a790b93c2ae41a7e18778f85471dc54475ed25/jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef", size = 9114 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942", size = 7595 }, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "jsonschema-specifications" }, + { name = "referencing" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/38/2e/03362ee4034a4c917f697890ccd4aec0800ccf9ded7f511971c75451deec/jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4", size = 325778 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566", size = 88462 }, +] + +[package.optional-dependencies] +format-nongpl = [ + { name = "fqdn" }, + { name = "idna" }, + { name = "isoduration" }, + { name = "jsonpointer" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "uri-template" }, + { name = "webcolors" }, +] + +[[package]] +name = "jsonschema-specifications" +version = "2024.10.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "referencing" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/10/db/58f950c996c793472e336ff3655b13fbcf1e3b359dcf52dcf3ed3b52c352/jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272", size = 15561 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf", size = 18459 }, +] + +[[package]] +name = "jupyter" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "ipywidgets" }, + { name = "jupyter-console" }, + { name = "jupyterlab" }, + { name = "nbconvert" }, + { name = "notebook" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/f3/af28ea964ab8bc1e472dba2e82627d36d470c51f5cd38c37502eeffaa25e/jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a", size = 5714959 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/38/64/285f20a31679bf547b75602702f7800e74dbabae36ef324f716c02804753/jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83", size = 2657 }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105 }, +] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "pyzmq" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bd/2d/e2fd31e2fc41c14e2bcb6c976ab732597e907523f6b2420305f9fc7fdbdb/jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539", size = 34363 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ca/77/71d78d58f15c22db16328a476426f7ac4a60d3a5a7ba3b9627ee2f7903d4/jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485", size = 24510 }, +] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "pywin32", marker = "platform_python_implementation != 'PyPy' and sys_platform == 'win32'" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/00/11/b56381fa6c3f4cc5d2cf54a7dbf98ad9aa0b339ef7a601d6053538b079a7/jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9", size = 87629 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409", size = 28965 }, +] + +[[package]] +name = "jupyter-events" +version = "0.12.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jsonschema", extra = ["format-nongpl"] }, + { name = "packaging" }, + { name = "python-json-logger" }, + { name = "pyyaml" }, + { name = "referencing" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9d/c3/306d090461e4cf3cd91eceaff84bede12a8e52cd821c2d20c9a4fd728385/jupyter_events-0.12.0.tar.gz", hash = "sha256:fc3fce98865f6784c9cd0a56a20644fc6098f21c8c33834a8d9fe383c17e554b", size = 62196 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl", hash = "sha256:6464b2fa5ad10451c3d35fabc75eab39556ae1e2853ad0c0cc31b656731a97fb", size = 19430 }, +] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/85/b4/3200b0b09c12bc3b72d943d923323c398eff382d1dcc7c0dbc8b74630e40/jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001", size = 48741 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/e0/7bd7cff65594fd9936e2f9385701e44574fc7d721331ff676ce440b14100/jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da", size = 69146 }, +] + +[[package]] +name = "jupyter-server" +version = "2.15.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "argon2-cffi" }, + { name = "jinja2" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "jupyter-events" }, + { name = "jupyter-server-terminals" }, + { name = "nbconvert" }, + { name = "nbformat" }, + { name = "overrides" }, + { name = "packaging" }, + { name = "prometheus-client" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "pyzmq" }, + { name = "send2trash" }, + { name = "terminado" }, + { name = "tornado" }, + { name = "traitlets" }, + { name = "websocket-client" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/61/8c/df09d4ab646141f130f9977b32b206ba8615d1969b2eba6a2e84b7f89137/jupyter_server-2.15.0.tar.gz", hash = "sha256:9d446b8697b4f7337a1b7cdcac40778babdd93ba614b6d68ab1c0c918f1c4084", size = 725227 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e2/a2/89eeaf0bb954a123a909859fa507fa86f96eb61b62dc30667b60dbd5fdaf/jupyter_server-2.15.0-py3-none-any.whl", hash = "sha256:872d989becf83517012ee669f09604aa4a28097c0bd90b2f424310156c2cdae3", size = 385826 }, +] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "terminado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/d5/562469734f476159e99a55426d697cbf8e7eb5efe89fb0e0b4f83a3d3459/jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269", size = 31430 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa", size = 13656 }, +] + +[[package]] +name = "jupyterlab" +version = "4.3.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "async-lru" }, + { name = "httpx" }, + { name = "ipykernel" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyter-lsp" }, + { name = "jupyter-server" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "packaging" }, + { name = "setuptools" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/19/17/6f3d73c3e54b71bbaf03edcc4a54b0aa6328e0a134755f297ea87d425711/jupyterlab-4.3.5.tar.gz", hash = "sha256:c779bf72ced007d7d29d5bcef128e7fdda96ea69299e19b04a43635a7d641f9d", size = 21800023 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/73/6f/94d4c879b3e2b7b9bca1913ea6fbbef180f8b1ed065b46ade40d651ec54d/jupyterlab-4.3.5-py3-none-any.whl", hash = "sha256:571bbdee20e4c5321ab5195bc41cf92a75a5cff886be5e57ce78dfa37a5e9fdb", size = 11666944 }, +] + +[[package]] +name = "jupyterlab-citation-data" +version = "0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ec/1e/fcff5c74f4b3b051b789930bdd6feeef98c5b3a2aefe71874dedb02a2775/jupyterlab-citation-data-0.1.tar.gz", hash = "sha256:313cbc8c14ae431513fbbc96e31aea0f4fec53d221de1a5a191a09573e69cba0", size = 3603422 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/83/0c/5e799ef5670022caa4022452d8c767b9e9c80e902da5c403b2e3a7485163/jupyterlab_citation_data-0.1-py3-none-any.whl", hash = "sha256:44e397c247a905549ecfed846a986e8034abf51bda872e8c949b7a5196ff7e8e", size = 12454005 }, +] + +[[package]] +name = "jupyterlab-citation-manager" +version = "1.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, + { name = "jupyterlab-citation-data" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ab/98/cfe2a8e68994abcb69bd33c6cb660ce183162eef9b6e82c6ef5e5bf3309a/jupyterlab_citation_manager-1.0.0.tar.gz", hash = "sha256:f610f3f950dd901897a6fad77343131af78f4ec881115833dd4a1b2c2b67067e", size = 3113796 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ba/fa/34bd8064887c9585e77982bcfd02613f689da312d3bf5a084cfaf8bd0354/jupyterlab_citation_manager-1.0.0-py3-none-any.whl", hash = "sha256:9316f37b2d0d03897d74df44591408ef34c8ad7529c4f3053b84693d8efc82ce", size = 167056 }, +] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/90/51/9187be60d989df97f5f0aba133fa54e7300f17616e065d1ada7d7646b6d6/jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d", size = 512900 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780", size = 15884 }, +] + +[[package]] +name = "jupyterlab-server" +version = "2.27.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "babel" }, + { name = "jinja2" }, + { name = "json5" }, + { name = "jsonschema" }, + { name = "jupyter-server" }, + { name = "packaging" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0a/c9/a883ce65eb27905ce77ace410d83587c82ea64dc85a48d1f7ed52bcfa68d/jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4", size = 76173 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/54/09/2032e7d15c544a0e3cd831c51d77a8ca57f7555b2e1b2922142eddb02a84/jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4", size = 59700 }, +] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/59/73/fa26bbb747a9ea4fca6b01453aa22990d52ab62dd61384f1ac0dc9d4e7ba/jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed", size = 203556 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/93/858e87edc634d628e5d752ba944c2833133a28fa87bb093e6832ced36a3e/jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54", size = 214392 }, +] + +[[package]] +name = "markupsafe" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274 }, + { url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348 }, + { url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149 }, + { url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118 }, + { url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993 }, + { url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178 }, + { url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319 }, + { url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352 }, + { url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097 }, + { url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601 }, + { url = "https://files.pythonhosted.org/packages/83/0e/67eb10a7ecc77a0c2bbe2b0235765b98d164d81600746914bebada795e97/MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd", size = 14274 }, + { url = "https://files.pythonhosted.org/packages/2b/6d/9409f3684d3335375d04e5f05744dfe7e9f120062c9857df4ab490a1031a/MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430", size = 12352 }, + { url = "https://files.pythonhosted.org/packages/d2/f5/6eadfcd3885ea85fe2a7c128315cc1bb7241e1987443d78c8fe712d03091/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094", size = 24122 }, + { url = "https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396", size = 23085 }, + { url = "https://files.pythonhosted.org/packages/c2/cf/c9d56af24d56ea04daae7ac0940232d31d5a8354f2b457c6d856b2057d69/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79", size = 22978 }, + { url = "https://files.pythonhosted.org/packages/2a/9f/8619835cd6a711d6272d62abb78c033bda638fdc54c4e7f4272cf1c0962b/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a", size = 24208 }, + { url = "https://files.pythonhosted.org/packages/f9/bf/176950a1792b2cd2102b8ffeb5133e1ed984547b75db47c25a67d3359f77/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca", size = 23357 }, + { url = "https://files.pythonhosted.org/packages/ce/4f/9a02c1d335caabe5c4efb90e1b6e8ee944aa245c1aaaab8e8a618987d816/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c", size = 23344 }, + { url = "https://files.pythonhosted.org/packages/ee/55/c271b57db36f748f0e04a759ace9f8f759ccf22b4960c270c78a394f58be/MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1", size = 15101 }, + { url = "https://files.pythonhosted.org/packages/29/88/07df22d2dd4df40aba9f3e402e6dc1b8ee86297dddbad4872bd5e7b0094f/MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f", size = 15603 }, + { url = "https://files.pythonhosted.org/packages/62/6a/8b89d24db2d32d433dffcd6a8779159da109842434f1dd2f6e71f32f738c/MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c", size = 14510 }, + { url = "https://files.pythonhosted.org/packages/7a/06/a10f955f70a2e5a9bf78d11a161029d278eeacbd35ef806c3fd17b13060d/MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb", size = 12486 }, + { url = "https://files.pythonhosted.org/packages/34/cf/65d4a571869a1a9078198ca28f39fba5fbb910f952f9dbc5220afff9f5e6/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c", size = 25480 }, + { url = "https://files.pythonhosted.org/packages/0c/e3/90e9651924c430b885468b56b3d597cabf6d72be4b24a0acd1fa0e12af67/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d", size = 23914 }, + { url = "https://files.pythonhosted.org/packages/66/8c/6c7cf61f95d63bb866db39085150df1f2a5bd3335298f14a66b48e92659c/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe", size = 23796 }, + { url = "https://files.pythonhosted.org/packages/bb/35/cbe9238ec3f47ac9a7c8b3df7a808e7cb50fe149dc7039f5f454b3fba218/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5", size = 25473 }, + { url = "https://files.pythonhosted.org/packages/e6/32/7621a4382488aa283cc05e8984a9c219abad3bca087be9ec77e89939ded9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a", size = 24114 }, + { url = "https://files.pythonhosted.org/packages/0d/80/0985960e4b89922cb5a0bac0ed39c5b96cbc1a536a99f30e8c220a996ed9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9", size = 24098 }, + { url = "https://files.pythonhosted.org/packages/82/78/fedb03c7d5380df2427038ec8d973587e90561b2d90cd472ce9254cf348b/MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6", size = 15208 }, + { url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739 }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/a36a337438a14116b16480db471ad061c36c3694df7c2084a0da7ba538b7/matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90", size = 8159 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899 }, +] + +[[package]] +name = "mistune" +version = "3.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/c6/1d/6b2b634e43bacc3239006e61800676aa6c41ac1836b2c57497ed27a7310b/mistune-3.1.1.tar.gz", hash = "sha256:e0740d635f515119f7d1feb6f9b192ee60f0cc649f80a8f944f905706a21654c", size = 94645 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c6/02/c66bdfdadbb021adb642ca4e8a5ed32ada0b4a3e4b39c5d076d19543452f/mistune-3.1.1-py3-none-any.whl", hash = "sha256:02106ac2aa4f66e769debbfa028509a275069dcffce0dfa578edd7b991ee700a", size = 53696 }, +] + +[[package]] +name = "nbclient" +version = "0.10.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "nbformat" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/87/66/7ffd18d58eae90d5721f9f39212327695b749e23ad44b3881744eaf4d9e8/nbclient-0.10.2.tar.gz", hash = "sha256:90b7fc6b810630db87a6d0c2250b1f0ab4cf4d3c27a299b0cde78a4ed3fd9193", size = 62424 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/34/6d/e7fa07f03a4a7b221d94b4d586edb754a9b0dc3c9e2c93353e9fa4e0d117/nbclient-0.10.2-py3-none-any.whl", hash = "sha256:4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d", size = 25434 }, +] + +[[package]] +name = "nbconvert" +version = "7.16.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "beautifulsoup4" }, + { name = "bleach", extra = ["css"] }, + { name = "defusedxml" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyterlab-pygments" }, + { name = "markupsafe" }, + { name = "mistune" }, + { name = "nbclient" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "pandocfilters" }, + { name = "pygments" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a3/59/f28e15fc47ffb73af68a8d9b47367a8630d76e97ae85ad18271b9db96fdf/nbconvert-7.16.6.tar.gz", hash = "sha256:576a7e37c6480da7b8465eefa66c17844243816ce1ccc372633c6b71c3c0f582", size = 857715 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl", hash = "sha256:1375a7b67e0c2883678c48e506dc320febb57685e5ee67faa51b18a90f3a712b", size = 258525 }, +] + +[[package]] +name = "nbformat" +version = "5.10.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "fastjsonschema" }, + { name = "jsonschema" }, + { name = "jupyter-core" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6d/fd/91545e604bc3dad7dca9ed03284086039b294c6b3d75c0d2fa45f9e9caf3/nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a", size = 142749 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b", size = 78454 }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195 }, +] + +[[package]] +name = "notebook" +version = "7.3.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, + { name = "jupyterlab" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ea/04/ac488379d5afef43402b3fb4be2857db1a09804fecf98b9b714c741b225b/notebook-7.3.2.tar.gz", hash = "sha256:705e83a1785f45b383bf3ee13cb76680b92d24f56fb0c7d2136fe1d850cd3ca8", size = 12781804 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/9b/76e50ee18f183ea5fe1784a9eeaa50f2c71802e4740d6e959592b0993298/notebook-7.3.2-py3-none-any.whl", hash = "sha256:e5f85fc59b69d3618d73cf27544418193ff8e8058d5bf61d315ce4f473556288", size = 13163630 }, +] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/54/d2/92fa3243712b9a3e8bafaf60aac366da1cada3639ca767ff4b5b3654ec28/notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb", size = 13167 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef", size = 13307 }, +] + +[[package]] +name = "overrides" +version = "7.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/36/86/b585f53236dec60aba864e050778b25045f857e17f6e5ea0ae95fe80edd2/overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a", size = 22812 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/ab/fc8290c6a4c722e5514d80f62b2dc4c4df1a68a41d1364e625c35990fcf3/overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49", size = 17832 }, +] + +[[package]] +name = "packaging" +version = "24.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d0/63/68dbb6eb2de9cb10ee4c9c14a0148804425e13c4fb20d61cce69f53106da/packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f", size = 163950 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759", size = 65451 }, +] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/70/6f/3dd4940bbe001c06a65f88e36bad298bc7a0de5036115639926b0c5c0458/pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e", size = 8454 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc", size = 8663 }, +] + +[[package]] +name = "parso" +version = "0.8.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/94/68e2e17afaa9169cf6412ab0f28623903be73d1b32e208d9e8e541bb086d/parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d", size = 400609 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c6/ac/dac4a63f978e4dcb3c6d3a78c4d8e0192a113d288502a1216950c41b1027/parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18", size = 103650 }, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772 }, +] + +[[package]] +name = "platformdirs" +version = "4.3.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/13/fc/128cc9cb8f03208bdbf93d3aa862e16d376844a14f9a0ce5cf4507372de4/platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907", size = 21302 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb", size = 18439 }, +] + +[[package]] +name = "prometheus-client" +version = "0.21.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/62/14/7d0f567991f3a9af8d1cd4f619040c93b68f09a02b6d0b6ab1b2d1ded5fe/prometheus_client-0.21.1.tar.gz", hash = "sha256:252505a722ac04b0456be05c05f75f45d760c2911ffc45f2a06bcaed9f3ae3fb", size = 78551 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ff/c2/ab7d37426c179ceb9aeb109a85cda8948bb269b7561a0be870cc656eefe4/prometheus_client-0.21.1-py3-none-any.whl", hash = "sha256:594b45c410d6f4f8888940fe80b5cc2521b305a1fafe1c58609ef715a001f301", size = 54682 }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.50" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/e1/bd15cb8ffdcfeeb2bdc215de3c3cffca11408d829e4b8416dcfe71ba8854/prompt_toolkit-3.0.50.tar.gz", hash = "sha256:544748f3860a2623ca5cd6d2795e7a14f3d0e1c3c9728359013f79877fc89bab", size = 429087 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e4/ea/d836f008d33151c7a1f62caf3d8dd782e4d15f6a43897f64480c2b8de2ad/prompt_toolkit-3.0.50-py3-none-any.whl", hash = "sha256:9b6427eb19e479d98acff65196a307c555eb567989e6d88ebbb1b509d9779198", size = 387816 }, +] + +[[package]] +name = "psutil" +version = "6.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1f/5a/07871137bb752428aa4b659f910b399ba6f291156bdea939be3e96cae7cb/psutil-6.1.1.tar.gz", hash = "sha256:cf8496728c18f2d0b45198f06895be52f36611711746b7f30c464b422b50e2f5", size = 508502 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/61/99/ca79d302be46f7bdd8321089762dd4476ee725fce16fc2b2e1dbba8cac17/psutil-6.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:fc0ed7fe2231a444fc219b9c42d0376e0a9a1a72f16c5cfa0f68d19f1a0663e8", size = 247511 }, + { url = "https://files.pythonhosted.org/packages/0b/6b/73dbde0dd38f3782905d4587049b9be64d76671042fdcaf60e2430c6796d/psutil-6.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bdd4eab935276290ad3cb718e9809412895ca6b5b334f5a9111ee6d9aff9377", size = 248985 }, + { url = "https://files.pythonhosted.org/packages/17/38/c319d31a1d3f88c5b79c68b3116c129e5133f1822157dd6da34043e32ed6/psutil-6.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6e06c20c05fe95a3d7302d74e7097756d4ba1247975ad6905441ae1b5b66003", size = 284488 }, + { url = "https://files.pythonhosted.org/packages/9c/39/0f88a830a1c8a3aba27fededc642da37613c57cbff143412e3536f89784f/psutil-6.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97f7cb9921fbec4904f522d972f0c0e1f4fabbdd4e0287813b21215074a0f160", size = 287477 }, + { url = "https://files.pythonhosted.org/packages/47/da/99f4345d4ddf2845cb5b5bd0d93d554e84542d116934fde07a0c50bd4e9f/psutil-6.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33431e84fee02bc84ea36d9e2c4a6d395d479c9dd9bba2376c1f6ee8f3a4e0b3", size = 289017 }, + { url = "https://files.pythonhosted.org/packages/38/53/bd755c2896f4461fd4f36fa6a6dcb66a88a9e4b9fd4e5b66a77cf9d4a584/psutil-6.1.1-cp37-abi3-win32.whl", hash = "sha256:eaa912e0b11848c4d9279a93d7e2783df352b082f40111e078388701fd479e53", size = 250602 }, + { url = "https://files.pythonhosted.org/packages/7b/d7/7831438e6c3ebbfa6e01a927127a6cb42ad3ab844247f3c5b96bea25d73d/psutil-6.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:f35cfccb065fff93529d2afb4a2e89e363fe63ca1e4a5da22b603a85833c2649", size = 254444 }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993 }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842 }, +] + +[[package]] +name = "pycparser" +version = "2.22" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1d/b2/31537cf4b1ca988837256c910a668b553fceb8f069bedc4b1c826024b52c/pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6", size = 172736 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/13/a3/a812df4e2dd5696d1f351d58b8fe16a405b234ad2886a0dab9183fb78109/pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc", size = 117552 }, +] + +[[package]] +name = "pygments" +version = "2.19.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7c/2d/c3338d48ea6cc0feb8446d8e6937e1408088a72a39937982cc6111d17f84/pygments-2.19.1.tar.gz", hash = "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f", size = 4968581 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8a/0b/9fcc47d19c48b59121088dd6da2488a49d5f72dacf8262e2790a1d2c7d15/pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c", size = 1225293 }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 }, +] + +[[package]] +name = "python-json-logger" +version = "3.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e3/c4/358cd13daa1d912ef795010897a483ab2f0b41c9ea1b35235a8b2f7d15a7/python_json_logger-3.2.1.tar.gz", hash = "sha256:8eb0554ea17cb75b05d2848bc14fb02fbdbd9d6972120781b974380bfa162008", size = 16287 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4b/72/2f30cf26664fcfa0bd8ec5ee62ec90c03bd485e4a294d92aabc76c5203a5/python_json_logger-3.2.1-py3-none-any.whl", hash = "sha256:cdc17047eb5374bd311e748b42f99d71223f3b0e186f4206cc5d52aefe85b090", size = 14924 }, +] + +[[package]] +name = "pywin32" +version = "308" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/7c/d00d6bdd96de4344e06c4afbf218bc86b54436a94c01c71a8701f613aa56/pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897", size = 5939729 }, + { url = "https://files.pythonhosted.org/packages/21/27/0c8811fbc3ca188f93b5354e7c286eb91f80a53afa4e11007ef661afa746/pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47", size = 6543015 }, + { url = "https://files.pythonhosted.org/packages/9d/0f/d40f8373608caed2255781a3ad9a51d03a594a1248cd632d6a298daca693/pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091", size = 7976033 }, + { url = "https://files.pythonhosted.org/packages/a9/a4/aa562d8935e3df5e49c161b427a3a2efad2ed4e9cf81c3de636f1fdddfd0/pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed", size = 5938579 }, + { url = "https://files.pythonhosted.org/packages/c7/50/b0efb8bb66210da67a53ab95fd7a98826a97ee21f1d22949863e6d588b22/pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4", size = 6542056 }, + { url = "https://files.pythonhosted.org/packages/26/df/2b63e3e4f2df0224f8aaf6d131f54fe4e8c96400eb9df563e2aae2e1a1f9/pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd", size = 7974986 }, +] + +[[package]] +name = "pywinpty" +version = "2.0.15" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2d/7c/917f9c4681bb8d34bfbe0b79d36bbcd902651aeab48790df3d30ba0202fb/pywinpty-2.0.15.tar.gz", hash = "sha256:312cf39153a8736c617d45ce8b6ad6cd2107de121df91c455b10ce6bba7a39b2", size = 29017 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/88/e5/9714def18c3a411809771a3fbcec70bffa764b9675afb00048a620fca604/pywinpty-2.0.15-cp312-cp312-win_amd64.whl", hash = "sha256:83a8f20b430bbc5d8957249f875341a60219a4e971580f2ba694fbfb54a45ebc", size = 1405243 }, + { url = "https://files.pythonhosted.org/packages/fb/16/2ab7b3b7f55f3c6929e5f629e1a68362981e4e5fed592a2ed1cb4b4914a5/pywinpty-2.0.15-cp313-cp313-win_amd64.whl", hash = "sha256:ab5920877dd632c124b4ed17bc6dd6ef3b9f86cd492b963ffdb1a67b85b0f408", size = 1405020 }, + { url = "https://files.pythonhosted.org/packages/7c/16/edef3515dd2030db2795dbfbe392232c7a0f3dc41b98e92b38b42ba497c7/pywinpty-2.0.15-cp313-cp313t-win_amd64.whl", hash = "sha256:a4560ad8c01e537708d2790dbe7da7d986791de805d89dd0d3697ca59e9e4901", size = 1404151 }, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/54/ed/79a089b6be93607fa5cdaedf301d7dfb23af5f25c398d5ead2525b063e17/pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e", size = 130631 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/86/0c/c581167fc46d6d6d7ddcfb8c843a4de25bdd27e4466938109ca68492292c/PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab", size = 183873 }, + { url = "https://files.pythonhosted.org/packages/a8/0c/38374f5bb272c051e2a69281d71cba6fdb983413e6758b84482905e29a5d/PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725", size = 173302 }, + { url = "https://files.pythonhosted.org/packages/c3/93/9916574aa8c00aa06bbac729972eb1071d002b8e158bd0e83a3b9a20a1f7/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5", size = 739154 }, + { url = "https://files.pythonhosted.org/packages/95/0f/b8938f1cbd09739c6da569d172531567dbcc9789e0029aa070856f123984/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425", size = 766223 }, + { url = "https://files.pythonhosted.org/packages/b9/2b/614b4752f2e127db5cc206abc23a8c19678e92b23c3db30fc86ab731d3bd/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476", size = 767542 }, + { url = "https://files.pythonhosted.org/packages/d4/00/dd137d5bcc7efea1836d6264f049359861cf548469d18da90cd8216cf05f/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48", size = 731164 }, + { url = "https://files.pythonhosted.org/packages/c9/1f/4f998c900485e5c0ef43838363ba4a9723ac0ad73a9dc42068b12aaba4e4/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b", size = 756611 }, + { url = "https://files.pythonhosted.org/packages/df/d1/f5a275fdb252768b7a11ec63585bc38d0e87c9e05668a139fea92b80634c/PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4", size = 140591 }, + { url = "https://files.pythonhosted.org/packages/0c/e8/4f648c598b17c3d06e8753d7d13d57542b30d56e6c2dedf9c331ae56312e/PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8", size = 156338 }, + { url = "https://files.pythonhosted.org/packages/ef/e3/3af305b830494fa85d95f6d95ef7fa73f2ee1cc8ef5b495c7c3269fb835f/PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba", size = 181309 }, + { url = "https://files.pythonhosted.org/packages/45/9f/3b1c20a0b7a3200524eb0076cc027a970d320bd3a6592873c85c92a08731/PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1", size = 171679 }, + { url = "https://files.pythonhosted.org/packages/7c/9a/337322f27005c33bcb656c655fa78325b730324c78620e8328ae28b64d0c/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133", size = 733428 }, + { url = "https://files.pythonhosted.org/packages/a3/69/864fbe19e6c18ea3cc196cbe5d392175b4cf3d5d0ac1403ec3f2d237ebb5/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484", size = 763361 }, + { url = "https://files.pythonhosted.org/packages/04/24/b7721e4845c2f162d26f50521b825fb061bc0a5afcf9a386840f23ea19fa/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5", size = 759523 }, + { url = "https://files.pythonhosted.org/packages/2b/b2/e3234f59ba06559c6ff63c4e10baea10e5e7df868092bf9ab40e5b9c56b6/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc", size = 726660 }, + { url = "https://files.pythonhosted.org/packages/fe/0f/25911a9f080464c59fab9027482f822b86bf0608957a5fcc6eaac85aa515/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652", size = 751597 }, + { url = "https://files.pythonhosted.org/packages/14/0d/e2c3b43bbce3cf6bd97c840b46088a3031085179e596d4929729d8d68270/PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183", size = 140527 }, + { url = "https://files.pythonhosted.org/packages/fa/de/02b54f42487e3d3c6efb3f89428677074ca7bf43aae402517bc7cca949f3/PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563", size = 156446 }, +] + +[[package]] +name = "pyzmq" +version = "26.2.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5a/e3/8d0382cb59feb111c252b54e8728257416a38ffcb2243c4e4775a3c990fe/pyzmq-26.2.1.tar.gz", hash = "sha256:17d72a74e5e9ff3829deb72897a175333d3ef5b5413948cae3cf7ebf0b02ecca", size = 278433 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9c/b9/260a74786f162c7f521f5f891584a51d5a42fd15f5dcaa5c9226b2865fcc/pyzmq-26.2.1-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:a6549ecb0041dafa55b5932dcbb6c68293e0bd5980b5b99f5ebb05f9a3b8a8f3", size = 1348495 }, + { url = "https://files.pythonhosted.org/packages/bf/73/8a0757e4b68f5a8ccb90ddadbb76c6a5f880266cdb18be38c99bcdc17aaa/pyzmq-26.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0250c94561f388db51fd0213cdccbd0b9ef50fd3c57ce1ac937bf3034d92d72e", size = 945035 }, + { url = "https://files.pythonhosted.org/packages/cf/de/f02ec973cd33155bb772bae33ace774acc7cc71b87b25c4829068bec35de/pyzmq-26.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36ee4297d9e4b34b5dc1dd7ab5d5ea2cbba8511517ef44104d2915a917a56dc8", size = 671213 }, + { url = "https://files.pythonhosted.org/packages/d1/80/8fc583085f85ac91682744efc916888dd9f11f9f75a31aef1b78a5486c6c/pyzmq-26.2.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c2a9cb17fd83b7a3a3009901aca828feaf20aa2451a8a487b035455a86549c09", size = 908750 }, + { url = "https://files.pythonhosted.org/packages/c3/25/0b4824596f261a3cc512ab152448b383047ff5f143a6906a36876415981c/pyzmq-26.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:786dd8a81b969c2081b31b17b326d3a499ddd1856e06d6d79ad41011a25148da", size = 865416 }, + { url = "https://files.pythonhosted.org/packages/a1/d1/6fda77a034d02034367b040973fd3861d945a5347e607bd2e98c99f20599/pyzmq-26.2.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2d88ba221a07fc2c5581565f1d0fe8038c15711ae79b80d9462e080a1ac30435", size = 865922 }, + { url = "https://files.pythonhosted.org/packages/ad/81/48f7fd8a71c427412e739ce576fc1ee14f3dc34527ca9b0076e471676183/pyzmq-26.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c84c1297ff9f1cd2440da4d57237cb74be21fdfe7d01a10810acba04e79371a", size = 1201526 }, + { url = "https://files.pythonhosted.org/packages/c7/d8/818f15c6ef36b5450e435cbb0d3a51599fc884a5d2b27b46b9c00af68ef1/pyzmq-26.2.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:46d4ebafc27081a7f73a0f151d0c38d4291656aa134344ec1f3d0199ebfbb6d4", size = 1512808 }, + { url = "https://files.pythonhosted.org/packages/d9/c4/b3edb7d0ae82ad6fb1a8cdb191a4113c427a01e85139906f3b655b07f4f8/pyzmq-26.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:91e2bfb8e9a29f709d51b208dd5f441dc98eb412c8fe75c24ea464734ccdb48e", size = 1411836 }, + { url = "https://files.pythonhosted.org/packages/69/1c/151e3d42048f02cc5cd6dfc241d9d36b38375b4dee2e728acb5c353a6d52/pyzmq-26.2.1-cp312-cp312-win32.whl", hash = "sha256:4a98898fdce380c51cc3e38ebc9aa33ae1e078193f4dc641c047f88b8c690c9a", size = 581378 }, + { url = "https://files.pythonhosted.org/packages/b6/b9/d59a7462848aaab7277fddb253ae134a570520115d80afa85e952287e6bc/pyzmq-26.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:a0741edbd0adfe5f30bba6c5223b78c131b5aa4a00a223d631e5ef36e26e6d13", size = 643737 }, + { url = "https://files.pythonhosted.org/packages/55/09/f37e707937cce328944c1d57e5e50ab905011d35252a0745c4f7e5822a76/pyzmq-26.2.1-cp312-cp312-win_arm64.whl", hash = "sha256:e5e33b1491555843ba98d5209439500556ef55b6ab635f3a01148545498355e5", size = 558303 }, + { url = "https://files.pythonhosted.org/packages/4f/2e/fa7a91ce349975971d6aa925b4c7e1a05abaae99b97ade5ace758160c43d/pyzmq-26.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:099b56ef464bc355b14381f13355542e452619abb4c1e57a534b15a106bf8e23", size = 942331 }, + { url = "https://files.pythonhosted.org/packages/64/2b/1f10b34b6dc7ff4b40f668ea25ba9b8093ce61d874c784b90229b367707b/pyzmq-26.2.1-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:651726f37fcbce9f8dd2a6dab0f024807929780621890a4dc0c75432636871be", size = 1345831 }, + { url = "https://files.pythonhosted.org/packages/4c/8d/34884cbd4a8ec050841b5fb58d37af136766a9f95b0b2634c2971deb09da/pyzmq-26.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57dd4d91b38fa4348e237a9388b4423b24ce9c1695bbd4ba5a3eada491e09399", size = 670773 }, + { url = "https://files.pythonhosted.org/packages/0f/f4/d4becfcf9e416ad2564f18a6653f7c6aa917da08df5c3760edb0baa1c863/pyzmq-26.2.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d51a7bfe01a48e1064131f3416a5439872c533d756396be2b39e3977b41430f9", size = 908836 }, + { url = "https://files.pythonhosted.org/packages/07/fa/ab105f1b86b85cb2e821239f1d0900fccd66192a91d97ee04661b5436b4d/pyzmq-26.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c7154d228502e18f30f150b7ce94f0789d6b689f75261b623f0fdc1eec642aab", size = 865369 }, + { url = "https://files.pythonhosted.org/packages/c9/48/15d5f415504572dd4b92b52db5de7a5befc76bb75340ba9f36f71306a66d/pyzmq-26.2.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:f1f31661a80cc46aba381bed475a9135b213ba23ca7ff6797251af31510920ce", size = 865676 }, + { url = "https://files.pythonhosted.org/packages/7e/35/2d91bcc7ccbb56043dd4d2c1763f24a8de5f05e06a134f767a7fb38e149c/pyzmq-26.2.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:290c96f479504439b6129a94cefd67a174b68ace8a8e3f551b2239a64cfa131a", size = 1201457 }, + { url = "https://files.pythonhosted.org/packages/6d/bb/aa7c5119307a5762b8dca6c9db73e3ab4bccf32b15d7c4f376271ff72b2b/pyzmq-26.2.1-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:f2c307fbe86e18ab3c885b7e01de942145f539165c3360e2af0f094dd440acd9", size = 1513035 }, + { url = "https://files.pythonhosted.org/packages/4f/4c/527e6650c2fccec7750b783301329c8a8716d59423818afb67282304ce5a/pyzmq-26.2.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:b314268e716487bfb86fcd6f84ebbe3e5bec5fac75fdf42bc7d90fdb33f618ad", size = 1411881 }, + { url = "https://files.pythonhosted.org/packages/89/9f/e4412ea1b3e220acc21777a5edba8885856403d29c6999aaf00a9459eb03/pyzmq-26.2.1-cp313-cp313-win32.whl", hash = "sha256:edb550616f567cd5603b53bb52a5f842c0171b78852e6fc7e392b02c2a1504bb", size = 581354 }, + { url = "https://files.pythonhosted.org/packages/55/cd/f89dd3e9fc2da0d1619a82c4afb600c86b52bc72d7584953d460bc8d5027/pyzmq-26.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:100a826a029c8ef3d77a1d4c97cbd6e867057b5806a7276f2bac1179f893d3bf", size = 643560 }, + { url = "https://files.pythonhosted.org/packages/a7/99/5de4f8912860013f1116f818a0047659bc20d71d1bc1d48f874bdc2d7b9c/pyzmq-26.2.1-cp313-cp313-win_arm64.whl", hash = "sha256:6991ee6c43e0480deb1b45d0c7c2bac124a6540cba7db4c36345e8e092da47ce", size = 558037 }, + { url = "https://files.pythonhosted.org/packages/06/0b/63b6d7a2f07a77dbc9768c6302ae2d7518bed0c6cee515669ca0d8ec743e/pyzmq-26.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:25e720dba5b3a3bb2ad0ad5d33440babd1b03438a7a5220511d0c8fa677e102e", size = 938580 }, + { url = "https://files.pythonhosted.org/packages/85/38/e5e2c3ffa23ea5f95f1c904014385a55902a11a67cd43c10edf61a653467/pyzmq-26.2.1-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:9ec6abfb701437142ce9544bd6a236addaf803a32628d2260eb3dbd9a60e2891", size = 1339670 }, + { url = "https://files.pythonhosted.org/packages/d2/87/da5519ed7f8b31e4beee8f57311ec02926822fe23a95120877354cd80144/pyzmq-26.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e1eb9d2bfdf5b4e21165b553a81b2c3bd5be06eeddcc4e08e9692156d21f1f6", size = 660983 }, + { url = "https://files.pythonhosted.org/packages/f6/e8/1ca6a2d59562e04d326a026c9e3f791a6f1a276ebde29da478843a566fdb/pyzmq-26.2.1-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:90dc731d8e3e91bcd456aa7407d2eba7ac6f7860e89f3766baabb521f2c1de4a", size = 896509 }, + { url = "https://files.pythonhosted.org/packages/5c/e5/0b4688f7c74bea7e4f1e920da973fcd7d20175f4f1181cb9b692429c6bb9/pyzmq-26.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b6a93d684278ad865fc0b9e89fe33f6ea72d36da0e842143891278ff7fd89c3", size = 853196 }, + { url = "https://files.pythonhosted.org/packages/8f/35/c17241da01195001828319e98517683dad0ac4df6fcba68763d61b630390/pyzmq-26.2.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:c1bb37849e2294d519117dd99b613c5177934e5c04a5bb05dd573fa42026567e", size = 855133 }, + { url = "https://files.pythonhosted.org/packages/d2/14/268ee49bbecc3f72e225addeac7f0e2bd5808747b78c7bf7f87ed9f9d5a8/pyzmq-26.2.1-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:632a09c6d8af17b678d84df442e9c3ad8e4949c109e48a72f805b22506c4afa7", size = 1191612 }, + { url = "https://files.pythonhosted.org/packages/5e/02/6394498620b1b4349b95c534f3ebc3aef95f39afbdced5ed7ee315c49c14/pyzmq-26.2.1-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:fc409c18884eaf9ddde516d53af4f2db64a8bc7d81b1a0c274b8aa4e929958e8", size = 1500824 }, + { url = "https://files.pythonhosted.org/packages/17/fc/b79f0b72891cbb9917698add0fede71dfb64e83fa3481a02ed0e78c34be7/pyzmq-26.2.1-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:17f88622b848805d3f6427ce1ad5a2aa3cf61f12a97e684dab2979802024d460", size = 1399943 }, +] + +[[package]] +name = "referencing" +version = "0.36.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "rpds-py" }, + { name = "typing-extensions", marker = "python_full_version < '3.13'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2f/db/98b5c277be99dd18bfd91dd04e1b759cad18d1a338188c936e92f921c7e2/referencing-0.36.2.tar.gz", hash = "sha256:df2e89862cd09deabbdba16944cc3f10feb6b3e6f18e902f7cc25609a34775aa", size = 74744 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c1/b1/3baf80dc6d2b7bc27a95a67752d0208e410351e3feb4eb78de5f77454d8d/referencing-0.36.2-py3-none-any.whl", hash = "sha256:e8699adbbf8b5c7de96d8ffa0eb5c158b3beafce084968e2ea8bb08c6794dcd0", size = 26775 }, +] + +[[package]] +name = "requests" +version = "2.32.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928 }, +] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/ea/a9387748e2d111c3c2b275ba970b735e04e15cdb1eb30693b6b5708c4dbd/rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b", size = 5513 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa", size = 3490 }, +] + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/da/88/f270de456dd7d11dcc808abfa291ecdd3f45ff44e3b549ffa01b126464d0/rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055", size = 6760 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9", size = 4242 }, +] + +[[package]] +name = "rpds-py" +version = "0.22.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/01/80/cce854d0921ff2f0a9fa831ba3ad3c65cee3a46711addf39a2af52df2cfd/rpds_py-0.22.3.tar.gz", hash = "sha256:e32fee8ab45d3c2db6da19a5323bc3362237c8b653c70194414b892fd06a080d", size = 26771 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/75/47/3383ee3bd787a2a5e65a9b9edc37ccf8505c0a00170e3a5e6ea5fbcd97f7/rpds_py-0.22.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:27e98004595899949bd7a7b34e91fa7c44d7a97c40fcaf1d874168bb652ec67e", size = 352334 }, + { url = "https://files.pythonhosted.org/packages/40/14/aa6400fa8158b90a5a250a77f2077c0d0cd8a76fce31d9f2b289f04c6dec/rpds_py-0.22.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1978d0021e943aae58b9b0b196fb4895a25cc53d3956b8e35e0b7682eefb6d56", size = 342111 }, + { url = "https://files.pythonhosted.org/packages/7d/06/395a13bfaa8a28b302fb433fb285a67ce0ea2004959a027aea8f9c52bad4/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655ca44a831ecb238d124e0402d98f6212ac527a0ba6c55ca26f616604e60a45", size = 384286 }, + { url = "https://files.pythonhosted.org/packages/43/52/d8eeaffab047e6b7b7ef7f00d5ead074a07973968ffa2d5820fa131d7852/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:feea821ee2a9273771bae61194004ee2fc33f8ec7db08117ef9147d4bbcbca8e", size = 391739 }, + { url = "https://files.pythonhosted.org/packages/83/31/52dc4bde85c60b63719610ed6f6d61877effdb5113a72007679b786377b8/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22bebe05a9ffc70ebfa127efbc429bc26ec9e9b4ee4d15a740033efda515cf3d", size = 427306 }, + { url = "https://files.pythonhosted.org/packages/70/d5/1bab8e389c2261dba1764e9e793ed6830a63f830fdbec581a242c7c46bda/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3af6e48651c4e0d2d166dc1b033b7042ea3f871504b6805ba5f4fe31581d8d38", size = 442717 }, + { url = "https://files.pythonhosted.org/packages/82/a1/a45f3e30835b553379b3a56ea6c4eb622cf11e72008229af840e4596a8ea/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e67ba3c290821343c192f7eae1d8fd5999ca2dc99994114643e2f2d3e6138b15", size = 385721 }, + { url = "https://files.pythonhosted.org/packages/a6/27/780c942de3120bdd4d0e69583f9c96e179dfff082f6ecbb46b8d6488841f/rpds_py-0.22.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02fbb9c288ae08bcb34fb41d516d5eeb0455ac35b5512d03181d755d80810059", size = 415824 }, + { url = "https://files.pythonhosted.org/packages/94/0b/aa0542ca88ad20ea719b06520f925bae348ea5c1fdf201b7e7202d20871d/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f56a6b404f74ab372da986d240e2e002769a7d7102cc73eb238a4f72eec5284e", size = 561227 }, + { url = "https://files.pythonhosted.org/packages/0d/92/3ed77d215f82c8f844d7f98929d56cc321bb0bcfaf8f166559b8ec56e5f1/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0a0461200769ab3b9ab7e513f6013b7a97fdeee41c29b9db343f3c5a8e2b9e61", size = 587424 }, + { url = "https://files.pythonhosted.org/packages/09/42/cacaeb047a22cab6241f107644f230e2935d4efecf6488859a7dd82fc47d/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8633e471c6207a039eff6aa116e35f69f3156b3989ea3e2d755f7bc41754a4a7", size = 555953 }, + { url = "https://files.pythonhosted.org/packages/e6/52/c921dc6d5f5d45b212a456c1f5b17df1a471127e8037eb0972379e39dff4/rpds_py-0.22.3-cp312-cp312-win32.whl", hash = "sha256:593eba61ba0c3baae5bc9be2f5232430453fb4432048de28399ca7376de9c627", size = 221339 }, + { url = "https://files.pythonhosted.org/packages/f2/c7/f82b5be1e8456600395366f86104d1bd8d0faed3802ad511ef6d60c30d98/rpds_py-0.22.3-cp312-cp312-win_amd64.whl", hash = "sha256:d115bffdd417c6d806ea9069237a4ae02f513b778e3789a359bc5856e0404cc4", size = 235786 }, + { url = "https://files.pythonhosted.org/packages/d0/bf/36d5cc1f2c609ae6e8bf0fc35949355ca9d8790eceb66e6385680c951e60/rpds_py-0.22.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ea7433ce7e4bfc3a85654aeb6747babe3f66eaf9a1d0c1e7a4435bbdf27fea84", size = 351657 }, + { url = "https://files.pythonhosted.org/packages/24/2a/f1e0fa124e300c26ea9382e59b2d582cba71cedd340f32d1447f4f29fa4e/rpds_py-0.22.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6dd9412824c4ce1aca56c47b0991e65bebb7ac3f4edccfd3f156150c96a7bf25", size = 341829 }, + { url = "https://files.pythonhosted.org/packages/cf/c2/0da1231dd16953845bed60d1a586fcd6b15ceaeb965f4d35cdc71f70f606/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20070c65396f7373f5df4005862fa162db5d25d56150bddd0b3e8214e8ef45b4", size = 384220 }, + { url = "https://files.pythonhosted.org/packages/c7/73/a4407f4e3a00a9d4b68c532bf2d873d6b562854a8eaff8faa6133b3588ec/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b09865a9abc0ddff4e50b5ef65467cd94176bf1e0004184eb915cbc10fc05c5", size = 391009 }, + { url = "https://files.pythonhosted.org/packages/a9/c3/04b7353477ab360fe2563f5f0b176d2105982f97cd9ae80a9c5a18f1ae0f/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3453e8d41fe5f17d1f8e9c383a7473cd46a63661628ec58e07777c2fff7196dc", size = 426989 }, + { url = "https://files.pythonhosted.org/packages/8d/e6/e4b85b722bcf11398e17d59c0f6049d19cd606d35363221951e6d625fcb0/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f5d36399a1b96e1a5fdc91e0522544580dbebeb1f77f27b2b0ab25559e103b8b", size = 441544 }, + { url = "https://files.pythonhosted.org/packages/27/fc/403e65e56f65fff25f2973216974976d3f0a5c3f30e53758589b6dc9b79b/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:009de23c9c9ee54bf11303a966edf4d9087cd43a6003672e6aa7def643d06518", size = 385179 }, + { url = "https://files.pythonhosted.org/packages/57/9b/2be9ff9700d664d51fd96b33d6595791c496d2778cb0b2a634f048437a55/rpds_py-0.22.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1aef18820ef3e4587ebe8b3bc9ba6e55892a6d7b93bac6d29d9f631a3b4befbd", size = 415103 }, + { url = "https://files.pythonhosted.org/packages/bb/a5/03c2ad8ca10994fcf22dd2150dd1d653bc974fa82d9a590494c84c10c641/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f60bd8423be1d9d833f230fdbccf8f57af322d96bcad6599e5a771b151398eb2", size = 560916 }, + { url = "https://files.pythonhosted.org/packages/ba/2e/be4fdfc8b5b576e588782b56978c5b702c5a2307024120d8aeec1ab818f0/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:62d9cfcf4948683a18a9aff0ab7e1474d407b7bab2ca03116109f8464698ab16", size = 587062 }, + { url = "https://files.pythonhosted.org/packages/67/e0/2034c221937709bf9c542603d25ad43a68b4b0a9a0c0b06a742f2756eb66/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9253fc214112405f0afa7db88739294295f0e08466987f1d70e29930262b4c8f", size = 555734 }, + { url = "https://files.pythonhosted.org/packages/ea/ce/240bae07b5401a22482b58e18cfbabaa392409b2797da60223cca10d7367/rpds_py-0.22.3-cp313-cp313-win32.whl", hash = "sha256:fb0ba113b4983beac1a2eb16faffd76cb41e176bf58c4afe3e14b9c681f702de", size = 220663 }, + { url = "https://files.pythonhosted.org/packages/cb/f0/d330d08f51126330467edae2fa4efa5cec8923c87551a79299380fdea30d/rpds_py-0.22.3-cp313-cp313-win_amd64.whl", hash = "sha256:c58e2339def52ef6b71b8f36d13c3688ea23fa093353f3a4fee2556e62086ec9", size = 235503 }, + { url = "https://files.pythonhosted.org/packages/f7/c4/dbe1cc03df013bf2feb5ad00615038050e7859f381e96fb5b7b4572cd814/rpds_py-0.22.3-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:f82a116a1d03628a8ace4859556fb39fd1424c933341a08ea3ed6de1edb0283b", size = 347698 }, + { url = "https://files.pythonhosted.org/packages/a4/3a/684f66dd6b0f37499cad24cd1c0e523541fd768576fa5ce2d0a8799c3cba/rpds_py-0.22.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3dfcbc95bd7992b16f3f7ba05af8a64ca694331bd24f9157b49dadeeb287493b", size = 337330 }, + { url = "https://files.pythonhosted.org/packages/82/eb/e022c08c2ce2e8f7683baa313476492c0e2c1ca97227fe8a75d9f0181e95/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59259dc58e57b10e7e18ce02c311804c10c5a793e6568f8af4dead03264584d1", size = 380022 }, + { url = "https://files.pythonhosted.org/packages/e4/21/5a80e653e4c86aeb28eb4fea4add1f72e1787a3299687a9187105c3ee966/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5725dd9cc02068996d4438d397e255dcb1df776b7ceea3b9cb972bdb11260a83", size = 390754 }, + { url = "https://files.pythonhosted.org/packages/37/a4/d320a04ae90f72d080b3d74597074e62be0a8ecad7d7321312dfe2dc5a6a/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99b37292234e61325e7a5bb9689e55e48c3f5f603af88b1642666277a81f1fbd", size = 423840 }, + { url = "https://files.pythonhosted.org/packages/87/70/674dc47d93db30a6624279284e5631be4c3a12a0340e8e4f349153546728/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:27b1d3b3915a99208fee9ab092b8184c420f2905b7d7feb4aeb5e4a9c509b8a1", size = 438970 }, + { url = "https://files.pythonhosted.org/packages/3f/64/9500f4d66601d55cadd21e90784cfd5d5f4560e129d72e4339823129171c/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f612463ac081803f243ff13cccc648578e2279295048f2a8d5eb430af2bae6e3", size = 383146 }, + { url = "https://files.pythonhosted.org/packages/4d/45/630327addb1d17173adcf4af01336fd0ee030c04798027dfcb50106001e0/rpds_py-0.22.3-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f73d3fef726b3243a811121de45193c0ca75f6407fe66f3f4e183c983573e130", size = 408294 }, + { url = "https://files.pythonhosted.org/packages/5f/ef/8efb3373cee54ea9d9980b772e5690a0c9e9214045a4e7fa35046e399fee/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:3f21f0495edea7fdbaaa87e633a8689cd285f8f4af5c869f27bc8074638ad69c", size = 556345 }, + { url = "https://files.pythonhosted.org/packages/54/01/151d3b9ef4925fc8f15bfb131086c12ec3c3d6dd4a4f7589c335bf8e85ba/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:1e9663daaf7a63ceccbbb8e3808fe90415b0757e2abddbfc2e06c857bf8c5e2b", size = 582292 }, + { url = "https://files.pythonhosted.org/packages/30/89/35fc7a6cdf3477d441c7aca5e9bbf5a14e0f25152aed7f63f4e0b141045d/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a76e42402542b1fae59798fab64432b2d015ab9d0c8c47ba7addddbaf7952333", size = 553855 }, + { url = "https://files.pythonhosted.org/packages/8f/e0/830c02b2457c4bd20a8c5bb394d31d81f57fbefce2dbdd2e31feff4f7003/rpds_py-0.22.3-cp313-cp313t-win32.whl", hash = "sha256:69803198097467ee7282750acb507fba35ca22cc3b85f16cf45fb01cb9097730", size = 219100 }, + { url = "https://files.pythonhosted.org/packages/f8/30/7ac943f69855c2db77407ae363484b915d861702dbba1aa82d68d57f42be/rpds_py-0.22.3-cp313-cp313t-win_amd64.whl", hash = "sha256:f5cf2a0c2bdadf3791b5c205d55a37a54025c6e18a71c71f82bb536cf9a454bf", size = 233794 }, +] + +[[package]] +name = "send2trash" +version = "1.8.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fd/3a/aec9b02217bb79b87bbc1a21bc6abc51e3d5dcf65c30487ac96c0908c722/Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf", size = 17394 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/b0/4562db6223154aa4e22f939003cb92514c79f3d4dccca3444253fd17f902/Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9", size = 18072 }, +] + +[[package]] +name = "setuptools" +version = "75.8.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/92/ec/089608b791d210aec4e7f97488e67ab0d33add3efccb83a056cbafe3a2a6/setuptools-75.8.0.tar.gz", hash = "sha256:c5afc8f407c626b8313a86e10311dd3f661c6cd9c09d4bf8c15c0e11f9f2b0e6", size = 1343222 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/8a/b9dc7678803429e4a3bc9ba462fa3dd9066824d3c607490235c6a796be5a/setuptools-75.8.0-py3-none-any.whl", hash = "sha256:e3982f444617239225d675215d51f6ba05f845d4eec313da4418fdbb56fb27e3", size = 1228782 }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 }, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/87/a6771e1546d97e7e041b6ae58d80074f81b7d5121207425c964ddf5cfdbd/sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc", size = 20372 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235 }, +] + +[[package]] +name = "soupsieve" +version = "2.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/ce/fbaeed4f9fb8b2daa961f90591662df6a86c1abf25c548329a86920aedfb/soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb", size = 101569 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/c2/fe97d779f3ef3b15f05c94a2f1e3d21732574ed441687474db9d342a7315/soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9", size = 36186 }, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521 }, +] + +[[package]] +name = "terminado" +version = "0.18.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess", marker = "os_name != 'nt'" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8a/11/965c6fd8e5cc254f1fe142d547387da17a8ebfd75a3455f637c663fb38a0/terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e", size = 32701 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0", size = 14154 }, +] + +[[package]] +name = "tinycss2" +version = "1.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7a/fd/7a5ee21fd08ff70d3d33a5781c255cbe779659bd03278feb98b19ee550f4/tinycss2-1.4.0.tar.gz", hash = "sha256:10c0972f6fc0fbee87c3edb76549357415e94548c1ae10ebccdea16fb404a9b7", size = 87085 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl", hash = "sha256:3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289", size = 26610 }, +] + +[[package]] +name = "tornado" +version = "6.4.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/59/45/a0daf161f7d6f36c3ea5fc0c2de619746cc3dd4c76402e9db545bd920f63/tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b", size = 501135 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/7e/71f604d8cea1b58f82ba3590290b66da1e72d840aeb37e0d5f7291bd30db/tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1", size = 436299 }, + { url = "https://files.pythonhosted.org/packages/96/44/87543a3b99016d0bf54fdaab30d24bf0af2e848f1d13d34a3a5380aabe16/tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803", size = 434253 }, + { url = "https://files.pythonhosted.org/packages/cb/fb/fdf679b4ce51bcb7210801ef4f11fdac96e9885daa402861751353beea6e/tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec", size = 437602 }, + { url = "https://files.pythonhosted.org/packages/4f/3b/e31aeffffc22b475a64dbeb273026a21b5b566f74dee48742817626c47dc/tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946", size = 436972 }, + { url = "https://files.pythonhosted.org/packages/22/55/b78a464de78051a30599ceb6983b01d8f732e6f69bf37b4ed07f642ac0fc/tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf", size = 437173 }, + { url = "https://files.pythonhosted.org/packages/79/5e/be4fb0d1684eb822c9a62fb18a3e44a06188f78aa466b2ad991d2ee31104/tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634", size = 437892 }, + { url = "https://files.pythonhosted.org/packages/f5/33/4f91fdd94ea36e1d796147003b490fe60a0215ac5737b6f9c65e160d4fe0/tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73", size = 437334 }, + { url = "https://files.pythonhosted.org/packages/2b/ae/c1b22d4524b0e10da2f29a176fb2890386f7bd1f63aacf186444873a88a0/tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c", size = 437261 }, + { url = "https://files.pythonhosted.org/packages/b5/25/36dbd49ab6d179bcfc4c6c093a51795a4f3bed380543a8242ac3517a1751/tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482", size = 438463 }, + { url = "https://files.pythonhosted.org/packages/61/cc/58b1adeb1bb46228442081e746fcdbc4540905c87e8add7c277540934edb/tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38", size = 438907 }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359 }, +] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20241206" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/60/47d92293d9bc521cd2301e423a358abfac0ad409b3a1606d8fbae1321961/types_python_dateutil-2.9.0.20241206.tar.gz", hash = "sha256:18f493414c26ffba692a72369fea7a154c502646301ebfe3d56a04b3767284cb", size = 13802 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0f/b3/ca41df24db5eb99b00d97f89d7674a90cb6b3134c52fb8121b6d8d30f15c/types_python_dateutil-2.9.0.20241206-py3-none-any.whl", hash = "sha256:e248a4bc70a486d3e3ec84d0dc30eec3a5f979d6e7ee4123ae043eedbb987f53", size = 14384 }, +] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/df/db/f35a00659bc03fec321ba8bce9420de607a1d37f8342eee1863174c69557/typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8", size = 85321 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/9f/ad63fc0248c5379346306f8668cda6e2e2e9c95e01216d2b8ffd9ff037d0/typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d", size = 37438 }, +] + +[[package]] +name = "uri-template" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/31/c7/0336f2bd0bcbada6ccef7aaa25e443c118a704f828a0620c6fa0207c1b64/uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7", size = 21678 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363", size = 11140 }, +] + +[[package]] +name = "urllib3" +version = "2.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/aa/63/e53da845320b757bf29ef6a9062f5c669fe997973f966045cb019c3f4b66/urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d", size = 307268 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df", size = 128369 }, +] + +[[package]] +name = "wcwidth" +version = "0.2.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/63/53559446a878410fc5a5974feb13d31d78d752eb18aeba59c7fef1af7598/wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5", size = 101301 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166 }, +] + +[[package]] +name = "webcolors" +version = "24.11.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7b/29/061ec845fb58521848f3739e466efd8250b4b7b98c1b6c5bf4d40b419b7e/webcolors-24.11.1.tar.gz", hash = "sha256:ecb3d768f32202af770477b8b65f318fa4f566c22948673a977b00d589dd80f6", size = 45064 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/e8/c0e05e4684d13459f93d312077a9a2efbe04d59c393bc2b8802248c908d4/webcolors-24.11.1-py3-none-any.whl", hash = "sha256:515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9", size = 14934 }, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0b/02/ae6ceac1baeda530866a85075641cec12989bd8d31af6d5ab4a3e8c92f47/webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923", size = 9721 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", size = 11774 }, +] + +[[package]] +name = "websocket-client" +version = "1.8.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e6/30/fba0d96b4b5fbf5948ed3f4681f7da2f9f64512e1d303f94b4cc174c24a5/websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da", size = 54648 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526", size = 58826 }, +] + +[[package]] +name = "widgetsnbextension" +version = "4.0.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/56/fc/238c424fd7f4ebb25f8b1da9a934a3ad7c848286732ae04263661eb0fc03/widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6", size = 1164730 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/21/02/88b65cc394961a60c43c70517066b6b679738caf78506a5da7b88ffcb643/widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71", size = 2335872 }, +]